
Exploring the Semantic Gap in Compiling Embedded DSLs
Peter Zangerl, Herbert Jordan, Peter Thoman, Philipp Gschwandtner and Thomas Fahringer

{peterz,herbert,petert,philipp,tf}@dps.uibk.ac.at
University of Innsbruck

ABSTRACT
Optimizing compilers provide valuable contributions to the qual-
ity of processed code. The vast majority of application developers
rely on those capabilities to obtain binary code efficiently utilizing
processing resources. However, compiler proficiency is frequently
misjudged by application developers. While for some constellations
the effectiveness of those optimizations is grossly underestimated,
for others, mostly involving higher-level semantic concepts of em-
bedded DSLs, the compilers’ influence on the code quality tends to
disappoint.

In this paper, we provide examples for the effectiveness and
ineffectiveness of state-of-the-art optimizing compilers in improv-
ing application code. Based on those observations we characterize
the differences between positive and negative examples and pro-
vide an in-depth explanation for the short-comings of optimizing
compilers. Furthermore, we present a semantic-aware compiler ar-
chitecture rectifying those deficiencies and outline several example
use cases demonstrating our architecture’s ability to contribute to
the efficiency and the capabilities of embedded DSLs.

CCS CONCEPTS
• Theory of computation → Program analysis; • Software
and its engineering → Compilers; API languages; Domain
specific languages;
ACM Reference Format:
Peter Zangerl, Herbert Jordan, Peter Thoman, Philipp Gschwandtner and
Thomas Fahringer. 2018. Exploring the Semantic Gap in Compiling Em-
bedded DSLs. In 2018 International Conference on Embedded Computer Sys-
tems: Architectures, Modeling, and Simulation (SAMOS XVIII), July 15–19,
2018, Pythagorion, Samos Island, Greece. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3229631.3239371

1 INTRODUCTION
Domain-specific languages (DSLs) are well-established as an effec-
tive way of allowing the efficient and productive programming of
algorithms in individual domains, without requiring low-level opti-
mization expertise or hardware knowledge [19]. However, creating
new DSLs requires a large initial implementation effort, as well as
ongoing support and potentially extension to new target hardware
architectures.

Embedded DSLs (EDSLs) circumvent this issue by leveraging
the existing community, support network and target platforms
of a so-called host language, which is usually chosen for being

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The definitive Version of Record was published in 2018 International
Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation
(SAMOS XVIII), July 15–19, 2018, Pythagorion, Samos Island, Greece, https://doi.org/10.
1145/3229631.3239371.

well-established and broadly supported, while offering sufficient
flexibility to naturally express the concepts of the domain in ques-
tion. EDSLs are then implemented as libraries in their host language,
allowing them to fully utilize the existing tooling of this host lan-
guage, including e.g. development environments, debuggers, and —
most crucially for our exploration in this paper — highly sophisti-
cated optimizing compilers.

On paper, therefore, EDSLs combine the best of both worlds:
offering a highly productive interface to domain experts, without
much initial implementation effort, while leveraging the full po-
tential of modern mainstream language toolchains. And to a large
extent this holds true in practice, with EDSLs spreading rapidly
across many distinct fields of computer science research and ap-
plications, from high-performance computing [11] all the the way
to embedded systems [3]. In fact, the increasing prevalence and
success of EDSLs has in turn influenced programming language
design, with mainstream languages adopting features which facili-
tate more powerful and natural EDSLs, such as meta-programming,
higher-order functions and closures, or reflection [1, 2, 17].

However, embedded DSLs present unique challenges to modern
optimizing compilers, which may lead practitioners to simultane-
ously over- and underestimate their optimization capabilities. This
situation can result in sub-optimal code — either in terms of pro-
ductivity, as low-level optimizations that are easily automated are
hardcoded, or in terms of performance in case crucial optimizations
for hot code regions are prevented even though their applicability
seems obvious from a high-level programmer’s view.

In this work, we explore this issue from the compiler as well
as the EDSL/library author perspective, defining, exploring, and
offering an attempt to rectify the underlying source of many of these
optimization shortcomings: the semantic gap between the high-level
knowledge encoded in an EDSL’s specification and invariants, and
the low-level analysis that is the primary enabler for today’s highly
effective compiler optimizations. Our concrete contributions are as
follows:

• An overview of the strengths and weaknesses of state-of-
the-art compiler infrastructures, in particular as they relate
to the EDSL use case,

• an investigation of the reasons for these shortcomings in
current compiler architectures, and

• the design of a high-level compiler architecture facilitating
semantics-aware optimizations.

The remainder of this paper is structured as follows. We begin
by motivating and illustrating both the impressive capabilities of
modern optimizing compilers and their weaknesses in several com-
mon EDSL scenarios in Section 2. Subsequently, in Section 3, we
investigate the architecture of current state-of-the-art compilers,
and how it fails in providing an effective basis for EDSL optimiza-
tion. Semantics-aware compiler architectures, as presented in Sec-
tion 4, attempt to rectify this shortcoming. Finally, in Section 5 we

https://doi.org/10.1145/3229631.3239371
https://doi.org/10.1145/3229631.3239371
https://doi.org/10.1145/3229631.3239371

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece Zangerl et al.

summarize our findings and provide an outlook on the future of
semantics-aware compiler optimization

2 MOTIVATION
In this section, we will consider several real code examples, as well
as the results of compiling using a well-established optimizing com-
piler. We chose C++ for this motivation due to its suitability for
implementing EDSLs for high-performance and embedded systems,
but — as demonstrated in Section 3 — our conclusions apply equally
to many other mainstream languages and infrastructures. All ex-
amples were compiled for the x86-64 architecture using GCC 8.1
with the -std=c++17 -O3 -mavx2 options.

// <EDSL >
#include <cmath >

template <typename T>
struct Vec3 {

T x, y, z;
};

template <typename T>
Vec3 <T> operator -(const Vec3 <T>& a, const Vec3 <T>& b) {

return {a.x-b.x, a.y-b.y, a.z-b.z};
}

template <typename T>
Vec3 <T> operator *(const Vec3 <T>& a, float f) {

return {a.x*f, a.y*f, a.z*f};
}

template <typename T>
T lengthSquare(const Vec3 <T>& a) {

return a.x*a.x + a.y*a.y + a.z*a.z;
}

template <typename T>
T length(const Vec3 <T>& a) {

return sqrt(lengthSquare(a));
}

template <typename T>
Vec3 <T> norm(const Vec3 <T>& a) {

return a * (1/ length(a));
}

using Point = Vec3 <float >;
using Force = Vec3 <float >;

struct Object {
Point pos; // < position
float m; // < mass

};

Force gravity(const Object& a, const Object& b) {
auto diff = a.pos - b.pos;
float r2 = lengthSquare(diff);
float l = (a.m * b.m) / r2;
return norm(diff) * l;

}
// </EDSL >

float f() {
Object s { {0, 0, 0}, 1 };
Object e { {0, 0, 1}, .01 };
Force f = gravity(s, e);
return f.z;

}

Listing 1: Simple Newtonian Physics EDSL (C++)

Before we consider individual examples, we would like to note
that for the purpose of evaluating the semantic gap and its impact
on program optimization, any high-level library can be considered a
small EDSL. Crucially, this applies also to standard libraries, which
are of course not part of a language, even if perceived as such by

many of its users. These observations allow us to formulate suit-
ably compact yet still representative examples for this motivation
section.

Listing 1 shows a small EDSL for defining Newtonian objects
and determining their interactions. The resulting assembly in List-
ing 2 illustrates that, despite the level of abstraction employed, the
compiler is capable of fully computing the result of function f, turn-
ing it into a simple data lookup. This is the type of sophisticated
optimization capability which EDSL authors seek to leverage.

f():
vmovss xmm0 , DWORD PTR .LC1
ret

.LC1:
.long 3156465418

Listing 2: x86-64 Output for Listing 1

However, this highly successful optimization result is surpris-
ingly brittle. In Listing 3 the only change is moving object allocation
from the stack to the heap. While this code is semantically equiva-
lent on a high level to Listing 1 — obviously so for a human reader
versed in the language — the compiler’s capabilities are severely
neutered.

float f() {
Object *s = new Object { {0, 0, 0}, 1 };
Object *e = new Object { {0, 0, 1}, .01 };
Force f = gravity (*s,*e);
delete s;
delete e;
return f.z;

}

Listing 3: Physics EDSL Usage with Heap Allocation

In this case, the assembly result as depicted in Listing 4 performs
the full computation. As highlighted, this includes heap allocations
for both objects, as well as calls to the sqrt library function which
were statically evaluated at compile time in Listing 2.

This example illustrates the first common reason for low-level
state-of-the-art optimization failing to reach its full potential for
high-level EDSLs: opaque memory management and heap alloca-
tions.
f():

push rbp
mov edi , 16
push rbx
sub rsp , 24
call operator new(unsigned long)

; [... 4 instructions ...]
call operator new(unsigned long)
vmovss xmm1 , DWORD PTR [rbx+4]

; [... 24 instructions ...]
vmovss DWORD PTR [rsp+4], xmm0
call operator delete(void*, unsigned long)
mov rdi , rbp
mov esi , 16
call operator delete(void*, unsigned long)
vmovss xmm0 , DWORD PTR [rsp+4]

; [... 6 instructions ...]
vmovss DWORD PTR [rsp+8], xmm3
vmovss DWORD PTR [rsp+4], xmm4
call sqrtf
vmovss xmm2 , DWORD PTR .LC2
vmovss xmm5 , DWORD PTR [rsp +12]

; [... 3 instructions + 10 constants ...]

Listing 4: x86-64 Output for Listing 3 (excerpt)

Exploring the Semantic Gap in Compiling Embedded DSLs SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

A second common source for optimization failure are external
library calls, which the analysis cannot investigate and has no
semantic understanding of. Listing 5 contains a very basic usage of
the C++ standard library std::map template type. As outlined pre-
viously, any library interface can be considered a minimal example
of an EDSL for optimization purposes.

#include <map >

int main() {
std::map <int , int > dic;
dic[5] = 10;
return dic [5];

}

Listing 5: Basic STL map Optimization Failure

In this particular case, it is immediately obvious to programmers
familiar with the semantics of the map data type that the given
code is functionally equivalent to return 10;. Nonetheless, as the
compiler lacks this semantic, high-level understanding of the data
type (that is, the EDSL it represents) it generates around 300 lines of
assembly code, including calls to the external functions for inserting
new nodes into the tree representation for a map, and potentially
replacing it. In the realistic large-scale usage of EDSLs, this type of
issue is a common occurrence.

So far, we have considered the compiler perspective in this sec-
tion, and examined its successes as well as limitations. Naturally,
EDSL authors are also aware of these constraints, and have de-
veloped techniques for optimizing at the EDSL implementation
— and thus library — level. One increasingly common technique
of performing some level of compile-time optimization within a
library in C++ are expression templates [5]. While these allow for
good results to be achieved in some domains, they cannot close the
semantic gap in EDSL compilation, as they lack crucial analysis-
derived information.

// <EDSL >
struct Data {

template <typename Op>
Data map(Op op) const { /* ... */ };

template <typename Op>
Data filter(Op op) const { /* ... */ };

bool empty() const { /* ... */ };
};
// </EDSL >

template <typename Pred >
bool f(Data data , Pred predicate) {

return !data.map ([](auto x) {
return x.eval ();

}). filter(predicate).empty ();
}

Listing 6: Simple Data Processing EDSL and its Usage

Listing 6 demonstrates this issue. The Data type represents a
simple EDSL for data processing. Data can be filtered, mapped
and checked for empty-ness. Note that the former two operations
are naturally implemented by higher-order functions.

As the author of this EDSL, we would want to optimize suc-
cessive calls of map/filter/empty based on the semantics of those
operators. In particular, for optimal chained execution, we only
need to iterate over the data once, and if the surrounding calling

Table 1: Optimization Capability Comparison

Low-level Runtime Semantics-aware
Analysis Library Compiler

Stack Allocation + + +
Heap Allocation - + +

External - + +
library calls
Internal + - +

higher-order
External - - +

higher-order
Runtime - - -

data dependencies

context is !emptywe can implement an early exit as soon as a single
element remains after the filtering operation. We could accomplish
this goal by returning a generator expression tracking which opera-
tions to perform and only evaluating those at a later point, when
the full information is available. However, at the library level, there
is no way for us to ensure that Op op has no side-effects preventing
deferred execution.

A compiler analysis would have no problem determining this fact
in many cases, but could not benefit from it without the additional
knowledge of library semantics which resides solely with the EDSL
author. All types of EDSL operations which are customizable with
user-provided code suffer from this issue at some level, which leads
us to identify higher-order functions as the third and final major
reason for EDSL optimization failure using traditional techniques.

As these examples illustrate, neither current compiler-side nor
library-side optimization techniques alone can fully leverage the
optimization potential of even rather simple EDSLs. Therefore, a
new approach, semantics-aware high-level compilation, is required
to combine the advantages of sophisticated compile-time analysis
and optimization with DSL-specific semantic knowledge. Table 1
summarizes our findings in this section, and provides an outlook
on the capabilities of semantics-aware compiler infrastructures as
presented in Section 4.

3 CLASSIC COMPILER ARCHITECTURES
The observed abilities and inabilities of optimizing compilers are
rooted in their design. All widely-used general purpose compil-
ers converting high level languages into executable code follow a
common architecture. This architecture favors certain types of op-
timizations, while the integration of others is severely constrained.
This section provides a generic overview of a state-of-the-art com-
piler architecture, followed by some real-world examples and a
discussion of the resulting restrictions on compilers’ optimization
capabilities.

3.1 Reference Architecture
Figure 1 outlines the coarse-grained architecture of most contem-
porary state-of-the-art compilers. Derived from their original role

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece Zangerl et al.

IR

...

Parser Converter
C++
AST

C++

Parser Converter
F99
AST

F99

...

Optimizer

ARMARM Converter

x86x86 Converter

x64x64 Converter

...

Language specific Frontends Target specific BackendsCommon Core

Figure 1: Classic Compiler Architecture

of providing inter-platform portability for high-level programming
languages, compiler architectures are designed to facilitate target-
ing a variety of instruction sets. To that end, the core of a compiler
architecture is a common, platform independent intermediate rep-
resentation (IR) which can be converted through various backends
to target code.

While within a compiler’s backend certain performance rele-
vant optimization steps including instruction selection, instruction
scheduling, and register allocation take place, the bulk of optimiza-
tions are performed on the IR level. A wide range of (mostly) plat-
form independent optimizations, including constant propagation
and folding, strength reduction, loop unrolling, inlining, vectoriza-
tion, and dead code elimination are implemented on this level to
facilitate re-use among all supported target platforms. By utilizing
a common IR as the substrate for optimization passes and as the
input of backend conversion steps, IRs are attractive targets for
developers of high-level languages.

On the other end of the compiler’s architecture, components
translating different high-level languages into IR code are referred
to as compiler frontends. Those typically comprise a parser for
the input language, creating an implicit or explicit abstract syntax
tree representation of the processed application code, which is
converted into IR code in a second phase. In between, the abstract
syntax tree (AST) structure is usually utilized for language specific
operations like symbol name resolution, type deduction, template
instantiation, and diagnosis steps reporting syntactic or semantic
issues back to the end user.

Due to its central role, the design of the IR is the key element of
every compiler architecture. Choosing its level of abstraction deter-
mines the complexity of incoming and outgoing conversion steps,
program analysis, and transformations. It furthermore determines
the scope of supported optimizations due to the available infor-
mation and utilized primitives. For instance, supporting loops and
arrays as primitives in an IR facilitates transformations targeting
those common language structures, while increasing the complex-
ity of analysis and transformation tools. To increase the variety
of supported features, some compiler designs chose to implement
multiple levels of IRs of gradually decreasing levels of abstraction.

Another common characteristic of widely-used real-world com-
piler architectures is its translation-unit based processing of ap-
plication code. For modularity, high-level languages support the
separation of program code into individual files. Each file contains
the definition of a number of elements, typically data structures

and functions, as well as declarations of elements defined in other
files. During compilation, each file is processed independently by
the compiler, forming a single translation unit. This breaks up large
applications into smaller entities to be translated, thereby reducing
resource requirements. It also facilitates the concurrent translation
of individual parts of an application. However, it also limits the
obtainable knowledge of the optimizer on the overall application.
Elements only declared in one translation unit, defined in other
units, can not be investigated by analyses and transformation steps
within the compiler core. Only while linking the resulting binary
object files, all the relevant information comes together. To that end,
some architectures provide the option of link-time optimizations
or just-in-time compilation support, facilitating the integration of
optimization passes based on the additionally available information.
In the case of just-in-time compilation, information obtained dur-
ing runtime can also be considered by the optimization processes.
However, all of these techniques are necessarily required to operate
on or below the associated compiler IR’s level of abstraction.

3.2 Real World Architectures
To provide evidence on the validity of our reference model, the
following sub-sections will discuss real world architectures and
their relation to our reference architecture.

3.2.1 GCC. The main distribution of the GNU Compiler Collec-
tion (GCC) supports 6 different frontend languages (C, C++, Objec-
tive C, Fortran, Ada, and Go) and 48 different target architectures,
extended by numerous optional third-party modules. Internally it
uses three different IR formats of decreasing level of abstraction:
GENERIC, GIMPLE, and RTL. Additionally, different flavours of
those are utilized (e.g. high GIMPLE and low GIMPLE), varying
in the set of permitted constructs. The highest level IR, GENERIC,
constitutes an AST like representation, reduced to a basic set of
common imperative constructs. GENERIC is further on reduced
to GIMPLE, a subset of GENERIC restricted to three-address code
operations [14]. GIMPLE is the main IR for optimization passes.
Finally, the lowest-level IR, the register transfer language (RTL), pro-
vides the data format for backends to perform register allocation
and code generation operations.

3.2.2 LLVM. Like GCC, LLVM (formally low level virtual ma-
chine) supports numerous frontends and backends for a large vari-
ety of input languages and target platforms [12]. However, unlike

Exploring the Semantic Gap in Compiling Embedded DSLs SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

HL-IR

Semantic Aware Optimizer

Merger Code
Generator

Concurrent Translation Unit Processing Whole Program Perspective

...
AST HL-IRParser Convertersrc

AST HL-IRParser Convertersrc

BinClassic Compiler

BinClassic Compiler

...

Classic Conversion & Optimization

srcsrc

Figure 2: Semantic Aware Source-to-Source Compiler Architecture

GCC, LLVM places a strong focus on a single IR, the LLVM inter-
mediate representation. It is a strongly typed, platform independent,
assembly-like low-level language utilizing a reduced instruction
set computing (RISC) based design. Its type system supports higher
level data types like arrays, structs, and function types. All optimiza-
tion passes are applied on this level of abstraction. Furthermore, the
architecture facilitates link-time optimization as well as just-in-time
compilation.

Due to their modular design, LLVM frontends can be indepen-
dently utilized to build tools. In particular its C/C++ frontend clang
provides valuable C/C++ parsing capabilities. Thus, the integrated
clang-AST representation serves as the foundation for many source-
level inspection, linter-, and refactoring tools.

3.2.3 JVM. Like LLVM, the Java Virtual Machine (JVM) archi-
tecture focuses on a single IR, the Java bytecode [20]. The Java byte-
code has been specifically designed to be a platform independent
IR interpreted or just-in-time compiled by JVM implementations.
Thus, the JVM’s IR is utilized as the binary format for shipping
applications and the backend support is integrated into the runtime
environment along with the optimization components. Similar to
LLVM, Java bytecode constitutes an assembly like, platform inde-
pendent IR. Furthermore, just as for LLVM, due to its widespread
utilization and platform support, Java bytecode has become the
target code for many additional third-party language frontends.

3.3 Limitations
As shown by our reference model, and underlined by the real world
architectures, contemporary compiler platforms focus their opti-
mization efforts on low-level intermediate representations. While
suitable for constant folding, loop unrolling, and vectorization, the
utilized IRs provide insufficient information for integrating desired
higher-order optimizations based on semantic insights on utilized
EDSLs.

For instance, to optimize the utilization of filters in our example
EDSL, data sources, filters and predicates need to be recognized
reliably and related with each other among translation unit bound-
aries. However, already in a frontend’s AST, those elements are
represented through generic definitions and declarations, reflecting
their implementation details. This mirrors the nature of EDSLs
being emergent structures of programming languages instead of
actual language features. After lowering the AST into a common
compiler IR, even more of this structural information is lost.

Thus, ASTs represent the most promising compiler stage for per-
forming EDSL aware optimizations. However, typical ASTs — while

accurately reflecting the semantics of the input code, including
numerous syntactic elements aiding the development of applica-
tion code — complicate the analyzability and transformability. In
particular the requirement of conducting data flow and control flow
analysis on ASTs is, while promising [13], known to be notoriously
difficult due the complexity of the involved primitives [6, 9, 15].
Furthermore, the focus on a single translation unit limits the scope,
and thus effectiveness of intended EDSL aware optimizations.

Consequently, due to the lack of IRs offering an adequate level
of abstraction to realize semantic aware compilation, conventional
compilers are required to be extended by additional IRs and pro-
cessing steps on the high-level end of the conversion pipeline.

4 SEMANTIC AWARE COMPILER
ARCHITECTURES

To integrate EDSL aware compiler support, an additional processing
stage preceding the compiler frontend is required. Figure 2 outlines
our proposed overall architecture of such an optimization tool.

4.1 Overview
Like in a classic compiler, the frontend is tasked with parsing input
files on a per-translation unit basis. Each input file is processed to
obtain the resulting AST. In a second step, the AST is converted
into a high-level intermediate representation (HL-IR), providing
the necessary substrate for performing EDSL optimizations. The
objective of the design of the HL-IR is to represent the processed
program code, while facilitating the identification of EDSL objects
and operators, supporting data and control flow analysis, offer-
ing transformability for re-writing operations, and the ability to
be back-converted into the original source language — remaining
faithful to imposed external interface requirements. The resulting
HL-IR representation of all translation units of an application is
then merged into a single HL-IR representation, providing a whole-
program perspective to the subsequent optimization steps. Finally,
the transformed IR is converted back into source-language code
that can be utilized as a substitute of the original input code in the
subsequent classic compilation process.

The EDSL optimizing compiler is thus performing a source-to-
source conversion preceding the actual compilation process. Conse-
quently, language portability and low-level optimization capabilities
of classical compilers are preserved.

SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece Zangerl et al.

4.2 Implementation
Our Insieme source-to-source compiler infrastructure [18] provides
the necessary tooling for the realization of this approach for the
C/C++ language family. The frontend parser is based on LLVM’s
C/C++ frontend, and the resulting clang AST is converted into In-
spire [9], Insieme’s high-level intermediate representation. Inspire
provides the necessary high-level representation to facilitate the
faithful modelling of C++ codes, while reducing complexity suffi-
ciently to enable data and control flow analysis [4, 6]. Furthermore,
Inspire code representations provide a binary format that can be
stored in files and multiple Inspire fragments may be merged, as
required by our architecture.

Inspire’s modular, and extensible design enables the modeling
of abstract EDSL concepts. Thus, EDSL primitives present in the
C/C++ input code can be intercepted in the frontend’s conversion
step and encoded within Inspire accordingly. This enables the direct
identification of primitives within Inspire during optimization steps
as well as the specialization of code generation steps in the final
step of the source-to-source compilation phase. Furthermore, by
modeling EDSL concepts using abstract elements in the IR, imple-
mentation details of the underlying definitions remain hidden in
the IR. Code analyses do not have to attempt to derive an EDSL
operator’s effect from its implementation, but can rely on its known
semantics.

The latter point becomes especially important due to C++ cus-
tomizability. As an example, in C++ every class can define a copy
constructor, yet it is not guaranteed that every class is implement-
ing it as intended. Indeed — although likely to cause difficult to
identify issues in applications — creating copies of objects not being
equivalent to their original instances still is a valid implementation
for such a constructor. Program analyses, however, have to be con-
servative in their assumptions. Thus, effects of copy constructor
invocations have to be deduced from their implementation in all
cases. Being able to integrate the knowledge of faithful implementa-
tions of copy constructors of EDSL objects can significantly reduce
the complexity of such analyses and simultaneously increase ac-
curacy. Many similar examples can be identified, increasing the
efficiency of whole-program high-level analysis.

4.3 Example Use Cases
The high-level awareness of the semantics of the new and delete
operators enables analyses based on the Insieme analysis frame-
work [4] to treat the code fragments in Listing 1 and Listing 3
equally. Furthermore, by intercepting maps and map-based opera-
tors, the result computed by Listing 5 can be successfully deduced.

In another setup, the integration of awareness for C++11’s stan-
dard library functions for task parallelism facilitated the static anal-
ysis of task creation and synchronization points. The resulting
knowledge on the parallel structure of applications, and the capa-
bilities of performing high-level code alterations, lead to significant
reductions in parallel overheads [16].

Furthermore, our architecture enables the development of API
designs relying on the integration of high-level compiler analysis
steps. The AllScale environment, for instance, constitutes an exam-
ple use case for our semantic aware compilation toolchain [8]. At its
core, AllScale provides an EDSL for parallel algorithms comprising

auto fib = prec(// creation of fib function
[](int x) { return x <= 1; }, // base case test
[](int x) { return 1; }, // base case
[](int x, auto f) { // step case

return f(x-1) + f(x-2); // parallel recursive calls
}

);
auto future = fib (12); // creation of async task

Listing 7: Example Fibonacci code, in the AllScale EDSL

a small set of parallel operators [7]. Among those, the prec opera-
tor [10] constitutes the sole operator for spawning parallel tasks,
similar to async calls offered by other parallel models. Listing 7
illustrates an example use case. The prec operator creates a parallel
recursive function based on a base-case test, a base-case implemen-
tation and a step-case function. The implementation of prec can
not make any assumptions of the passed functions. In particular, it
can not assume those to be independent of some external state, as
it is the case in this example. Consequently, no (template) library
based implementation could determine whether or not parts of the
computation could be e.g. off-loaded to a different compute unit
like an accelerator or another node in a cluster without additional
user-provided information. However, a compiler could make this
decision based on static analysis.

The AllScale compiler performs this kind of analysis. It utilizes
Insieme’s infrastructure to realize semantic-aware compilation for
the AllScale EDSL primitives. The implementation of the prec op-
erator is intercepted in the frontend and replaced by an abstract
symbol that can be located in the resulting Inspire representation.
During an optimization step, the body of the passed arguments is lo-
cated, potentially by following data and control flow dependencies,
and analysed for data dependencies. Those dependencies are then
integrated into the code base by replacing the original prec call by
a runtime system call accepting corresponding meta information.
The compiler therefore automatically extracts data dependency in-
formation from the specified user code that otherwise would have
to be specified manually. Additionally, the AllScale compiler may
generate different variants of the tasks to be processed, facilitating
the utilization of heterogeneous environments.

The AllScale environment constitutes a proof-of-concept envi-
ronment demonstrating the abilities of semantic aware compilation
in combination with EDSLs based on the Insieme infrastructure.

4.4 Open Challenges
Besides already providing practical results, semantic aware compi-
lation still has to face numerous challenges. Among those are:

• the design of the high-level intermediate representation:
while Inspire provides a suitable IR for semantic aware com-
pilation, it imposes several restrictions. In particular goto-
expressions and exceptions are not supported. Furthermore
its structural nature, opposed to C++’s nominal foundation,
makes debugging and source-locality tracking difficult. Al-
ternative designs could circumvent these problems.

• high-level program analysis scalability: while Inspire and its
associated analysis frameworks considerably reduce the com-
plexity of both the development and execution of high-level
program analyses, the available techniques still fail to scale

Exploring the Semantic Gap in Compiling Embedded DSLs SAMOS XVIII, July 15–19, 2018, Pythagorion, Samos Island, Greece

to large scale code bases. Future research in high-level pro-
gram analysis could considerably improve the applicability
of semantic aware compilation techniques.

• lack of means to specify high-level semantics of user defined
APIs: in our current design the semantics of EDSL prim-
itives are encoded in analysis and transformation passes.
Facilitating user-defined specifications of semantic proper-
ties of EDSL primitives would greatly increase the usability,
and thus the acceptance of this technology. It would enable
EDSL designers to rely on compiler analysis and transforma-
tion steps while designing their interfaces and optimizations,
without having to explicitly contribute compiler passes.

5 CONCLUSION
Our work has been motivated by an investigation of the strengths
and weaknesses of optimizing compilers. While being capable of
remarkable deductions under the right circumstances, heap-based
operations and external library calls provide natural limitations
due to the underlying compiler design. Unfortunately, many high-
level interfaces and embedded DSLs utilized in applications are
necessarily based on definitions relying on those optimization-
prohibiting elements. Consequently, optimizing compilers fail to
live up to their full potential — and to users’ expectations.

To rectify, we have presented a semantic-aware compiler archi-
tecture implemented based on the Insieme compiler infrastructure.
Its high-level intermediate representation and its associated type
interception and static analysis features provide the foundation for
semantic aware, high-level optimizations. We have detailed crucial
design aspects and a number of example use cases. Furthermore, we
have enumerated a range of open challenges constituting important
areas of future research.

ACKNOWLEDGEMENT
This project has received funding from the European Union’s Horizon 2020 research
and innovation programme as part of the FETHPC AllScale project under grant agree-
ment No 671603.

REFERENCES
[1] C++ Standard Committee. 2011. Working Draft, Standard for Programming Lan-

guage C++. Standard ISO/IEC 14882:2011. ISO.
[2] Darcy, Joseph D. 2011. JEP 126: Lambda Expressions & Virtual Extension Methods.

Technical Report. Oracle. http://openjdk.java.net/jeps/126
[3] Patrick C Hickey, Lee Pike, Trevor Elliott, James Bielman, and John Launchbury.

2014. Building Embedded Systems with Embedded DSLs. In ACM SIGPLAN
Notices, Vol. 49. ACM, 3–9.

[4] Alexander Hirsch. 2017. Insieme’s Haskell-based Analysis Toolkit. Master’s thesis.
University of Innsbruck, Innsbruck, Austria.

[5] Klaus Iglberger, Georg Hager, Jan Treibig, and Ulrich Rüde. 2012. High Perfor-
mance Smart Expression Template Math Libraries. In High Performance Comput-
ing and Simulation (HPCS), 2012 International Conference on. IEEE, 367–373.

[6] Herbert Jordan. 2014. Insieme - A Compiler Infrastructure for Parallel Programs.
Ph.D. Dissertation. University of Innsbruck.

[7] Herbert Jordan, Roman Iakymchuk, Thomas Fahringer, Peter Thoman, Thomas
Heller, Xavi Aguilar, Khalid Hasanov, Kiril Dichev, Emanuele Ragnoli, and
Leonard Benoit. 2017. D2.6 - AllScale API Specification (b). http://www.allscale.
eu/docs/D2.6%20-%20AllScale%20API%20Specification%20(b).pdf prerelease.

[8] Herbert Jordan, Roman Iakymchuk, Thomas Fahringer, Peter Thoman, Thomas
Heller, Aguilar Xavi, Hasanov Khalid, Kiril Dichev, Ragnoli Emanuele, and
Leonard Benoit. 2017. D2.3 - AllScale System Architecture. http://www.allscale.
eu/docs/D2.3%20-%20AllScale%20System%20Architecture.pdf prerelease.

[9] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and Thomas
Fahringer. 2013. INSPIRE: The Insieme Parallel Intermediate Representation.
In Proceedings of the 22nd international conference on Parallel architectures and
compilation techniques. IEEE Press, 7–18.

[10] Herbert Jordan, Peter Thoman, Peter Zangerl, Thomas Heller, and Thomas
Fahringer. 2016. A Context-aware Primitive for Nested Recursive Parallelism.
In Fifth International Workshop on Multicore Software Engineering (IWMSE16).
Springer, Berlin, Heidelberg, 1–12.

[11] Stephen Kozacik. 2017. Unified, Cross-Platform, Open-Source Library Package for
High-Performance Computing. Technical Report. EM Photonics, inc.

[12] C. Lattner and V. Adve. 2004. LLVM: A Compilation Framework for Lifelong
Program Analysis & Transformation. In Code Generation and Optimization, 2004.
CGO 2004. International Symposium on. IEEE, 75–86.

[13] Francesco Logozzo and Manuel Fähndrich. 2008. On the Relative Completeness
of Bytecode Analysis Versus Source Code Analysis. In International Conference
on Compiler Construction. Springer, 197–212.

[14] J. Merrill. 2003. Generic and Gimple: A new Tree Representation for Entire
Functions. In Proceedings of the 2003 GCC Developers’ Summit. 171–179.

[15] G. Necula, S. McPeak, S. Rahul, and W. Weimer. 2002. CIL: Intermediate Lan-
guage and Tools for Analysis and Transformation of C Programs. In Compiler
Construction. Springer, 209–265.

[16] Peter Thoman, Stefan Moosbrugger, and Thomas Fahringer. 2015. Optimizing
Task Parallelism with Library-Semantics-Aware Compilation. In Euro-Par 2015:
Parallel Processing, Jesper Larsson Träff, Sascha Hunold, and Francesco Versaci
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 237–249.

[17] Mads Torgersen. 2007. Querying in C#: How Language Integrated Query (LINQ)
Works. In Companion to the 22Nd ACM SIGPLAN Conference on Object-oriented
Programming Systems and Applications Companion (OOPSLA ’07). ACM, New
York, NY, USA, 852–853. https://doi.org/10.1145/1297846.1297922

[18] University of Innsbruck. 2017. Insieme Compiler Project. http://www.
insieme-compiler.org

[19] Arie Van Deursen, Paul Klint, and Joost Visser. 2000. Domain-Specific Languages:
An Annotated Bibliography. ACM Sigplan Notices 35, 6 (2000), 26–36.

[20] Bill Venners. 1998. The Java Virtual Machine. McGraw-Hill, New York.

http://openjdk.java.net/jeps/126
http://www.allscale.eu/docs/D2.6%20-%20AllScale%20API%20Specification%20(b).pdf
http://www.allscale.eu/docs/D2.6%20-%20AllScale%20API%20Specification%20(b).pdf
http://www.allscale.eu/docs/D2.3%20-%20AllScale%20System%20Architecture.pdf
http://www.allscale.eu/docs/D2.3%20-%20AllScale%20System%20Architecture.pdf
https://doi.org/10.1145/1297846.1297922
http://www.insieme-compiler.org
http://www.insieme-compiler.org

	Abstract
	1 Introduction
	2 Motivation
	3 Classic Compiler Architectures
	3.1 Reference Architecture
	3.2 Real World Architectures
	3.3 Limitations

	4 Semantic Aware Compiler Architectures
	4.1 Overview
	4.2 Implementation
	4.3 Example Use Cases
	4.4 Open Challenges

	5 Conclusion
	References

