
Optimizing Task Parallelism with
Library-Semantics-Aware Compilation

Peter Thoman, Stefan Moosbrugger, and Thomas Fahringer

University of Innsbruck, Austria
{petert,stefanm,tf}@dps.uibk.ac.at

Abstract. With the spread of parallel architectures throughout all ar-
eas of computing, task-based parallelism is an increasingly commonly
employed programming paradigm, due to its ease of use and potential
scalability. Since C++11, the ISO C++ language standard library includes
support for task parallelism. However, existing research and implemen-
tation work in task parallelism relies almost exclusively on runtime sys-
tems for achieving performance and scalability. We propose a combined
compiler and runtime system approach that is aware of the parallel se-
mantics of the C++11 standard library functions, and therefore capable
of statically analyzing and optimizing their implementation, as well as
automatically providing scheduling hints to the runtime system.
We have implemented this approach in an existing compiler and demon-
strate its effectiveness by carrying out an empirical study across 9 task-
parallel benchmarks. On a 32-core system, our method is, on average,
11.7 times faster than the best result for Clang and GCC C++11 library
implementations, and 4.1 times faster than an OpenMP baseline.

1 Introduction

Task-based parallelism is one of the most fundamental parallel abstractions in
common use today [1], with applications in areas ranging from embedded sys-
tems, over user-facing productivity software, to high performance computing
clusters. In all of these fields, the C++ programming language is one of the first
choices for performance-sensitive applications.

The C++11 standard, which is now implemented in all the most widely-
used C++ compilers, introduced several parallelism-related functions and classes
in the standard library. One of the most interesting of these from both the
perspective of an application developer and a library implementation is the async
function template. It has the potential to express both coarse- and fine-grained
task parallelism, and can serve as a building block for more complex and feature-
rich parallel patterns.

While relatively easy to implement and use, achieving good efficiency with
task parallelism can be challenging not only for application developers but also
for runtime systems, particularly in the case of fine-grained tasks [3]. The granu-
larity of tasks is defined by the length of the execution time of a single task
between interactions with the runtime system, such as spawning new tasks.
It has recently been demonstrated that the performance of fine-grained task-
parallel programs written in C++11 is insufficient in all mainstream compilers
and standard libraries [4].

In order to achieve high performance with fine-grained tasks, the overhead
of interactions with the runtime system needs to be minimized, and both task

distribution and communication need to be implemented in a scalable and ef-
ficient fashion. Previous work in this area has focused mostly on new libraries,
dynamic optimization at runtime, or user-controlled tuning parameters. Con-
versely, we propose an approach that combines a library-semantics-aware op-
timizing compiler with a high-performance runtime system which is statically
tuned by leveraging knowledge analytically derived at the compiler level. Our
goal is to maximize the efficiency of task execution without requiring any addi-
tional effort or systems-level knowledge on part of the application programmer,
and without introducing any tuning overhead at runtime.

We implemented our method within the Insieme compiler and runtime sys-
tem [5], but its principles are equally applicable in any other framework. Our
concrete contributions are the following:

– A library-semantics-aware compilation process, in which an existing com-
piler is enriched with the capability to comprehend C++11 standard library
semantics, and thus recognize, analyze and optimize task-parallel programs
written using these libraries.

– A set of analyses which statically determine several performance-relevant
properties of task-parallel code regions, and a heuristic which automatically
tunes various runtime system parameters based on these properties.

– An implementation of our approach within the Insieme compiler and runtime
system.

– Evaluation and analysis of the performance of our method on a set of 9
task-parallel benchmarks. We compare to existing C++11 implementations,
as well as OpenMP versions of the benchmarks in order to provide a more
optimized and mature performance baseline.

The remainder of this paper is structured as follows. In Section 2 we dis-
cuss some initial results that motivated our work. We then describe our library-
semantics-aware compilation method in detail in Section 3, and our static anal-
yses as well as the tuning heuristics derived from them in Section 4. The perfor-
mance of our implementation is evaluated in Section 5, followed by an overview
of related work in Section 6. Finally, Section 7 summarizes and concludes our
findings.

2 Motivation

Our primary motivation for this work is the desire to be able to employ C++11
threading constructs as building blocks for task parallel programs. Clearly, this
approach should offer significant advantages over third-party and homegrown
solutions: it is easier to teach and read, thereby increasing programmer produc-
tivity, it can be more closely integrated and supported within a given compiler
and its associated runtime library, thereby potentially offering superior perfor-
mance, and it is portable to any standard-conformant implementation of C++

without external dependencies.
However, the primary reason for parallelization is generally the desire to im-

prove program performance. As Figure 1 illustrates, both the performance and
scalability of state-of-the-art C++11 compilers and runtime systems is insuffi-
cient to serve as a replacement for existing parallel languages. The figure depicts

1

10

100

1 2 4 8 16 32

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

 Clang C++11 GCC C++11

 GCC OMP Insieme OMP

Fig. 1: Performance of the pyramids benchmark across APIs and compilers

the execution time over varying degrees of parallelism for the pyramids bench-
mark from the INNCABS [4] C++11 benchmark suite, as well as an OpenMP
implementation of the same benchmark provided for reference. The hardware
and software setup for this test is the same as used for the evaluation in Sec-
tion 5, where it is described in detail. At the maximum degree of parallelism
of 32, the production-ready OpenMP implementation of GCC outperforms the
C++11 versions generated by both GCC with libstdc++ and Clang with libc++
by a factor of 7, and the research OpenMP implementation in Insieme is a full
order of magnitude faster.

While some degree of improvement of the C++11 results could be achieved
purely at the library level, we believe that providing high efficiency rivaling
existing parallel languages over several distinct task-parallel patterns without
the overhead of runtime tuning requires the co-operation of a library-semantics-
aware compiler with a high-performance runtime system.

3 Semantics-aware Compilation

A fundamental issue with effectively implementing parallelism in mainstream
compilers and languages is that it is often expressed by means of library function
calls, opaque to the compiler and thus impossible for it to optimize. Furthermore,
even parallelism expressed at the language (extension) level – e.g. using OpenMP
constructs – is usually translated to internal library calls [6] before reaching the
main compiler intermediate representation (IR), once again rendering important
semantic information inaccessible to the compiler.

The Insieme source-to-source compiler is based on the INSPIRE intermedi-
ate representation, which is designed to inherently support unified parallel lan-
guage semantics. It has been successfully employed in OpenMP [7], Cilk [8], and
OpenCL [9] compilation. We lack the space to detail INSPIRE semantics in this
paper, and point interested readers instead to the summary provided by Jordan
et al. [10].

In order to enable semantics-aware compilation, analysis, and optimization
of C++11 task-parallel programs, we have extended the Insieme C++ frontend
to i) identify relevant C++11 thread support library calls and data types, ii) an-

long fib(long n) {
if(n < 2) return n;
auto x = async(fib, n-1, l);
auto y = async(fib, n-2, l);
return x.get() + y.get();

}

Insieme C++ Frontend

Clang

Parsing

IR

Generation

Async

Plugin
C++ Input Code

let fib = int<8> -> (int<8> n) {
if(n < 2) return n;
future f1 = () => {

f1.tg = parallel(job(...));
... }

return fget(f1) + fget(f2);
}

INSPIRE Representation

1

2

3

4

5

Fig. 2: Semantics-aware frontend conversion of library calls to INSPIRE

alyze their suitability for direct semantic translation, and iii) translate them to
appropriate INSPIRE constructs.

Figure 2 provides a simplified overview of this conversion process, which
we will now describe in more detail. The Insieme C++ frontend is based on
Clang [11] and features a plugin system allowing multiple entry points for custom
INSPIRE generation. For this work, we have created a C++11 Async plugin,
resulting in the following frontend conversion process:

1 The input program is parsed by Clang.
2 For every language construct encountered, the Async plugin is invoked.
3 In case of the vast majority of language constructs, the plugin ignores them

and they are passed directly to the default IR generation phase.
4 However, the relevant subset of suitable library calls and data structures are

intercepted and converted appropriately, as detailed below.
5 Finally, the full INSPIRE representation including a semantically equivalent

implementation of the library functions is generated.

Table 1 lists the most relevant subset of C++11 library functions and types the
Async plugin acts upon, as well as their INSPIRE equivalent. Several implemen-
tation details – such as the management of the valid state of each future – are
omitted for brevity. The same is true for the future::wait operation, as it is
simply equivalent to a future::get operation ignoring its return value.

Focusing on the essentials, the conversion is relatively straightforward. Fu-
ture type templates are converted to structures comprising the return value
(of automatically deduced type ’a) and a threadgroup, which is the funda-
mental INSPIRE type allowing operations on an asynchronously executing pro-
cess. Async calls are converted to a call to a function which takes an arbi-
trary closure () => ’a f as its argument and returns a pointer to a future
ref<ref<future>>. It allocates the new future structure on the heap, launches
a new parallel job executing the closure f and storing its result in the future
structure, and stores the result of this parallel call – a threadgroup – in the fu-
ture structure as well. Finally, it returns a pointer to this new future structure.
When get is invoked on a future, its associated threadgroup is first merged to
ensure that it has completed, the return value is stored, and the heap allocation
for the future structure is freed.

The crucial feature of this conversion process is that, after it has completed,
the entire parallel program semantics are expressed in pure INSPIRE. This uni-
formity allows the compiler core to perform analysis as it would on e.g. an
OpenMP, Cilk or OpenCL program. Furthermore, it enables the compiler back-

Table 1: Semantic mapping of standard library constructs

C++11 INSPIRE

future<T> let future = struct { ’a result; threadgroup tg; }
async(f) (() => ’a f) -> ref<ref<future>> {

ref<ref<future>> x = var.new(future);

(*x)->tg = parallel(job { (*x)->result = f(); });

return x; }
future::get() (ref<ref<future>> f) -> ’a {

merge((*f)->tg);

auto var = (*f)->result;

ref.delete(*f);

return var; }

end to generate code targeting the highly optimized Insieme runtime system,
instead of relying on the implementation provided by a given C++11 standard
library.

One important prerequisite during the conversion of async calls is checking
the specification of the std::launch parameter. Our semantics-aware compila-
tion applies if and only if this parameter is either i) not supplied, thereby leaving
the choice up to the compiler, or ii) supplied and set to to async | deferred.
Other cases, that is settings of exclusively async or exclusively deferred, pre-
scribe the desired behavior exactly, and leave little room for compiler- and
runtime-level optimization. Therefore, the Async plugin forwards those cases
directly to the default IR generation phase, maintaining their correctness.

4 Static Optimization and Compiler-assisted Tuning

Library-semantics-aware compilation as described up to now is quite useful in
and of itself, as it allows C++11 programs to automatically benefit from all back-
end and runtime optimization work carried out for any other parallel language
compiled to INSPIRE. However, its full set of advantages can only be leveraged
in combination with static compiler-level optimization and analysis.

In this section, we will discuss both static optimization, which is always at-
tempted by the compiler and invariably improves performance when applicable,
as well as feature analysis and tuning, whereby compiler analysis is used to de-
rive code features which determine runtime tuning parameters according to some
heuristics.

Static Optimization Listing 1 depicts a common pattern of async and future
usage in parallel programs. While this particular example is highly simplified, the
underlying pattern of launching a set of asynchronous tasks, and then waiting for
their completion before returning from the current task is exceedingly common
in real-world task-parallel applications, including most instances of divide-and-
conquer and branch-and-bound algorithms. In fact, Cilk semantics – the original
template for task-parallel programming – strictly proscribe this behavior.

Listing 1: Common pattern of async and future usage

let mmul = (int l, int r, int t int b, ...) -> unit {
auto f1 = async(mmul(l, l+(r-l)/2, t, t+(b-t)/2, ...));
auto f2 = async(mmul(l+(r-l)/2, r, t, t+(b-t)/2, ...));
auto f3 = async(mmul(l, l+(r-l)/2, t+(b-t)/2, b, ...));
auto f4 = async(mmul(l+(r-l)/2, r, t+(b-t)/2, b, ...));
...
f1.wait (); f2.wait (); f3.wait (); f4.wait ();
...

}

The observation that this type of synchronization pattern is common is in-
teresting from an optimization perspective, as synchronizing on the completion
of all active child tasks can generally be implemented much more efficiently in a
given parallel runtime library than waiting for each of them individually. There-
fore, we have created a static optimization we call synchronization coalescing to
optimize this type of pattern.

Algorithm 1 describes the synchronization coalescing transformation. First,
on line 1 to 4, it is ensured that no threadgroup object passes out of the current
task, as this might allow unknown synchronization and access patterns. This
means that e.g. futures stored in global variables or moved outside the function
cannot be optimized, but in practice we have not found this to be a significant
limitation so far.

From line 5 to 12, all possible static control paths to merge calls are examined
to ensure that the expected synchronization pattern is maintained. As this check
is done on static control paths, repeated parallel/merge invocations within a
loop are not optimized, but the common idiom of first launching a set of tasks
in a loop and then waiting on their results in a new loop is captured.

If neither of the two safety checks prevents the optimization, starting from
line 13 the code transformation is performed.

It is important to note that the actual implementation of this transformation
benefits from the semantics-aware translation of library calls to the unified and
inherently parallel INSPIRE representation in several important ways:

Algorithm 1 Synchronization coalescing

T input/output task function

1: Determine the set P of all parallel invocations in T .
2: for all parallel p ∈ P do
3: if the threadgroup = p() can pass outside T then return
4: end for
5: Determine the set M of all merge invocations in T .
6: for all merge m ∈ M do
7: Compute the set of all static execution paths F

from the entry point of T to m.
8: for all paths f ∈ F do
9: Reverse f and remove the first entry.

10: end for
11: if ∃f ∈ F : f encounters a merge after a parallel then return
12: end for
13: Insert merge all before the lexicographically first m ∈ M .
14: Remove all m ∈ M from T .

1. There is no need to deal with slightly different variants of the same under-
lying operation individually – e.g. it is sufficient to process only merge calls
rather than future::get and future::wait invocations, as both of these
map to INSPIRE functions internally calling merge.

2. Existing tools for the analysis of parallel control and data flow in Insieme can
be re-used directly, e.g. in the implementation of the safety checks, without
requiring specific adaptation for C++11 async.

3. The resulting optimization is equally available and applicable to any other
input language or library generating INSPIRE.

… Async invocation

a) Recursive b) Loop-like

Fig. 3: Parallel patterns

Parameter Possible Values

Push position P =

{front, back}
Queue length L = 2n

n ∈ N, n > 1

Meaningful choices 8, 16, 32, 64

Table 2: Runtime system settings

Feature Analysis and Tuning As task parallelism is a versatile abstraction, it can
model a variety of parallel patterns. Among those, two highly relevant ones for
runtime system optimization are recursive parallelism and loop-like parallelism,
both of which are illustrated in Figure 3. The former occurs e.g. in divide-and-
conquer and branch-and-bound algorithms, while the latter is common whenever
lists or arrays are processed. The crucial difference between the two, which di-
rectly affects how they are most efficiently executed, is the fact that in recursive
parallelism each task generally generates further sub-tasks, while this is not the
case for loop-like parallelism.

Many task-parallel runtime systems offer tuning options, which can signif-
icantly influence the achieved performance. The same is true for the Insieme
runtime system we employ. Two of its most relevant settings are listed in Ta-
ble 2: push position and queue length. These describe, respectively, whether newly
generated tasks are inserted at the front or the back of each work queue, and
the number of full parallel tasks which will be generated before falling back to
sequential execution (lazy task creation).

These settings relate directly to the differences between recursive and loop
parallelism: as recursively parallel tasks generate new tasks, long queues are not
necessary to maintain good utilization, and newly generated tasks should be
inserted at the back of the queue so that other workers have a chance to first
steal large blocks of work (further up in the task tree). Conversely, for loop-like
parallelism, longer queues are desireable to maintain enough available tasks for
all workers to be utilized effectively, and new tasks should be inserted at the
front of the queue to maintain cache locality on the local worker.

In a conventional runtime system or parallel library, these settings need to
be taken care of by cautious selection of defaults, or, at best, by studying the be-
havior of the application at execution time and gradually converging towards an
optimum. With library-semantics-aware compilation, we are able to classify ap-

plications at compile time by means of static analysis, and automatically choose
appropriate runtime system settings based on this classification.

Currently, our classification is based on two relatively simple analyses: i) a
recursion check which determines whether a task function may invoke itself
recursively, and ii) a loop check which investigates the invocation context of
a given parallel call to find out whether it occurs within any loop structure.
Describing these inter-procedural analyses in detail is not possible within the
constraints of this paper, but they are actually relatively simple to accomplish
within the Insieme infrastructure.

Based on the result of these analyses, classification is trivial:

1. if recursion check succeeded, classify as recursive, P = back and L = 8;
2. else, if loop check succeeded, classify as loop-like, P = front and L = 64;
3. else, use the defaults (P = front and L = 32).

While the arguments for the choice of P and the relative queue length for each
category were outlined above, the question for best choice of absolute value for
L has not been fully solved. Our current selection for each category is based on
empiric experience, with a more rigorous mechanism planned in future work.

5 Evaluation

We evaluate the effectiveness of our semantics-aware compilation approach on 9
task-parallel C++11 benchmarks from the INNCABS suite [4]. We have selected
benchmarks for which equivalent OpenMP versions exist so as to provide an
additional reference measurement. Relying exclusively on current C++11 library
implementations as the sole point of comparison seems insufficient – as illustrated
in Section 2, their performance is not competitive for fine-grained tasks.

Experimental Setup Our evaluation platform is a quad-socket shared-memory
system equipped with Intel Xeon E5-4650 processors, each offering 8 cores clocked
at a nominal frequency of 2.7 GHz (up to 3.3 GHz with Turbo Boost). The
software stack consists of Clang 3.4.2 using libc++ 3.4.2 and gcc 4.9.0 using
libstdc++ 3.4.20, both with -O3 optimizations, on a Linux operating system
with kernel version 2.6.32-431. The thread affinity for all benchmark runs was
fixed using a fill-socket-first policy, and all reported numbers are medians over
five runs.

Presentation Due to a lack of space, we are unable to give a detailed account of
all our results. In order to provide some more in-depth discussion as well as a
comprehensive impression of the overall performance of our approach, we have
decided to discuss the results of three individual benchmarks – each represen-
tative of a broader category – in detail, as well as provide a separate overview
across the entire set of benchmarks. In all cases, we discuss 4 metrics:

cpp11 best defined as the best result obtained by either gcc or Clang using the
highest-performing of the three available task launch policies available for
async. This summarized metric maintains readability on the charts while
presenting the state of the art in C++11 production compilers in the best
possible light.

omp indicating the performance achieved by the OpenMP version of each bench-
mark compiled using gcc.

0.3

3

30

1 2 4 8 16 32

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

 cpp11 best

 omp

 insieme

 insieme opt

Fig. 4: Alignment benchmark results

1

10

100

1 2 4 8 16 32

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

Fig. 5: Health benchmark results

insieme our result using library-semantics-aware compilation in the Insieme
infrastructure, without heuristic runtime tuning.

insieme opt the same as above, but with the inclusion of the compiler-assisted
runtime tuning described in Section 4.

Alignment The alignment benchmark is loop-like in structure, and features
coarse-grained tasks. As Figure 4 illustrates, its parallel scaling is reasonable
with all tested technologies. However, it is worth noting in this context that
the best C++11 version shows worse scaling than the other options, likely due
to higher threading overhead. The insieme and insieme opt results are almost
indistinguishable for up to 8 cores, with insieme opt scaling better beyond that.
This fits perfectly with expectations, as the alignment benchmark is classified
correctly by the compiler as loop-like, increasing the runtime system queue size
which in turn improves utilization at higher degrees of parallelism.

While the log-log presentation in the chart hides it to some extent, the im-
provement achieved by our approach is tangible even in this coarse-grained case.
At 32 cores, the insieme opt execution time is 47% shorter than cpp11 best, 28%
better than omp, and an improvement of 21% over insieme.

Health This benchmark is recursive in structure, and features extremely fine-
grained tasks. Therefore, as depicted in Figure 5, the best C++11 result remains
flat as the deferred launch policy – which is not parallel – is always the fastest.
Even the OpenMP implementation suffers from slowdown, rather than speedup,
with increasing thread counts. The low-overhead Insieme runtime system and
synchronization coalescing allow our system to achieve scaling up to 8 cores.
Once again, the benchmark is correctly categorized by the compiler, with insieme
opt scaling better up to 8 threads, while also not suffering from the performance
drop-off incurred by the base insieme version at 16 and 32. This is due to new
tasks being pushed to the back of work queues, resulting in larger tasks being
spread across all cores and preventing the severe overheads with higher core
counts that affect all other versions.

Sort This divide-and-conquer implementation of a mergesort is another example
of recursive task parallelism, but its tasks are significantly more coarse-grained
than those of health. Consequently, the OpenMP version performs much better.
However, as seen in Figure 6, the task granularity is still too low for either gcc
or Clang to achieve any speedup in the C++11 code. One interesting artifact

0.5

5

50

1 2 4 8 16 32

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of cores

 cpp11 best omp

 insieme insieme opt

Fig. 6: Sort benchmark results

cpp11
best

insieme insieme
opt

omp

0

0.2

0.4

0.6

0.8

1

Fig. 7: Overview of results (32 cores)

of note here is that the omp version is faster on a single core than any other
option, likely due to differences in code generation between pure C and C++11.
However, due to its better scaling, the C++11 version compiled and executed
with the insieme framework catches up to and matches the omp version at 4, 8
and 16 cores. At the highest degree of parallelism, the OpenMP version hits a
task scheduling wall while our implementation of C++11 continues to scale.

Overall The boxplot in Figure 7 provides a statistical overview of the results
across the entire set of 9 benchmarks (alignment, fib, floorplan, health, sort,
sparselu, strassen, qap, and pyramids). In order to allow for direct comparison
across this diverse set of programs, it was created thusly: i) select the best result
across 1 to 32 cores for each benchmark and each of the four previously described
versions, ii) normalize these values to the sequential time for the C++11 version
of each benchmark, and iii) calculate the required quartiles and medians for the
box plot across the 9 resulting benchmark values for each version. Horizontal
lines were added at the median for cpp11 best and omp, and between the two
median values for insieme and insieme opt to improve readability.

These results can be interpreted as follows: with 32 cores at its disposal, the
best available C++11 implementation achieves, on average, a parallel speedup of
1.8 (the median is at 0.55) over the sequential version in this set of benchmarks.
OpenMP fares better, with a median speedup of 5.9, while our implementation
reaches 21.2 without and 23.8 with runtime tuning. In a direct comparison, our
tuned results are on average 11.7 times as fast as the cpp11 best and 4.1 times
as fast as the omp baseline.

Looking beyond median performance, it is interesting to note that there is no
overlap between cpp11 best and insieme performance – that is, even at its worst
our system performs on par with the best results possible on any of our chosen
benchmarks for the existing C++11 implementations. Similarly, the worst cases
for omp are still on par with the average for cpp11 best.

Finally, while insieme opt achieves superior median, upper and lower quartile
performance than insieme, its upper limit is slightly higher. This is due to the
pyramids benchmark, despite being correctly classified as recursive, performing
better at default runtime settings. We believe that this is due to improved cache
effectiveness with the default queuing order. We consider statically analyzing
memory access patterns and taking them into account for runtime configuration
an area for future work.

6 Related Work

There is a large body of existing work in optimizing task parallelism, with a
particular focus on scheduling strategies [12, 13] and alleviating task creation
overhead [14, 15]. What is common to all of these approaches is that they focus
primarily on the runtime level, while we introduce a library-semantics-aware
compiler component in order to generate more efficient parallel code, and to
provide any given runtime system with static tuning information to use as an
initial default. As such, our approach is orthogonal to and compatible with any
further runtime-level adaptation and optimization – in fact the runtime system
we employ performs adaptive lazy task creation similar to that described by
Duran et al. [15].

Looking specifically at the C++ language, parallelism is primarily the domain
of libraries [16, 17], and thus also inherently limited to runtime optimization in
traditional systems. Meanwhile, existing compiler research related to C++11
parallelism has focused on the correctness of the memory model underlying the
standard [18], not on the performance of its library function implementations.

Most compiler research in task parallelism is related to novel, inherently
parallel languages [19], or investigates compilation for specific highly-parallel
target platforms such as GPUs [20]. Our method is fundamentally different, as
it enriches a compiler with understanding of the library-level semantics of a
widely-used mainstream language, improving its ability to analyze and optimize
the implementation of these semantics.

Liao et al. [21] performed one of the few existing investigations of semantics-
aware compilation in parallel computing. However, their goal was improving the
applicability of compiler autoparallelization by taking into account STL con-
tainer semantics in the ROSE compiler framework. Conversely, we propose se-
mantic analysis of programs which are already parallel, in order to more effi-
ciently implement this explicit parallelism.

7 Conclusion

We have presented a library-semantics-aware compilation approach for C++11
tasks. It enables i) static optimization of task parallelism by synchronization
coalescing, ii) executing C++11 programs on a highly optimized parallel runtime
system without any user effort, and iii) automatic tuning of runtime settings
based on features derived by compiler analysis.

Our system, implemented as an extension to the Insieme compiler, massively
improves performance over existing implementations of C++11 parallelism across
a range of 9 benchmarks, by a factor of 11.7 on average. Additionally, while com-
piling code using standard C++11 library constructs for parallelism, it matches
and often exceeds the performance and scalability obtained by C/OpenMP pro-
grams.

References

[1] Krste Asanovic et al. The Landscape of Parallel Computing Research: A View
from Berkeley. Tech. rep. UCB/EECS-2006-183. EECS Department, University
of California, Berkeley, 12/2006.

[2] Bjarne Stroustrup. The C++ programming language. Pearson Education, 2013.

[3] David N. Turner (ed), Hans Wolfgang Loidl, and Kevin Hammond. “On the
Granularity of Divide-and-Conquer Parallelism”. Glasgow Workshop on Func-
tional Programming. Springer-Verlag, 1995, pp. 8–10.

[4] Peter Thoman, Philipp Gschwandtner, and Thomas Fahringer. “On the Qual-
ity of Implementation of the C++11 Thread Support Library”. Parallel, Dis-
tributed and Network-Based Processing (PDP), 2015 23rd Euromicro Int. Conf.
on. IEEE. 2015, to appear.

[5] Insieme Compiler and Runtime Infrastructure. http://insieme-compiler.org. Dis-
tributed and Parallel Systems Group, University of Innsbruck.

[6] Diego Novillo. “OpenMP and automatic parallelization in GCC”. GCC develop-
ers summit. GNU. 2006.

[7] Peter Thoman et al. “Automatic OpenMP loop scheduling: a combined compiler
and runtime approach”. OpenMP in a Heterogeneous World. Springer, 2012,
pp. 88–101.

[8] Robert D Blumofe et al. Cilk: An efficient multithreaded runtime system. Vol. 30.
8. ACM, 1995.

[9] Klaus Kofler et al. “An automatic input-sensitive approach for heterogeneous
task partitioning”. Proceedings of the 27th Int. ACM conference on Int. confer-
ence on supercomputing. ACM. 2013, pp. 149–160.

[10] Herbert Jordan et al. “Inspire: The insieme parallel intermediate representa-
tion”. Parallel Architectures and Compilation Techniques (PACT), 2013 22nd
Int. Conf. on. IEEE. 2013, pp. 7–17.

[11] Chris Lattner. “LLVM and Clang: Next generation compiler technology”. The
BSD Conf. 2008, pp. 1–2.

[12] Cédric Augonnet et al. “StarPU: a unified platform for task scheduling on hetero-
geneous multicore architectures”. Concurrency and Computation: Practice and
Experience 23.2 (2011), pp. 187–198.

[13] Karthik Lakshmanan, Shinpei Kato, and Ragunathan Rajkumar. “Scheduling
parallel real-time tasks on multi-core processors”. Real-Time Systems Symposium
(RTSS), 2010 IEEE 31st. IEEE. 2010, pp. 259–268.

[14] Eric Mohr, David A Kranz, and Robert H Halstead Jr. “Lazy task creation:
A technique for increasing the granularity of parallel programs”. Parallel and
Distributed Systems, IEEE Transactions on 2.3 (1991), pp. 264–280.

[15] Alejandro Duran, Julita Corbalán, and Eduard Ayguadé. “An adaptive cut-off
for task parallelism”. High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008. Int. Conf. for. IEEE. 2008, pp. 1–11.

[16] James Reinders. Intel threading building blocks: outfitting C++ for multi-core
processor parallelism. ” O’Reilly Media, Inc.”, 2007.

[17] Ping An et al. “STAPL: An adaptive, generic parallel C++ library”. Languages
and Compilers for Parallel Computing. Springer, 2003, pp. 193–208.

[18] Mark Batty et al. “Clarifying and compiling C/C++ concurrency: from C++
11 to POWER”. ACM SIGPLAN Notices. Vol. 47. 1. ACM. 2012, pp. 509–520.

[19] Timothy G Armstrong et al. “Compiler techniques for massively scalable im-
plicit task parallelism”. High Performance Computing, Networking, Storage and
Analysis, SC14: Int. Conf. for. IEEE. 2014, pp. 299–310.

[20] John A Stratton et al. “Efficient compilation of fine-grained SPMD-threaded
programs for multicore CPUs”. Proceedings of the 8th annual IEEE/ACM Int.
symposium on Code generation and optimization. ACM. 2010, pp. 111–119.

[21] Chunhua Liao et al. “Semantic-aware automatic parallelization of modern ap-
plications using high-level abstractions”. Int. journal of parallel programming
38.5-6 (2010), pp. 361–378.

