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Abstract Dynamic Voltage and Frequency Scaling

(DVFS) exhibits fundamental limitations as a method

to reduce energy consumption in computing systems.

In the HPC domain, where performance is of highest

priority and codes are heavily optimized to minimize

idle time, DVFS has limited opportunity to achieve

substantial energy savings. This paper explores if op-

erating processors Near the transistor Threshold Volt-

age (NTV) is a better alternative to DVFS for break-

ing the power wall in HPC. NTV presents challenges,

since it compromises both performance and reliability

to reduce power consumption. We present a first of its

kind study of a significance-driven execution paradigm

that selectively uses NTV and algorithmic error tol-

erance to reduce energy consumption in performance-

constrained HPC environments. Using an iterative al-

gorithm as a use case, we present an adaptive execution

scheme that switches between near-threshold execution

on many cores and above-threshold execution on one

core, as the computational significance of iterations in

the algorithm evolves over time. Using this scheme on

state-of-the-art hardware, we demonstrate energy sav-

ings ranging between 35% to 67%, while compromising

neither correctness nor performance.
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1 Introduction

The interest in energy consumption in HPC has in-

creased over the past decade. While high performance

is still the main objective, many considerations have

been raised recently that require including power and

energy consumption of hardware and software in the

evaluation of new methods and technologies. The mo-

tivational reasons are diverse, ranging from infrastruc-

tural limits such as the 20 MW power limit proposed

by the US Department of Energy to financial or envi-

ronmental concerns [19].

As a result, hardware industry has shifted their fo-

cus to include power and energy minimization into their

designs. The results of these efforts are evident by fea-

tures such as DVFS or power and clock gating. DVFS

has been an efficient tool to reduce power consump-

tion, however increased voltage margins –resulting from

shrinking transistors– put a limit on voltage scaling.

Although an energy-optimal voltage setting would of-

ten be below the nominal transistor threshold voltage,

this would give rise to increased variation, timing errors

and performance degradation that would be unaccept-

able for HPC applications. An alternative approach is

to operate hardware slightly above the threshold volt-

age (also called near-threshold voltage, NTV). NTV

would achieve substantial gains in power consumption

but with acceptable performance degradation, which is

caused by a rather modest frequency reduction and can

be compensated by parallelism [12] .

Methods for tolerating errors in hardware have been

studied in the past [6,9]. This resulted in several solu-

tions at different levels of the design stack, in both hard-

ware and software. However, these solutions often come

with non-negligible performance and energy penalties.

As an alternative, the shift to an approximate com-
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puting –also known as significance-based computing–

paradigm has been recently proposed [3,12,13,18]. Ap-

proximate computing tries to trade reliability for en-

ergy consumption. It allows components to operate in

an unreliable state by aggressive voltage scaling, assum-

ing that software can cope with the timing errors that

will occur with higher probability. The objective is to

reduce energy consumption by using NTV and avoid

the cost of fault-tolerant mechanisms.

In this work, we are trying to utilize the potential

for power and energy reduction that NTV computing

promises combined with significant-based computing.

We investigate the effects of operating hardware outside

its standard reliability specifications on iterative HPC

codes, incurring both computational errors as well as

reductions in energy consumption. We show that codes

can be analyzed in terms of their significance, describing

their susceptibility to faults with respect to their con-

vergence behavior. Using the Jacobi method as an ex-

ample, we show that there are iterative HPC codes that

can naturally deal with many computational errors, at

the cost of increased iterations to reach convergence. We

also investigate scenarios where we distinguish between

significant and insignificant parts of Jacobi and execute

them selectively on reliable or unreliable hardware, re-

spectively. We consider parts of the algorithm that are

more resilient to errors as insignificant, whereas parts in

which errors increase the execution time substantially

are marked as significant. This distinction helps us to

minimize the performance overhead due to errors and

utilize NTV optimally.

We show that, in our platform, we can achieve 65%

energy gains for a parallel version of Jacobi running at

NTV compared to a serial version at super-threshold

voltage along with time savings of 43%, when we exe-

cute with 20% of the super-threshold frequency.

Section 2 discusses related work relevant to our re-

search. The notion of significance is introduced in Sec-

tion 3. We will describe our methodology and experi-

ment setup in Section 4 and analyze and illustrate our

results in Section 5. Finally, Section 6 will conclude and

provide an outlook for future research.

2 Related Work

Research in near-threshold voltage computing (NTC)

has attracted considerable interest. NTC is a direct ef-

fect of industry’s strive to keep up with Moore’s law

while coping with thermal and power limits. Prior re-

search in NTC [4,12] investigates both hardware and

software solutions to cope with the entailed proneness

to faults and identify energy saving possibilities. How-

ever, this research either does not explore the effect of

unreliability on unprotected codes or confines its ex-

ploration to probabilistic applications that can afford

direct interventions to their convergence criterion and

computation discarding [13]. Similarly, there are many

works that explore the influence of errors on individual

hardware units of processors, without further expora-

tion of their implications on software [17].

Software methods for improving error resilience in-

clude checkpointing for failed tasks [9] or replication

to identify silent data corruption [6]. Among others,

Hoemmen and Heroux investigate iterative methods for

their fault tolerance [8] and Elliott et al. quantify the

error of single bit flips in progressing iterations of Ja-

cobi [5]. However, these works do not investigate the

impact of fault recovery on energy consumption or how

fault resilience can be leveraged to reduce it.

Recently, there has been interest in exploiting ap-

proximate computing to build fault resilient systems.

Leem et al. [13] build a system of few reliable and

many unreliable cores. The system executes the control-

intensive part of the application –which is highly fault

intolerant– on reliable cores and the fault-tolerant com-

pute-intensive part of the application on relaxed-relia-

bility cores. This scheme achieves 90% or better accu-

racy of the output of applications even for 2×104 errors

per second per core. Agarwal et al. [1], Misailovic et

al. [14] and Rinard et al. [16] propose a static analysis-

based technique to reduce the number of iterations in

a loop without compromising correctness. In the same

context, Baek et al. [3] provide a framework where the

programmer specifies the functions and loops they want

to approximate and the desired loss of Quality of Ser-

vice (QoS). Then, the program is transformed to meet

the QoS degradation target. Rinard et al. [15], propose

to discard some tasks of the application and produce

new computations that execute only a subset of the

tasks of the original computation. Sampson et al. [18]

propose a technique to distinguish the data types that

need precise computation from the ones that can be ap-

proximated. They guarantee that the approximate in-

structions will never crash the program but only reduce

power consumption.

3 Significance

We motivate the notion of code significance, i.e. that

different parts of an application show different suscep-

tibility to errors in terms of the change in the end re-

sult. This applies to data as well as operations and

gives rise to considering partial protection methods, em-

ployed only where and when necessary. This distinction,

coupled with the prospect of NTC, creates the opportu-

nity for significant amounts of power savings by running
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Fig. 1: Relative time overhead of Jacobi for faults in A at
various iterations, averaged over all matrix positions, for all
bit positions (N=1000). The hatched bar denotes divergence.

non-significant parts of the computation on unreliable

hardware.

We want to illustrate the applicability of significance

classification on iterative solvers and their resilience in

the presence of faults. Iterative solvers operate on re-

peatedly updating the solution of a system of equations

until it reaches the required level of accuracy. Errors oc-

curring in these algorithms can be gracefully mitigated

at the cost of an increased number of iterations to reach

convergence. As a result, these applications are suit-

able candidates for trading accuracy for lower energy

consumption.

We selected the weighted Jacobi method as a rep-

resentative use case in order to study the resilience to

errors in the broader class of iterative numerical ap-

plications. Jacobi solves the system Ax = b for a di-

agonally dominant matrix A. It starts with an initial

approximation of the solution, x0, and in each step up-

dates the estimation for the solution, according to

x
(k+1)
i = ω

 1

aii
bi −

∑
j 6=i

aijx
k
j

 + (1− ω)xki . (1)

The algorithm iterates until the convergence condition

‖Ax− b‖ ≤ limit is satisfied, and is guaranteed to con-

verge if A is strictly diagonally dominant, i.e.

|aii| >
∑
j 6=i

|aij |. (2)

To demonstrate the applicability of significance to

Jacobi, Figure 1 presents the effect of a single bit flip

fault happening in matrix A at various iterations of an

otherwise fault-free Jacobi run. It shows the relative

overhead of Jacobi (i.e. the number of additional itera-

tions) required to reach the convergence limit compared
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Fig. 2: Relative time overhead of Jacobi for faults in A at all
matrix positions, averaged over all bit positions (N=10).

to a fault-free run. Generally, Jacobi exhibits a loga-

rithmic convergence rate and later iterations are more

significant due to the overhead required to recover from

a fault. Furthermore, because the achieved residual for

later iterations is lower than for earlier iterations (due

to the better x that has been computed), later iterations

also show higher sensitivity to faults. Both these factors

render late Jacobi iterations more significant than early

iterations [5]. This motivates the potential application

of protection or recovery mechanisms for later Jacobi

iterations only.

In addition, Figure 1 illustrates that Jacobi is able to

cope well with flips happening in lower bit positions, as

they cause little to no overhead. This can be attributed

to the high precision of double-precision floating point

numbers. Flips happening in the high bits of the expo-
nent for elements of A however can have two possible

outcomes, depending on their position and the error

they introduce. If the flip causes a positive error in the

floating point number and happens aside the diagonal,

there is a risk of violating Jacobi’s convergence condi-

tion of strict diagonal dominance for A, Eq. (2) (analo-

gously for negative errors on the diagonal). These cases

manifest themselves as the solid bar shape in Figure 1

for bits 57–62. For the majority of cases that violate this

condition Jacobi does not converge and ends up with an

residual of either infinity (Inf ) or not a number (NaN ),

depending on the operations involved. Overall, Figure 1

shows that for most bit positions there is no protection

or recovery necessary, except for a few high bits of the

exponent that justify mitigation techniques.

In addition to Jacobi’s varying significance depend-

ing on the progress of the algorithm, significance can

also vary depending on the component that is exposed

to a fault (A, b or x), as well as the position within a

component. As an example, Figure 2 presents the rel-
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ative overhead of injecting a fault on the diagonal and

offside the diagonal of iteration matrix A (for illustra-

tive clarity, we chose the problem size to be 10×10).

The fact that elements on the diagonal show lower im-

pact (and hence lower significance) can be attributed to

the combination of two reasons. First, these elements

are used in a division operation whereas the others are

used in a multiplication (see Eq. (1)). Second, we use a

uniform distribution to randomly initialize the elements

of A and b, that leads to the majority of numbers being

positive and greater than 1. Hence, a multiplication op-

eration tends to increase any effect a fault might have,

whereas a division generally reduces it. For this reason,

our experiment results presented in Section 5 involv-

ing matrix A are based on sampling positions both on

and aside the diagonal and computing a weighted av-

erage for the entire matrix. It should be noted that the

weighting between diagonal vs. aside elements naturally

changes with the matrix dimensions. As a consequence,

the overall significance of A is also partially dependent

on the input data size.

Detecting significance can be difficult for large codes.

It is an algorithm-specific attribute and as a result in-

put from programmers can be indispensible for a system

that provides support for significance-based computing.

Such a system would rely on the programmer’s knowl-

edge about the algorithm, who would denote e.g. which

parts can be executed unreliably. Large pieces of soft-

ware often compose from smaller mathematical kernels

whose tolerance in faults has been extensively studied.

Such studies could be used by programmers to mark

code regions as significant or non-significant, without

having to perform extensive profiling. Moreover, there

is ongoing research for algorithmic detection of the sig-

nificance of code based on profiling (e.g. automatic dif-

ferentiation [20]). This approach studies the sensitivity

of code blocks, monitoring the range of the output of

a code block after perturbation applied to the input.

A code block is then considered to be more sensitive

to errors, the larger the range of possible output values

is. Nevertheless, automatically and efficiently detecting

code significance is still an open research area.

Furthermore, the design of a system for significance-

based computing should provide fallbacks for applica-

tions that cannot afford unreliability in their execution.

In order for these applications to be able to benefit from

NTC, the system must employ software or hardware

fault recovery mechanisms.

4 Methodology

This section describes the fault model of our work.

Moreover, it elaborates the power and energy effects

that we expect from operating hardware unreliably and

provides details about the hardware and our measure-

ment methods.

4.1 Fault Model

Following common practice in related work [17], faults

can be categorized as:

– no impact: the fault has no effect on the application

– data corruption

– silent: only detectable with knowledge about the

application

– non-silent: detectable without knowledge about

the application

– looping: faults that cause the application to loop

– other (e.g. illegal instructions, segmentation faults)

Of these fault classes we consider silent data corrup-

tion (SDC) faults since they are the most insidious in

high performance computing. Signaling errors such as

Inf, or NaN or application crashes due to illegal instruc-

tions are comparatively easily detectable. Also, looping

might be identified by detecting fixed points in the iter-

ation data of an application or constraints on the execu-

tion time of code regions. In contrast, SDCs can cause

graceful exits with possibly wrong results, making them

particularly important to be dealt with.

SDCs can be categorized further as persistent or

non-persistent. Persistent faults occur at the source of

the data in question, i.e if the data is read multiple

times it will exhibit the same deviation each time. Non-

persistent faults on the other hand are faults in tempo-

rary copies of data that are only used once (e.g. faults

happening directly in execution units or registers).

We consider persistent faults, mappable to faults

happening in CPU data caches that are read multiple

times and might also be written back to main memory.

We do not account for errors in machine code in instruc-

tion caches, because these can lead to non-recoverable

errors. We assume that instruction caches are employed

with protection mechanisms.

4.2 Energy Savings Through Unreliability

We explore execution schemes that deliberately com-

promise processor reliability, using NTV operation, for

achieving power and energy savings in HPC codes [4].

Karpuzcu et al. [12] suggest that power savings between

10× and 50× are possible with NTV, albeit with a 5×
to 10× reduction in clock frequency. Under these as-

sumptions, a processor would consume 2× to 5× less
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energy per operation with NTV, compared to above-

threshold voltage operation. Given a fixed power bud-

get, a system design could replace few cores operating in

the above-threshold region with many cores operating

in the NTV region. A similar strategy of trading each

reliable core with many unreliable NTV cores could be

applied to achieve a fixed performance target.

4.3 Experiment Setup

The experimental testbed used for testing our method

consists of an HPC node equipped with four Intel Xeon

E5-4650 Sandy Bridge EP processors. Each CPU offers

8 cores with 32 KB and 256 KB of private caches each,

and a processor-wide shared cache of 20 MB. The sys-

tem runs a 3.5.0 Linux kernel and we used gcc 4.8.2 for

compilation.

Our workload —a C implementation of Jacobi—

was parallelized using OpenMP. The problem size N =

1000 was chosen such that the entire data resides in

the last-level cache to minimize main memory interac-

tion not covered in our energy measurement scope (de-

scribed below), while still being large enough to ensure

reasonable run times with regard to our measurements.

Time measurements were done via x86’s rdtsc instruc-

tion and we used Intel’s well-documented RAPL inter-

face to obtain energy consumption information [10]. Its

PP0 domain provides readings encompassing all cores

at a sampling rate of approximately 1 kHz and a reso-

lution of 15.3 µJ , and recent work has shown it to be

accurate enough for our use case [7]. To achieve consis-

tent energy readings, the target hardware was warmed

up for an ample amount of time before taking measure-

ments.

Since our target hardware system only allows reli-

able operation, we have to simulate unreliable opera-

tion resulting in power and energy savings, as well as

faults. The former can be achieved by correcting the

energy consumption data obtained via RAPL with re-

gard to the observations of near-threshold computing as

discussed in Section 4.2. Moreover, to be able to simu-

late an arbitrary number of reliable or unreliable cores

on non-configurable, commodity multi-core hardware,

we need to take care when processing RAPL data as

it includes off-core entities that might be oversized or

not necessarily present in some cases (i.e. ring bus for a

single core). To that end, we profiled the target CPUs

with regard to their power consumption for all num-

bers of cores in a weak scaling experiment with Jacobi.

Figure 3 shows the results of this endeavor. It indicates

that the power consumption increases linearly with the

number of cores with an offset for off-core entities of

7.1 Watts, which will be removed in subsequent data
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Fig. 3: Power consumption per number of cores on two Intel
Xeon E5-4650 for a weakly scaling Jacobi run as measured
by RAPL, and offcore amount as inferred via linear fitting.

analysis to provide a fair comparison between arbitrary

numbers of reliable or unreliable cores. The figure also

shows a different maximum power consumption for the

two CPU samples (44.3 vs. 39.6 Watts), that can be

explained by differences e.g. in supply voltage or the

temperature.

As previously mentioned our target hardware only

supports reliable operation, therefore we need to simu-

late faults in software. We inject persistent faults rep-

resented by bit flips in the original data at a range of

bit positions of double precision floating point numbers

prior to the computation of a Jacobi iteration. This sim-

ulates bit flips happening in the data caches of CPUs,

that are accessed frequently during the computation.

The implementation of the fault simulation is based on

binary operators applied to the respective element in

an inlined function, causing only negligible performance

overhead compared to the overall execution time of a

Jacobi iteration.

We assume a single bit flip per overall execution

of Jacobi (i.e. over multiple iterations), since related

work indicates that the effects of multiple faults will

lead to similar observations [2] and because it reduces

simulation complexity. Hence, an experiment is defined

by

– the data component in which the fault occurs (in

the case of Jacobi matrix A, or vectors x or b);

– the bit position i at which a flip occurrs;

– the Jacobi iteration k when the switch from unreli-

able to reliable mode occurs, with 1 < k < K and

K denoting the total number of iterations and

– the Jacobi iteration j, before the execution of which

the fault occurs, with 1 ≤ j < k.
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To minimize simulation time, we do not inject faults

at every possible element of the vectors and matrices of

Jacobi, but perform representative sampling (e.g. el-

ements both on and aside the diagonal of a matrix)

with respect to the algorithm. Furthermore we employ

a convergence limit of a factor of 10. This means that

we consider a faulty Jacobi run as not converging if it

takes more than 10 times the number of iterations of a

correct Jacobi run for the same input data set.

4.4 IEEE 754 Double-precision Floating-point Format

The data type in use for storing A, x and b in our

Jacobi implementation is the default double-precision

floating-point type of C, double. The analysis of our re-

sults in Section 5 is based on the bit positions within

the IEEE 754 binary representation of these numbers,

the binary64 format. Elliot at al. already provide a de-

tailed discussion regarding the effects of bit flips in this

representation in [5]. Nevertheless, for clearness, we feel

it is necessary to include a brief description of this rep-

resentation and elaborate on the magnitude of errors

introduced by bit flips, dependent on the position of

the bit.

Figure 4 shows the binary layout of the widely-used

binary64 format. The first 52 bits (positions 0–51) cor-

respond to the mantissa, the following 11 bits (positions

52–62) are used for the exponent and bit 63 denotes the

sign. Furthermore, within the mantissa and the expo-

nent, their lowest bits are the least significant ones. The

decimal value v of a floating-point number is then com-

puted by the formula

v = (−1)s(1 +

51∑
i=0

bi2
i−52 × 2e−1023), (3)

where s denotes the sign bit, bi the i-th bit of the

mantissa and e−1023 the exponent (stored with a bias

of 1023). Hence, the altered floating point number re-

sulting from a single bit flip in position j can be ex-

pressed as

a′ =


a± 2j−52 × 2e−1023 flip in mantissa,(4a)

a2±2j

flip in exponent,(4b)

−a flip in sign. (4c)

We will evaluate the effect of these perturbations on

the energy consumption and execution time of Jacobi

in Section 5.

5 Results

In this section we compare executing Jacobi in par-

allel on unreliable hardware at near-threshold voltage

(NTV) to sequential and parallel versions of Jacobi ex-

ecuted on reliable hardware at nominal voltage. Our

results present three cases.

First, we run Jacobi at NTV in parallel throughout

its entire execution (i.e. all iterations) and analyze and

discuss the energy savings that can be gained compared

to a sequential run at nominal voltage. Since we are

dealing with an HPC code, we will also investigate the

impact of operating at NTV on performance.

Second, the same analysis is repeated when compar-

ing to a parallel execution of Jacobi.

Third, we explore the possibility of switching from

NTV to nominal voltage for later iterations, motivated

by our discussion in Section 3. We investigate whether

later iterations of Jacobi are significant enough to jus-

tify the energy and performance expense. This could

create a potential trade-off, since executing late itera-

tions at nominal voltage also prevents late faults and

thereby saves convergence overhead.

Given the absence of documentation on the clock

frequency impairment that results from near-threshold

computing, we consider two extreme cases: a frequency

reduction by a factor of 5 (i.e. 20% of the nominal fre-

quency, denoted by f=0.2, best case) and a reduction

by a factor of 10 (i.e. 10% of the nominal frequency, de-

noted by f=0.1, worst case), as discussed in Section 4.2.

We inject exactly one error in matrix A of Jacobi under

NTV execution using the process outlined in Section 3.

The results illustrate the significance of matrix A,

since it is the biggest component of Jacobi in terms of

memory consumption and therefore presumably more

prone to faults than smaller components. Furthermore,

we assume the worst case regarding the iteration be-

fore which a fault can happen, i.e. the last unreliably

executed one. All results presented are averages over 50

random input data sets for statistical soundness, with

an overall variance of 10−5 for the relative overhead of

the number of iterations for fault-injected Jacobi runs.

5.1 Sequential Reliable Jacobi

First, we investigate replacing a single, reliable core by

multiple (in our case 16) unreliable cores to execute

Jacobi under the same power envelope, as supported by
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NTC (per-core power reductions of 10×–50×). Hence,

we assume their maximum power consumption to be

equal. Figure 5 illustrates the results of such a series of

experiments, where in each experiment a fault happens

in a different bit position. It shows the relative energy

and time savings over a sequential, reliable run of Jacobi

for all possible bit positions where faults may happen.

The results show that the effects of bit flip faults on

energy and time may be categorized as follows:

A: no observable loss in energy or time,

B: observable loss in energy or time,

C: divergence.

Moreover, this classification coincides with the bit posi-

tion that is flipped within an IEEE 754 double-precision

floating-point number. Faults happening in bit posi-

tions 0–32 can be categorized as class A since they show

no effect on energy savings. This can be contributed to

both Jacobi’s resilience to faults with small magnitudes,

as well as the overall high precision of double-precision

floating point numbers. Note that bits 0–32 are part

of the mantissa and that a bit flip in these positions

can affect normalized floating-point numbers by at most

2−20 × 2e−1023 (see Equation (4a)). As a result, energy

savings of 31% and 65% are possible for a 10x (f=0.1)

and 5x (f=0.2) frequency reduction respectively.

Bit positions 33–54 and 63 are classified as B, with

higher bit positions up to 54 showing a higher impact on

energy and time. The maximum possible floating-point

error for this class is ±2−1 for the mantissa (c.f. Equa-

tion (4a), bit 51) and a factor of 2±254

for the exponent

(c.f. Equation (4b), bit 54). As such, energy savings are

reduced to e.g. 48% for f=0.2 in the worst case. Bit 63

is not part of the exponent but holds the sign, and as

such a flip in this position induces an absolute error

of 2a (c.f. Equation (4c)) for a floating point number

a, resulting in average energy savings of 52%. Class B

warrants protection mechanisms if the user wishes to

control the performance penalty incurred by NTV exe-

cution.

The missing data points at bit positions 55–62 are

a member of class C since they are the highest signifi-

cant bits of the exponent of a double-precision floating

point number (induced errors between 2±255

and 2±262

).

For our setup, flips in any of these positions aside the

diagonal of matrix A cause violations in Jacobi’s con-

vergence criterion, lead to divergence and have Jacobi

break eventually with a non-silent Inf or NaN in most

cases (see Section 3), which are easily detectable. There-

fore, these bit positions should be protected in any case.

The correlation of time and energy savings in our

results is a direct consequence of both our constant

workload (i.e. arguably leading to constant power con-
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tial one. The missing data at bits 55–62 denotes divergence.

sumption) and the fact that we assume the same power

budget for the unreliable cores and the reliable one.

5.2 Parallel Reliable Jacobi

Our second experiment compares executing Jacobi in

parallel at NTV against a parallel run at nominal volt-

age. The results of this comparison (Figure 6) show

an identical classification of bit positions compared to

our previous experiment. Nevertheless, one should note

the lower performance compared to the previous sce-

nario, attributed to the frequency reduction of near-

threshold hardware by a factor of 5 to 10, as well as Ja-

cobi’s sub-linear scaling behavior. Therefore, for class A

faults, performance losses between 413% and 925% are

visible. Second, energy savings increase slightly (up to

35% and 67% respectively). This is expected due to the

more energy-expensive nominal-voltage setup, since Ja-

cobi does not scale perfectly with the number of cores.

As a result, the increase in power consumption is not

fully compensated by a reduction in run time, hence

leading to a higher energy consumption. In turn, the

relative energy savings of the NTV execution increase.

5.3 Significance-dependent Reliability Switching

In our third scenario, we investigate whether a fraction

of the last iterations of Jacobi are significant enough to

justify running them reliably at nominal voltage, and

if so, when a switch from parallel execution at NTV

to sequential execution at nominal voltage should oc-

cur. On one hand, switching to sequential execution in-

creases run time and energy consumption. On the other

hand, running at nominal voltage prevents faults and
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Fig. 6: Relative energy and time savings of an unreliable,
parallel run of Jacobi compared to a reliable, parallel one on
16 cores. The missing data at bits 55–62 denotes divergence.

guarantees convegence, without necessitating recovery

iterations.

To that end, we run experiments where we switch

from NTV execution to execution with nominal volt-

age at three points during a Jacobi run: 75%, 85% or

95% through completion. The intuition for this choice

of switching points is Figure 1, where we observe that

Jacobi experiences a significant slowdown when faults

happen past the upper quartile of iterations. The energy

consumption of these adaptive executions is depicted in

Figure 7. For brevity, we only show results for f=0.2.

Switching at a late point in time shows the highest sav-

ings for class A, as bit flips in this class have little to no

effect on Jacobi and do not justify the energy expense of

running at nominal voltage. Hence, while later Jacobi

iterations are more significant, this increase in signif-
icance is too low to warrant protection. However, the

switching point coupled with the increased significance

of later iterations affects the classification of bit posi-

tions. Switching later implies that faults in lower bit

positions will have higher impact since they happen in

iterations with higher significance for convergence. As

a result, switching at the 75% mark results in bit posi-

tions 0–47 to be categorized as class A, while the same

class includes only bits 0–35 when switching at the 95%

mark. This naturally changes the lower bit boundary of

class B accordingly. However, it should be noted that it

does not affect class C. If a bit flip in matrix A leads to

divergence of Jacobi, it will always do so, regardless of

when it happens. Overall, Figure 7 shows that switch-

ing at any of these three points in time does not pay

off if the objective is to minimize energy consumption.

The best strategy is to switch as late as possible (in

our case at 95%), however all adaptive executions are

outperformed by executing all iterations at NTV (65%

energy savings vs. 43% for switching at 95%).
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Fig. 7: Relative energy savings of an adaptive reli-
able/unreliable run of Jacobi on 16 cores compared to a re-
liable, sequential one, for switching to reliable hardware at
75%, 85% and 95% run time. The missing data at bits 55–62
denotes divergence.

Figure 8 shows execution time with adaptive execu-

tion. Similar observations can be made for classification

of flipped bits and their impact on energy consumption.

However, the best strategy from an execution time per-

spective depends on the position of the bit flip, which

affects the impact of late class B faults. For example,

when a flip happens at bit position 48, switching at the

75% mark yields a relative time loss of 44%, while the

time loss is 60% when switching at the 85% mark and

78% when switching at the 95% mark. Furthermore, it

is evident that switching at the 85% mark or earlier al-

ready yields performance losses due to the time spent

in sequential execution.

Overall, our results lead us to conclude that while

Jacobi does indeed show an increase in significance for

later iterations, this increase is generally too small —

within the boundaries of our setup— to justify switch-

ing from parallel execution at NTV to sequential exe-

cution at nominal voltage.

6 Conclusion

In this work we explored the applicability and effect

of near-threshold voltage (NTV) computation to a rep-

resentative HPC code. We have shown that it can be

a viable means of reducing the energy consumption,

and that performance impairments caused by NTV can

be mitigated via parallelism. We presented the notion

of significance-driven execution, attributing varying sig-

nificance to parts of a code or data and thereby decid-

ing on whether they are a candidate for NTV compu-

tation or not. Our results show potential energy sav-

ings between 35% and 67%, depending on the use case.

As such, significance-driven execution and NTV are a
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viable method of reducing the energy consumption in

HPC environments without compromising correctness

or performance. Future research opportunities include a

detailed analysis of the effect of different degrees of par-

allelism, protection mechanisms for intolerable faults as

identified in Section 5, and investigating and comparing

the significance of additional iterative HPC codes. Ad-

ditionally, ways of automatically determining the sig-

nificance of code regions within compiler frameworks

such as the Insieme compiler [11] could be explored.
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