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Abstract. Nested recursive parallel applications constitute an impor-
tant super-class of conventional, flat parallel codes. For this class, parallel
libraries utilizing the concept of tasks have been widely adapted. How-
ever, the provided abstract task creation and synchronization interfaces
force corresponding implementations to focus their attention to individ-
ual task creation and synchronization points – unaware of their relation
to each other – thereby losing optimization potential.
Within this paper, we present a novel interface for task level parallelism,
enabling implementations to grasp and manipulate the context of task
creation and synchronization points – in particular for nested recur-
sive parallelism. Furthermore, as a concrete application, we demonstrate
the interface’s capability to reduce parallel overhead within applications
based on a reference implementation utilizing C++14 template meta pro-
gramming techniques to synthesize multiple versions of a parallel task
during the compilation process.
To demonstrate its effectiveness, we evaluate the impact of our approach
on the performance of a series of eight task parallel benchmarks. For
those, our approach achieves substantial speed-ups over state of the art
solutions, in particular for use cases exhibiting fine grained tasks.

1 Introduction

For the development of parallel programs, various programming language exten-
sions and libraries have been created. Many of these, including OpenMP, MPI,
OpenCL, or CUDA, focus on the concept of parallel loops, and variations of
those, as their primary use case. In general the associated data parallelism pro-
vides high degrees of concurrency, leading to scalable applications. Furthermore,
the management overhead for distributing sub-ranges of parallel loops scales
only with the number of processors, not the problem size itself – and is thus low.

However, beyond the class of loop-parallel applications – also referred to as
flat parallel applications – there is a large group of algorithms favoring nested
parallelism. In those, concurrent control flows spawn further, nested, parallel
control flows to obtain higher degrees of parallelism. In many cases, this nesting
of parallel control flows, or threads, is even continued recursively.

Example algorithms benefiting from nested parallelism include divide and
conquer approaches such as those found in sorting algorithms, the entire class



of graph processing, as well as the wide range of problem space exploration
algorithms, covering combinatorial problems, optimization problems, and deci-
sion problems (e.g. SAT or SMT problems). Also, many numerical problems
have effective nested parallel implementations: matrix multiplication – in its
3-loop form a text book example for loop-level parallelism – can be more effec-
tively solved by Strassen’s algorithm, which exhibits a nested recursive parallel
structure. Furthermore, conventional flat parallelism constitutes a special case
of nested parallelism. Thus, the class of flat parallel algorithms is a true subset
of the class of nested parallel algorithms.

Due to its benefits, existing languages and libraries have been modified to
provide support for nested parallel codes. OpenMP introduced task-based paral-
lelism in its version 3.0 [1] and CUDA supports nested parallelism since version
5.0 [2]. However, both superimpose nested parallelism on their otherwise flat ex-
ecution model, resulting in management overhead for the runtime as well as for
the developer. Cilk, on the other hand, has been specifically designed for nested,
recursive parallelism, resulting in a (nearly) hands-off solution for the schedul-
ing of nested (recursive) parallelism. However, as we will address in this paper,
Cilk’s fully general approach introduces overhead. Furthermore, as a compiler
based approach, modifications and extensions to Cilk require modifications in
the compiler and are thus not portable among different system software stacks.

The construct presented in this paper, the prec operator, provides a way
to define nested parallel operations offering the flexibility of future based task
systems, combined with the hands-off scheduling and load management qualities
of Cilk, yet avoiding Cilk’s inherent overhead for task-scheduling opportunities.
Furthermore, all of those features are realized utilizing C++’s template-meta-
programming feature – essentially a built-in, widely supported language feature
to script C/C++ code generation in an early compilation stage. Thus, while
being a code generation based solution, its implementation behaves like a library.
It can therefore be flexibly extended or modified and is directly supported by
every standard C++ compiler. Consequently, parallel codes developed utilizing
prec are portable to all systems offering a C++ compiler.

2 Motivation and Main Idea

Our work was motivated by the unexpected low parallel performance observed
when parallelizing nested recursive algorithms using state-of-the-art tools. For
instance, Fig. 1 compares the execution time of various parallel codes computing
Fibonacci numbers recursively similar to

int fib(int n) {

if (n <= 2) return 1;

int a = spawn fib(n-1);

int b = fib(n-2);

sync;

return a + b;

}
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Fig. 1: Performance comparison of parallel fib(40) computations using parallel
libraries integrated into GCC 5.3.0, compared to a desired linear speedup.

utilizing different parallel library and runtime implementations. Based on the
parallel structure of the problem, an almost linear speedup would have been
expected. However, as the data shows, none of the parallel implementations
manages to provide any speedup over the sequential version. While the Cilk
based version exhibits a slowdown by a factor of 2.2, the std::async and OpenMP
variants lead to a slowdown by a factor of 70 and 284 respectively.

One common concept in all existing parallel libraries or program extensions is
that each creation of at task is handled independently. While it is very prominent
and explicit when using C++11’s std::async, Cilk and OpenMP implementa-
tions also process each individual task-creation site independently of its context.
Thus, if nested in a recursive function, each (potential) task-creation point has
to be processed, and the cost for the thereby introduced overhead has to be paid.

With the prec operator, to be specified in detail in section 3, we enable the
parallel library implementation to grasp the context of a parallel task creation
point – in particular in a nested recursive environment. Furthermore, we enable
the parallel library to specialize the context around those task creation points.
This capability is utilized by the prec operator to create multiple implementation
versions of a given recursive operation – one processing sub-tasks in parallel and
another processing sub-tasks sequentially. The runtime system may then switch
between these two implementations depending on the system state.

As a result, when utilizing the prec operator for parallelizing nested recursive
code, the compiler is synthesizing an interleaved sequential and parallel version
of the recursive function from a single specification. Thus, the user only has to
provide and maintain a single implementation. The multi-versioning is conducted
by the compiler. Furthermore, the compiler is capable of applying low-level opti-
mizations to the sequential version of the synthesized code such that, compared
to a purely sequential version, no performance is lost.



3 Method

Let α,β, γ, and δ be type variables, A → B denote the type of a function
accepting a value of type A as an argument and obtaining a value of type B,
and (A1, . . . , An) be the type of a n-tuple where the i-th component is of type
Ai. Further, let B be the type of the boolean values true and false, and N the
set of natural numbers.

3.1 The rec Operator

A recursive function can be defined by providing i) a test for the base-case,
ii) a function evaluating a base-case, and iii) a function evaluating a step-case.
Furthermore, in a typed system, the parameter type and the result type of the
function has to be specified. For instance, for defining a recursive version of the
Fibonacci function fib, where

fib(x) =

{
1 x <= 2

fib(x− 1) + fib(x− 2) otherwise

the parameter and result type is N (natural numbers), the base-case test, the
base-case, and the step case are given (in C++11 lambda-like syntax) by the
three expressions

base_case_test = [](N x){ return x <= 2; };

base_case = [](N x){ return 1; };

step_case = [](N x, N → N fib){

return fib(x-1) + fib(x-2);

};

where the parameter fib is a token passed as an argument to conduct recursive
calls.

Let α and β be type variables representing the parameter type and result
type respectively. Then, in the general case, a definition requires

– a base-case test of type α→ B
– a base-case evaluation function of type α→ β and
– a step-case evaluation function of type (α, α→ β)→ β

To combine those parameters, a higher-order function rec of type

(α→ B, α→ β, (α, α→ β)→ β)→ (α→ β)

can be defined, such that a call rec(a,b,c) evaluates to the recursive function

β f ( α in ) {

if (a(in)) return b(in);

return c(in,f);

}

Thus, for our example above, we obtain after inlining



N f ( N in ) {

if (in <= 2) return 1;

return f(in -1) + f(n-2);

}

corresponding to a sequential implementation of the Fibonacci function.

3.2 The prec Operator

For the parallel case it would be desirable to process sub-tasks of the recursion
in parallel. However, once sufficient concurrent control flows are present in the
system, the individual tasks should avoid the overhead induced by allowing for
task spawning by being processed sequentially. Thus, the scheme of the rec

operator needs to be modified to enable the generation of sequential and parallel
versions of the recursive function as well as to enable the task scheduler to decide
which version to execute at every scheduling point.

Similar to the rec operator, the prec operator is a higher order function of
type

(α→ B, α→ β, (α, α→ γ 〈β〉)→ β)→ (α→ future 〈β〉)
accepting three functions as arguments, and returning a new function as a result.
The interpretation of α and β is the same as for the rec operator. Additionally, γ
is a generic type to be substituted by a value wrapper providing access to a (po-
tentially asynchronously processed) value. Two examples of such value wrappers
are:

– value<δ> wrapping an immediately available value of type δ that has been
computed synchronously, and

– future<δ> referencing a value of type δ asynchronously computed by a task

The result of the prec operator is a function asynchronously computing the
recursive function defined by its parameters, thus returning a future to a value
of type β.

Let expr1, . . . , exprn be n ≥ 1 expressions of type T . Furthermore, let the
expression spawn expr1 or ... or exprn create a task evaluating asynchronously
exactly one of the given n expressions and return a future of type future〈T 〉 as a
handle to the resulting value. A call to prec(a, b, c) is translated into the nested
recursive parallel function f defined by

value <β> seq_f( α in ) {

if (a(in)) return value(b(in));

return value(c(in,seq_f ));

}

future <β> par_f( α in ) {

if (a(in)) return spawn b(in);

return spawn c(in,f);

}

future <β> f( α in ) {

return spawn seq_f(in).get() or par_f(in).get ();

}



where seq_f is the sequential version of the recursion, par_f the parallel version
and f a version serving as a dispatcher point between the sequential and parallel
version upon each recursive invocation. Note that the functions par_f and f are
mutually recursive, while seq_f is only invoking itself.

3.3 The Runtime System

A runtime system supporting the prec operator needs to provide efficient im-
plementations for the spawn expression and the future class. It can rely on the
fact that the spawn expression is called by passing i) a single, nested parallel
expression or ii) two expressions, where the first is a sequential implementation
and the second a parallel implementation. Thus, in case two implementations are
provided, the first may be used in situations where the available parallel process-
ing units are saturated and more parallelism is not beneficial, while the second
implementation may be chosen if there are still idle resources in the system.

For the futures, any runtime implementation has to provide means to syn-
chronize upon the completion of spawned tasks as well as to retrieve asyn-
chronously computed values.

3.4 Implementation

We have implemented the prec operator in a reference implementation utilizing
C++14 and its template meta-programming facilities. It is internally maintain-
ing a pool of threads, each equiped with a local task queue. For load balancing, a
task steeling policy has been integrated. The implementation is available online3.

4 Evaluation

To evaluate the impact of our construct on the performance of task parallel
applications we have conducted several experiments based on our reference im-
plementation. The results are discussed in the following subsections.

4.1 Fibonacci

Our first evaluation concludes our motivational example. In section 2 various
parallel implementations of fib, based on state-of-the-art parallel libraries and
language extensions, have been presented. All of them fall short in providing
acceptable performance results for computing our benchmark case fib(40). For
a sequential execution time of≈ 480ms one would expect, presuming ideal scaing,
an execution time of 40ms on a 12-thread system, as illustrated in Fig. 1. Our
prec based implementation obtains the result within 41ms, corresponding to a
97.5% parallel efficiency. Clearly, our approach is able to mitigate the majority
of overhead and to achieve acceptable performance for the given benchmark.

3 https://github.com/HerbertJordan/parec commit 9aa5dac

https://github.com/HerbertJordan/parec


The evaluation of this fibonacci motivating example, as well as the compar-
ison results shown in the motivation section, have been carried out using GCC
5.3.0, on a 6-core/12-thread Intel Core i7-5820K CPU at 3.3 GHz.

4.2 The prec Impact

In our second experimental setup, our goal was to identify the impact of consid-
ering the calling context like it is done by our prec operator compared to a purely
localized task-generation code realized by utilizing a conventional async call. To
eliminate any impact of the quality of an underlying runtime system, we utilized
the same runtime implementation for both situations. Thus, we can exclude the
effects of different scheduling policies, task queue lengths, stealing policies, or
task handling overheads. To that end we compared two slightly different versions
of our reference runtime:

– the parec::async configuration, where every call to spawn is treated like a
std::async call, creating a new light-weight task to be scheduled by the
runtime system

– the parec::prec configuration, where nested recursive tasks and their calling
context are treated as described in section 3

To compare those two setups, we ported the INNCABS [3] benchmark suite to
the prec operator. The port can be obtained online4.

Table 1 enumerates the eight benchmarks we have ported for our evaluation.
The covered codes reach from numeric algorithms like Strassen and SparseLU,
over combinatorial problems including QAP and NQueens, to standard utility
algorithms like Sort. Table 1 also lists the problem sizes for our experiments.
For practical reasons we decided to cancel all unfinished executions after 100
seconds and consider these to have timed out.

Our evaluation platform is a quad-socket shared-memory system equipped
with Intel Xeon E5-4650 processors, each offering 8 cores clocked at a nominal
frequency of 2.7 GHz (up to 3.3 GHz with Turbo Boost). The software stack

4 https://github.com/PeterTh/inncabs/tree/parec_port

Table 1: Ported INNCABS benchmarks and problem sizes
Name Description Problem Size

Fib Fibonacci number 47
Health Health care simulation medium.input

NQueens The N-Queens problem 13
Pyramids 2D cache-oblivious stencil solver -

QAP Quadratic assignment problem chr15c.dat
Sort Merge-sort 108 8192 2048 128

SparseLU LU factorization -
Strassen Strassen algorithm 4096

https://github.com/PeterTh/inncabs/tree/parec_port
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Fig. 2: Performance comparison of the parec::async and parec::prec operator
mapped to the same runtime system.

consists of GCC 5.2.0 with -O3 optimizations, running on a Linux operating
system with kernel version 2.6.32-473. The thread affinity for all benchmark runs
was fixed using a fill-socket-first policy, and all reported numbers are medians
over ten runs.

Fig. 2 illustrates our experimental results. For each benchmark we show the
median execution time for a varying number of threads. The execution times
for running in parec::async and in parec::prec mode are compared – with the
exception of Fib, where the total run time of the parec::async configuration did
not finish within a timeout of 100 seconds for any number of threads.

For benchmarks where task creation and spawning is clearly dominated by
the actual workload of the task, no significant difference between the two config-
urations can be observed. This includes Pyramids, Sort, SparseLU, and Strassen.
For all of those, both configurations produce almost identical results.

Benchmarks where the actual workload is small compared to the task spawn-
ing overhead however, benefit from context-awareness and specialization con-
ducted by the prec. Those include

– Fib – with only one comparison, two function calls, and three arithmetic
operations per task – here prec is faster by several orders of magnitude

– Health – where each task is a local operation on a single node in a graph
– NQueens – where each task conducts a small number of stack local operations
– QAP – where each task conducts stack local operations and a single access

to a globally shared scalar value



Especially those benchmarks with a large, yet irregular fan out (Health and
QAP) produce a large number of tasks in lower levels of the execution tree, the
overhead of which can be significantly reduced by the prec approach.

For some of the benchmarks, increasing the number of threads beyond a
single socket – thus exceeding 8 threads – shows a considerable change in their
scaling behaviour. This is particularly prominent for Health, and QAP, in which
each task accesses a single, globally shared scalar due to the branch-and-bound
nature of the represented algorithms. Also, for some data intensive benchmarks
like Pyramids, the data access order – and thus the efficient usage of caches
– has a much higher impact on the execution performance of the benchmark
than the task scheduling overhead. However, our reference runtime has not been
specifically tuned to deal efficiently with this kind of challenges, which constitute
large branches of research on their own.

As the data shows, the utilization of prec can provide substantial performance
benefits, in particular for use cases with a low number of operations per tasks.

The raw data of this experiment, as well as all the sources and scripts used
for their generation can be obtained online5.

4.3 Application Benchmarks

For our final evaluation, we are comparing the absolute performance of our
prec implementation with the performance obtainable by utilizing comparable
parallel libraries – in particular GCC’s Cilk Plus and std::async.

While Cilk Plus does not require additional tuning parameters, std::async

does allow the user to specify a launch policy. According to the C++ standard,
the following policies need to be supported:

– async – the spawned task is processed asynchronously
– deferred – the task is processed by the thread requesting the result (lazy

evaluation)
– default – which is equivalent to either async or deferred, but leaves the choice

to the implementation

For our comparison we evaluated all three of those policies and included the one
providing the best performance for the respective number of threads. Further-
more, we utilized the same benchmarks and setup as in subsection 4.2.

Fig. 3 illustrates the obtained results. Similarly to our parec::async setup,
std::async is not able to compute a solution for Fib within our time limit of 100
seconds.

In several cases the launch policy deferred turned out to be the fastest option,
although leading to an effective serialization of the program code. As a result,
for a set of benchmarks including NQueens, Sort, and Strassen, the execution
time of std::async does not change with the number of threads.

Cilk Plus, on the other hand, also fails to obtain a result for Fib with only 1
or 2 threads within 100 seconds.

5 https://github.com/PeterTh/inncabs/tree/parec_port commit b3f87a2

https://github.com/PeterTh/inncabs/tree/parec_port
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Fig. 3: Performance comparison of our parec::prec implementation, Cilk Plus,
and C++’s std::async.

For NQueens, Sort, SparseLU, and Strassen, Cilk Plus and our reference
runtime provide comparable results, while C++’s std::async only manages to
obtain a speedup for SparseLU.

In particular for Fib, but also for the intra-socket QAP, our approach pro-
vides (highly) superior performance compared to the alternative libraries and/or
language extensions.

For Pyramids, the Cilk and std::async implementation suffer from high se-
quential overhead due to their internal operation, which only Cilk manages to
compensate due to almost linear scaling. However, within a single socket, our
runtime manages to provide higher performance than both of them. Beyond the
single-socket boundary, however, impacting factors like the evaluation order of
sub-tasks and their effect on cache usage and NUMA effects become more impor-
tant, weakening the performance of our runtime. However, those have not been
the objectives of the presented work. These aspects will be further investigated
by follow-up efforts.

The raw data for this experiment, as well as full sources and scripts to re-
produce it, may be obtained online6.

6 The files for the std::async reference implementation, the Cilk Plus port, and
the parec::prec port are available at https://github.com/PeterTh/inncabs/

tree/[master,cilk_port,parec_port] respectively (commits a87ed27, 6476d75
and b3f87a2).

https://github.com/PeterTh/inncabs/tree/[master,cilk_port,parec_port]
https://github.com/PeterTh/inncabs/tree/[master,cilk_port,parec_port]


5 Related Work

Due to its status as a fundamental and easy to use parallel abstraction, there
is a large body of existing work in optimizing task parallelism. Particular at-
tention was previously paid to scheduling strategies [4, 5] and alleviating task
creation overhead [6,7]. What is common to all of these approaches is that they
focus primarily on the runtime system level, while we employ C++ template
programming in order to introduce a code-generation component evaluated at
compile time. This allows us to generate more efficient parallel code, and to pro-
vide any given runtime system with the option of switching to a zero-overhead
sequential implementation without requiring the user to manually create and
maintain separate versions of their code. As such, our approach is orthogonal
to and compatible with any further runtime-level adaptation and optimization
– such as the lazy task creation scheme described by Duran et al. [7] or any of
the hardware-aware or locality-based scheduling strategies [8].

Looking specifically at the C++ language, parallelism is primarily the do-
main of traditional tasking libraries [9, 10], which are also inherently limited to
runtime optimization due to the type of primitives they offer. Meanwhile, current
compiler research related to C++11 parallelism has focused on the correctness
of the memory model underlying the standard [11], not on the performance of
its library function implementations. An exception is the authors’ previous work
on semantics-aware compilation techniques [12], however, unlike the template li-
brary based approach presented in this paper it requires a non-standard system
software stack, limiting its applicability in real-world software deployments.

Existing C++ template libraries for parallelism which operate on a higher
level of abstraction, such as Quaff [13], aim to support a wide variety of parallel
patterns. However, unlike the work presented in this paper, they do not focus
specifically on reducing overheads in recursive task parallel algorithm by compile-
time multiversioned code generation.

6 Conclusion and Future Work

In this paper we presented a novel, abstract parallel construct enabling parallel
task library implementations to grasp and manipulate the context of task spawn-
ing points. By utilizing the capabilities established by its design, we demon-
strated its potential of reducing the task creation overhead within nested recur-
sive parallel codes. Our reference implementation generally achieved comparable
or better performance than state-of-the art solutions. Crucially, for a class of use
cases in which the computational effort of individual tasks is low, our approach
was able to attain superior performance. Furthermore, unlike the best state of
the art competitor (Cilk Plus), which depends on compiler extensions, our ap-
proach is a pure C++14 solution and thus portable to any compliant compiler.

Due to its library based nature, our approach is easy to customize e.g. in its
scheduling and version selection policy. More sophisticated concepts for these
will be investigated to improve the load balancing and scalability of our runtime



implementation. Furthermore, additional high-level parallel constructs including
parallel loops, stencils, or map-reduce like operators can be designed on top of
prec to improve its usability.

Acknowledgement: This project has received funding from the European Union’s
Horizon 2020 research and innovation programme as part of the FETHPC AllScale
project under grant agreement No 671603.
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