
Compiler Generated Progress
Estimation for OpenMP Programs

Peter Zangerl, Peter Thoman, and Thomas Fahringer

University of Innsbruck, 6020 Innsbruck, Austria
{peterz,petert,tf}@dps.uibk.ac.at

Abstract. Task-parallel runtime systems have to tune several parame-
ters and take scheduling decisions during program execution to achieve
the best performance. In order to decide whether a change was beneficial
to the program performance, the runtime needs some kind of feedback
mechanism on the progress of the program after such a parameter change
was performed. Traditionally, this feedback is derived from metrics only
indirectly related to the progress of the program.
To mitigate this drawback, we propose a fully automatic compiler analy-
sis and transformation which generates progress estimates for sequential
and OpenMP programs. Combined with a runtime system interface for
progress reporting this enables the runtime system to get direct feedback
on the progress of the executed program.
We based our implementation on the Insieme compiler and runtime sys-
tem and evaluated it on a set of eight benchmarks representing a variety
of different types of algorithms. Our evaluation results show a significant
improvement in estimation accuracy over traditional estimation meth-
ods, with an increasing advantage for larger degrees of parallelism.

1 Introduction

A modern runtime system needs to tune several operational parameters to better
utilize the underlying hardware and achieve high performance. Examples for this
kind of decisions are where to best apply dynamic voltage and frequency scaling
(DVFS) [9], how to adjust the granularity of tasks or controling the amount of
parallelism [5], and scheduling decisions in case a runtime system is responsible
for the co-scheduling of multiple programs [13,6,10].

In order for the runtime system to measure the effectiveness of the decisions
it took and reach the most effective combination of parameters, it requires some
kind of feedback mechanism which provides information about the performance
consequences of parameter changes – a progress metric. The system can then
monitor the progress development and judge whether or not a particular param-
eter change was beneficial – enabling it to steer towards optimal settings.

In practice, there are several ways for a runtime system to estimate an ap-
plication’s current progress. An obvious candidate for this kind of progress in-
formation are CPU counters. A runtime system can monitor the development
of certain counters and thus reason about the amount of work the application



2 Peter Zangerl, Peter Thoman, and Thomas Fahringer

has carried out in a given timeframe. However, there are several drawbacks to
this approach: i) the CPU counters do not have a direct relationship to the
application’s progress; ii) counter values will also be influenced during the time
spent within the runtime system itself, thus skewing the obtained results; and
iii) the use of CPU counters is not portable and the desired counters might not
be available on the given target hardware.

A runtime system can also take advantage of its internal state to estimate an
application’s progress. The runtime’s task throughput is a measure of how many
tasks the system finished within a given timeframe and thus is also related to
the progress of the executed program. This approach has the advantage that the
required values are already available in the runtime system or can be added easily
without any application code modifications or special permission requirements.
On the other hand, this approach is often coarse-grained and not very accurate.

Another popular alternative to the use of counters is manual instrumentation
of the input code to inform the runtime system of an application’s progress. This
eliminates the platform dependent implementation and also is not influenced by
time spent within the runtime system itself. However, this method requires a
very good understanding of the input program as well as the runtime system,
needs to be done manually for each program, and, due to these factors, is often
either quite coarse-grained and inaccurate or labor-intensive.

To mitigate these drawbacks, we propose a novel, fully automatic compiler-
based analysis and transformation to achieve accurate progress estimations in
parallel applications. This enables a low-overhead and platform-independent way
for parallel runtime systems to obtain direct feedback on the program’s progress
upon parameter changes. Our concrete contributions are as follows:

– A compiler based progress estimation analysis and transformation support-
ing sequential as well as parallel OpenMP input programs.

– An application programming interface for progress information collection
and reporting in the runtime system.

– An implementation of the compiler analysis and runtime system facilities
based on the Insieme compiler and runtime system [7].

– An evaluation of the achieved progress estimation accuracy of eight bench-
mark applications on a shared memory system running in different con-
figurations, along with a comparison with the use of CPU counters, task
throughput metrics and manual code instrumentation.

2 Motivation and Related Work

Any dynamic optimizing runtime system can take advantage of obtaining a
progress estimation directly from the scheduled entities. This way, the system
can evaluate the choices and parameter tuning it applied and thus steer the
scheduling towards optimum settings.

Deriving an absolute progress completion rate towards application termina-
tion is unattainable for most non-trivial programs. Thus, one form of a good
progress estimation would be a value which increases linearly and monotonously



Compiler Generated Progress Estimation for OpenMP Programs 3

0 0.2 0.4 0.6 0.8 1

0

0.5

1

Normalized execution time

N
or
m
al
iz
ed

re
po

rt
ed

pr
og

re
ss

Ideal
Instr. Counters
FP Counters
Task Throughput
Manual
Automatic

Fig. 1. Comparison of different progress reporting methods in NPB FT.

with the relative progress of an application. As long as the scheduled program
can perform the same amount of useful work towards its goal in two observational
timeframes, it should also report the same relative progress estimate.

Fig. 1 shows an illustration of different progress reporting methods during
the runtime of an application by plotting the relative reported progress against
the normalized time. The figure shows the results for all the progress estimation
methods we evaluated in this paper for the NPB FT benchmark running with
64 threads (cf. Section 4). A good reporting method would report a value very
close to the shown ideal line at any point during the execution. As we can see
in this example, some progress estimation methods fail to achieve this criterion.
This is the case for both counter approaches, which behave differently in the
sequential and parallel phase of this benchmark’s execution. The task throughput
as well as the manual estimation approach both suffer from their coarse-grained
accuracy, essentially rendering them useless for any kind of decision feedback.
Our automatic approach on the other hand is able to estimate the progress quite
well for most parts of the program execution.

The importance for direct feedback on the progress of scheduled applications
has already been well established in the past. There is a wide body of work which
tries to base scheduling decisions on the progress made by the scheduled appli-
cations to achieve optimal throughput. An example for this is the work by Wu
et al. [13], where the authors introduce the concept of an application’s progress
based on the number of CPU cycles executed during a scheduling period. The
goal of this work is a fair scheduling between equally-weighted processes where
each of the applications can progress the same amount. Feliu et al. [4] follow a
very similar approach. The progress of a process gets estimated by co-scheduling
it in a low-contention scenario and thereby determining the maximum possible
executed instructions for a given timeframe. By comparing the actual CPU coun-
ters with the maximum achievable value they determine the relative progress and
use this value to create a fair co-scheduling between different processes.



4 Peter Zangerl, Peter Thoman, and Thomas Fahringer

The same approach has also been applied to scheduling kernels on GPUs by
Anantpur et al. [1]. Lee et al. [9] additionally use counter measurements to decide
when and where to best apply DVFS for reduced energy consumption while still
maintaining set performance constraints. The approach presented here does not
rely on CPU counters and has a more direct relation to an application’s progress,
enabling us to deliver more accurate and platform-independent results.

Instead of using CPU counters, Goel et al. [6] take scheduling decisions based
on observing input/output events as well as inter-process communication. The
approach presented by Georgakoudis et al. [5] takes into account several perfor-
mance indicators and tries to build a speedup model to quantify the resulting
limitations to scalability. These approaches are highly dependent on the behav-
ior of the monitored applications, and certain programs might not generate such
events for most part of their execution, resulting in unreliable estimates.

Steere et al. [10] recognize the need for a direct progress reporting mecha-
nism between a program and its environment for improved scheduling decisions.
However, they also acknowledge that it is advisable to keep these two software
domains not too tightly interlocked. As a solution, they propose a symbiotic
interface where e.g. the application notifies the operating system about data
buffers and their fill-levels, enabling the latter to reason about the application’s
progress. The runtime interface proposed by our approach offers a way of directly
reporting progress to the surrounding runtime system without burdening appli-
cation developers with this task, as the invocations of this interface are created
automatically with the help of a compiler component.

3 Method

Our approach combines a compiler analysis component with a task-parallel run-
time system. Fig. 2 provides an overview of our proposed method. As a first
step, the input program is translated into a parallelism-aware intermediate rep-
resentation (IR) by the compiler frontend 1 . This IR is then analyzed by our
progress estimation component, which will insert reporting nodes at the appro-
priate locations 2 . The compiler backend 3 then creates the output code to be
compiled against the runtime system, resulting in the final program binary 4 .
The full implementation presented in this paper is publicly available1.

3.1 Compiler Component

As we wanted our analysis to distinguish between sequential and parallel progress
of an application, we decided to base it on a compiler with support for paral-
lelism awareness in its intermediate representation. For this reason, we chose the
Insieme research compiler system with its INSPIRE IR [8], as it allows us to
capture the parallel semantics of a variety of input languages. While some parts
of our analysis are currently tailored for OpenMP-specific semantics, it is easily
extensible to other input languages supported by the Insieme compiler system.
1 Full implementation along with instructions and evaluation script available at
https://github.com/insieme/insieme/tree/progress_estimation

https://github.com/insieme/insieme/tree/progress_estimation


Compiler Generated Progress Estimation for OpenMP Programs 5

Input
Code

(C/C++)

Output
Code Binary

C
om

pi
le

r
Fr

on
te

nd

R
un

tim
e

Sy
st

em

C
om

pi
le

r
B

ac
ke

ndIR

Progress Estimation
Analysis and Transformation
Progress Report Generation

Parallelism Handling

IR

R
ep

or
tin

g 
C

al
l

C
on

ve
rs

io
n

Pr
og

re
ss

R
ep

or
tin

g
In

te
rf

ac
eData

Existing Modules

Contributions

1

2

3 4

Fig. 2. Method overview for our automatic progress estimation.

Compiler Analysis The foundation for our progress estimation is a modified
and extended variant of the effort estimation component presented by Thoman
et al. [11,12]. This analysis allows us to generate effort estimations for arbitrary
code parts. In this work, we define the progress of an application as the accu-
mulated effort of its statements. In the analyses and transformations presented
here, we use the same notations as Thoman et al. with the following extensions:

– is_compound(n) Checks whether the node n is a compound statement.
– is_exit_point(c, n) Checks whether node n is an exit point in compound c.
– all_child_statements(c) Returns all child nodes of the given compound c.
– get_effort(n) Returns the effort estimation for node n.
– replace_child(c, o, n) Replaces child o of node c with n.
– insert_reporting_call(c, s, p) Inserts a reporting node with progress p above

node s in the compound statement c, returning zero.
– insert_reporting_call_at_end(c, p) Inserts a reporting node with progress

p at the end of the compound statement c, returning zero.
– conditional(cond, then, else) Refers to a conditional statement with its con-

dition cond and the branch compound statements then and else.
– loop(cond, body) Refers to a loop with its condition cond and the body body.
– all_reporting_addresses(n) Returns a set of all addresses rooted at node n

to progress reporting nodes in any child node of n, at arbitrary depth.
– is_openmp_{parallel/single/master}(n) Checks whether node n represents

the respective OpenMP construct in INSPIRE.
– mark_reporting_{parallel/sequential}(n) Replaces reporting node n with a

specialized parallel or sequential version.

Progress Report Generation: A simplified version of the algorithm used to gen-
erate progress reportings is depicted by Algorithm 1. In a first phase, the analy-
sis traverses all functions of the program. The handle_compound function gets
passed the body, the current progress p and a flag r indicating whether or not to
unconditionally report p at the end of the function. Each function body is ana-
lyzed statement by statement, and the effort for all the statements is evaluated
(line 19). The effort of the current statement is aggregated in the current progress
estimation value p (line 27). Before p would overflow a configurable threshold
value l, we insert a new IR node into the body reporting the current value of



6 Peter Zangerl, Peter Thoman, and Thomas Fahringer

p, and reset p to the effort of the current statement (lines 23–25). This aggre-
gation is applied to every statement within the compound, but several types of
statements require special treatment:

– Nested compound statements are handled by recursion (lines 3–5).
– For conditional statements, we accumulate the effort for evaluating the con-

dition (line 7) and then continue to evaluate for each branch individually,
reporting at the end of each branch (lines 8–11).

– Before a loop is entered, the current value of p is always reported (line 14).
Within the loop, the progress is reported before any exit-point of the loop,
as well as at the end of each iteration.

Also, before each exit-point of a function, the current value of p is reported
unconditionally (lines 20–21). However, in order to reduce the number of report-
ing instances and thus the program execution overhead, we remove instances
reporting only very small values in single exit-point functions and annotate the
functions with the reported value as unreported progress. Whenever a statement
calls such a function, we then add the unreported progress to the current ac-
cumulation and thus effectively inline the progress reporting in this case. This
optimization is not shown in Algorithm 1 for brevity.

Parallelism: This phase of the analysis is responsible for differentiating between
reports in sequential and parallel code. In a second pass through the whole pro-
gram we traverse all reporting nodes which have been created by the first phase.
A simplified version of this transformation pass is outlined in Algorithm 2. The
context of each reporting within the program is analyzed for the parallelism at
its code location. This is achieved by traversing the path from each reporting
location backwards up to the root of the program (line 3). We then decide on the
parallel context based on what kind of OpenMP construct we meet first (lines 4
and 7). The reporting nodes are then transformed into specialized versions rep-
resenting sequential or parallel progress respectively (lines 9–12). Note that, if
the same function or set of functions is called in both sequential and parallel
contexts, this will generate two distinct versions of these functions in the output
program – this is an aspect of our automatic compiler-based system which is
particularly cumbersome to replicate in a manual approach.

Tunable Parameters Our compiler component has a small set of tunable
parameters influencing its behavior:

– The most important one is the progress reporting threshold l. This is the value
above which the aggregated progress will lead to a new progress reporting
node being generated within the code.

– We implemented an optimization which can be beneficial for programs which
contain many very fine grained conditional statements. This optimization
will – after the normal handling of conditional statements – compare the
reported progress of both branches. If the reported values differ only by an



Compiler Generated Progress Estimation for OpenMP Programs 7

Algorithm 1 Handle Program Flow
l the progress reporting threshold

1: function handle_compound(c, p, r)
2: for all s ∈ all_child_statements(c) do
3: if is_compound(s) then
4: (s′, p)← handle_compound(s, p,⊥)
5: replace_child(c, s, s′)
6: else if ∃cond, then, else | s = conditional(cond, then, else) then
7: p← p+ get_effort(cond)
8: (then′,_)← handle_compound(then, p,>)
9: replace_child(s, then, then′)
10: (else′,_)← handle_compound(else, p,>)
11: replace_child(s, else, else′)
12: p← 0
13: else if ∃cond, body | s = loop(cond, body) then
14: p← insert_reporting_call(c, s, p)
15: eCond← get_effort(cond)
16: (body′,_)← handle_compound(body, eCond,>)
17: replace_child(s, body, body′)
18: else
19: p′ ← get_effort(s)
20: if is_exit_point(c, s) then
21: p← insert_reporting_call(c, s, p+ p′)
22: else
23: if p+ p′ > l then
24: insert_reporting_call(c, s, p)
25: p← p′

26: else
27: p← p+ p′

28: if r ∧ p > 0 then
29: p← insert_reporting_call_at_end(c, p)
30: return (c, p)

Algorithm 2 Handle Parallelism
m the main program node

1: for all r ∈ all_reporting_addresses(m) do
2: par ← ⊥
3: for all n ∈ reverse_sequence(r) do
4: if is_openmp_parallel(n) then
5: par ← >
6: break
7: else if is_openmp_single(n) ∨ is_openmp_master(n) then
8: break
9: if par then
10: make_reporting_parallel(r)
11: else
12: make_reporting_sequential(r)



8 Peter Zangerl, Peter Thoman, and Thomas Fahringer

Listing 1. Runtime system API for progress reporting

// report sequential/global progress
void irt_report_progress(uint64_t progress );

// report parallel/per -worker progress
void irt_report_progress_thread(uint64_t progress );

amount less than a user-provided threshold, the reportings will be removed
from the conditional branches and the analysis will continue after the con-
ditional with the average of the removed values.

– As a last pass of the transformation, we optionally remove reportings of
very small values. This is useful for programs with very intricate and tightly
nested control flow, where the normal algorithm would lead to a large number
of reporting nodes, each of them reporting only tiny amounts of progress.

All of these parameters can be tuned for a given use case, either to reduce the
runtime overhead of our progress reporting method at the cost of slightly reduced
accuracy, or alternatively to increase accuracy while potentially introducing more
overhead. The default values for these parameters are set to result in reasonable
compromise between low overheads and good prediction accuracy for sequential
and parallel code parts alike, as shown in Section 4.

3.2 Compiler Backend

In the backend of the compiler, the reporting IR nodes need to be translated
into calls which will use the runtime system’s reporting facilities. The sequential
and parallel version of our reporting nodes are translated into distinct runtime
function calls, with the reported progress estimate being an argument of the call.

3.3 Runtime System

We extended the Insieme runtime system to support reporting of sequential as
well as parallel (per-worker) progress. The runtime interface (cf. Listing 1) con-
sists of two functions which can be used to report progress. For our prototype
implementation, a periodic maintenance task within the runtime system is re-
sponsible for collecting and combining the reported progress. This thread then
prints the combined application progress, allowing us to evaluate the accuracy
of our approach. Additionally, these reporting facilities can also be used to im-
plement task throughput estimation as well as manual progress reporting which
we used for comparison purposes in our evaluation.

4 Evaluation

Each progress estimation method we investigated comes with a set of require-
ments and in return offers some features. Table 1 summarizes these properties.



Compiler Generated Progress Estimation for OpenMP Programs 9

Table 1. Requirements and feature set of different progress estimation methods

CP
U
Co

un
ter

s

Ta
sk

Th
rou

ghp
ut

Manu
al

Au
tom

ati
c

Requirement
Source Code Access 7 7 3 3

Program Understanding 7 7 3 7

Special Permissions (3) 7 7 7

Feature

Platform Independence 7 3 3 3

Program Independence 3 7 3 3

Fine Granularity 3 (7) (7) 3

Constant Accuracy 3 (7) (7) 3

Low Runtime Overhead 3 3 (3) 3/7

Unskewed Estimate 7 3 3 3

Per-Worker Estimate 7 7 (7) 3

Tracking an application’s progress using CPU counters might require cer-
tain special permissions on some hardware platforms. More crucially, not every
platform will provide all counters which we might be interested in, and different
programs might be best measured by distinct counters. On the other hand, we
get a very fine grained estimation with minimal overhead. However, by relying on
CPU counters we work with estimates which are inherently influenced by work
spent within the runtime system itself and can not get per-worker estimates.

Using the runtime’s task throughput does not impose any additional require-
ments on the execution, as this value is readily available or easily added to an
existing runtime system. However, this method does not allow per-worker per-
formance estimates and also might work poorly with certain kinds of programs
which do not produce many tasks. This also implies that its accuracy is often
very fluctuating and also rather coarse-grained.

Manual and automatic compiler generated progress estimations both require
the application source code in order for the necessary reporting calls to be in-
serted. Granularity, accuracy as well as the runtime overhead for manual estima-
tion highly depends on how well the programmer understands the program and
places the reporting calls. Most often, the result has low estimation overhead
with coarse granularity and varying accuracy. Per-worker estimations are rather
hard to achieve with manual progress estimation, as any code parts used in both
sequential and parallel contexts have to be duplicated.

By generating the reporting calls automatically with the help of a compiler,
we can mitigate most of the disadvantages of manual progress reporting, while
leveraging its advantages. What remains is a certain overhead at runtime, due
to the high number of reporting calls generated for high accuracy. In some pro-
grams, these overheads can be quite large and thus render a naive implementa-
tion of this approach infeasible. However, these overheads can be minimized by
adjusting the tunable parameters of the compiler component (cf. Section 3.1).



10 Peter Zangerl, Peter Thoman, and Thomas Fahringer

Table 2. Benchmark Overview

Benchmark Alignment Strassen BT CG EP FT IS UA
Origin AKM Cilk NPB

Parameters/Class prot.100.aa -n 4096 B B B B C A

4.1 Evaluation Setup

The hardware platform we are using for our evaluation is a quad-socket system
with four Intel Xeon E5-4650 processors. The 8 cores (or 16 hardware threads) of
each CPU are clocked at 2.7 GHz. On the software side, the system is based on
CentOS 7.4 running kernel version 3.10.0-693.2.2.el7. All binaries are compiled
with GCC 6.3.0 using -O2 optimizations. The thread affinity for all the exe-
cutions has been fixed with a fill-socket-first policy. Each experiment has been
executed ten times and we are always reporting the average values achieved.

We evaluated five different progress estimation methods in this paper, namely
i) CPU counters for executed instructions; ii) CPU counters for executed floating
point instructions; iii) task throughput statistics gathered in the runtime system;
iv) manual progress estimation; and v) automatic compiler generated progress
estimation as proposed in this paper.

4.2 Benchmarks

To evaluate the approach presented in this paper we chose a set of benchmark
applications representing real-world application kernels. Table 2 lists the bench-
marks used along with their origin. Most of the benchmarks originate from
NASA’s parallel benchmark suite [2], with the remainder being derived from
the Barcelona OpenMP tasks suite [3].

4.3 Estimation Overhead

The measured overheads averaged by benchmark are shown by Fig. 3. The over-
head values reported are relative to the execution of the unmodified bench-
marks. Measuring the overheads did produce rather unreliable results for some
benchmarks, as they showed some jitter in their execution times between suc-
cessive runs at higher levels of parallelism. This is caused mainly by the non-
deterministic task scheduling and work-distribution of these benchmarks.

As expected, we can observe that the overheads for both CPU counting ap-
proaches are negligible in all cases, as reading out these values during program
execution should not cause significant overheads. The rather large negative over-
head for the floating point counter estimate for the UA benchmark is a result of
the execution time jitter described above, indicating that an uncertainty range
of around 1% has to be considered for overhead evaluation in this benchmark.

Estimating the progress with the help of the runtime’s task throughput
should also not have a lot of influence on the program execution time. Still,



Compiler Generated Progress Estimation for OpenMP Programs 11

Alignment BT CG EP FT IS Strassen UA Average

−2%

0%

2%
O
ve
rh
ea
d

Instr. Counters FP Counters Task Throughput Manual Automatic

Fig. 3. Overheads for the evaluated progress estimation methods by benchmark

we can observe some small negative overheads for FT as well as IS, but es-
pecially a relatively significant negative overhead for the EP benchmark. Also
interestingly, on average, the manual estimation method seems to actually speed
up the execution of several evaluated benchmarks.

We investigated this behavior in detail, and determined that the reduction
in runtime in these benchmarks is related to changes in the binary layout which
occur due to the inclusion of additional functions related to progress reporting.
These layout changes affect L1 instruction cache effectiveness, particularly for
EP, and are not specific to the methods we are investigating – even adding or
removing unrelated functions in the same translation units causes similar effects.

Regarding our automatic progress estimation, we can note that it shows
some minor performance overhead for certain benchmarks, while it seems to
improve the performance for others. The latter behavior is caused by similar
effects related to the binary layout of functions in GCC as observed for the
other progress metrics. Crucially, the performance overhead for our automatic
progress estimation approach is less than 2% in all benchmarks.

4.4 Estimation Accuracy

For assessing the quality of the reported progress of our evaluated estimation
methods we chose to employ the mean squared error (MSE) calculation:

MSE =
1

n

n∑
i=1

(Yi − Ŷi)
2 (1)

We average the squared difference between every normalized progress report Yi

and the expected value Ŷi during program execution. The latter is derived as an
ideal progress estimation based on constructing a perfectly linear metric after
program completion. The smaller the reported MSE, the better the estimation.

For averaging MSE values, we average over the magnitude of the error rather
than the absolute value to avoid a single bad pulling the final average to non-
representative high values:

AVGmag =
1

m

m∑
j=1

log10(MSEj) AVG_MSE = 10AVGmag (2)



12 Peter Zangerl, Peter Thoman, and Thomas Fahringer

Alignment BT CG EP FT IS Strassen UA Average

10−5

10−4

10−3

10−2

10−1
M
SE

Instr. Counters FP Counters Task Throughput Manual Automatic

Fig. 4. Accuracy of the evaluated progress estimation methods by benchmark.

Accuracy by Benchmark Fig. 4 shows the accuracy achieved for each bench-
mark. All methods are able to achieve very good estimations within about the
same order of magnitude for the BT and UA benchmarks. The same holds true
for the EP benchmark, with the exception of the task throughput method. Also
for the CG benchmark all evaluated methods result in a similar accuracy of the
predictions. For the remaining four benchmarks, the achieved accuracy often di-
verges between the different methods by one or more orders of magnitude, with
the Alignment-Benchmark being the most extreme example.

Accuracy by Threads The accuracy achieved by averaging our results across
thread counts instead of by benchmark is shown in Fig. 5. We can observe that
the estimation accuracy seems to be best for a low number of threads. The accu-
racy then decreases until we reach the worst results with the maximum number
of threads evaluated. Moving from using all available cores to also running on
all hardware threads does not have much influence on the estimation accuracy.

Regarding the specific estimation methods, we can observe that:

– The use of instruction CPU counters results in better estimates than the use
of floating point CPU counters, regardless of the number of threads.

– Both counter-related estimates have a rather large drop in accuracy when
moving from running on a single CPU socket to multiple sockets (16+
threads), with not too much change further on.

– The accuracy achieved by relying on the task throughput estimation is always
very bad.

– Results for the manual progress estimation often fall between the accuracy
achieved by the use of instruction counters and floating point counters for
lower thread counts, but still are always worse than the results for our au-
tomatic estimation method.

– The automatic estimation yields the best results overall for any number of
cores used, with the advantage over counter based methods increasing with
higher numbers of threads.



Compiler Generated Progress Estimation for OpenMP Programs 13

1 2 4 8 16 32 64 Average
10−5

10−4

10−3

10−2

Number of Threads

M
SE

Instr. Counters FP Counters Task Throughput Manual Automatic

Fig. 5. Accuracy of the evaluated progress estimation methods by number of threads

The final point regarding parallelism is particularly encouraging for our ap-
proach: with hardware architectures continuously increasing in the number of
cores and hardware threads per socket, it indicates that a parallelism-aware
compiler-supported approach such as ours is more suitable for progress estima-
tion on such highly parallel hardware than any of the established alternatives.

5 Conclusion

In this work, we presented a novel and fully automatic compiler analysis and
transformation to generate progress estimations for OpenMP programs. Our ap-
proach provides the runtime system with direct feedback on the progress of an
application, without having to resort to metrics only indirectly related to the ap-
plication’s progress or requiring a manual per-application implementation effort.
This feedback can be used by the runtime system to measure the effectiveness
of parameter changes and thus steer the execution towards optimal settings.

We evaluated our implementation on a set of eight benchmark applications
implementing a wide variety of different types of algorithms. The achieved re-
sults show a good accuracy of our progress estimation, out-performing any other
evaluated progress estimation method for any degree of parallelism evaluated.
Crucially, the accuracy advantage of our automatic approach is increasing with
a higher degree of parallelism, indicating it to be a valid approach for highly
parallel future computing systems.

The work presented here offers several extension opportunities for future re-
search. The compiler analysis itself can be further optimized to generate less
reporting calls and thus runtime overhead for code parts which can be fully stat-
ically analyzed (e.g. loops with statically constant boundaries). Additionally, the
set of tunable parameters of our transformation could be extended to enable a
more fine-grained tradeoff between accuracy and runtime overheads. Orthogo-
nally to the improvements of the compiler parts, future research also includes
taking advantage of the generated progress estimations in the runtime system.
The good accuracy of the provided estimations enables further runtime opti-
mizations ranging from improved scheduling decisions to energy optimizations.



14 Peter Zangerl, Peter Thoman, and Thomas Fahringer

Acknowledgement

This work is supported by the D-A-CH project CELERITY, funded by DFG project
CO1544/1-1 and FWF project 13388.

References

1. Anantpur, J., Govindarajan, R.: PRO: Progress Aware GPU Warp Scheduling
Algorithm. In: 2015 IEEE International Parallel and Distributed Processing Sym-
posium. pp. 979–988 (May 2015)

2. Bailey, D.H., Barszcz, E., Barton, J.T., et al.: The NAS parallel benchmarks. The
International Journal of Supercomputing Applications 5(3), 63–73 (1991)

3. Duran, A., Teruel, X., Ferrer, R., Martorell, X., Ayguade, E.: Barcelona OpenMP
Tasks Suite: A Set of Benchmarks Targeting the Exploitation of Task Parallelism
in OpenMP. In: 2009 International Conference on Parallel Processing. pp. 124–131

4. Feliu, J., Sahuquillo, J., Petit, S., Duato, J.: Addressing fairness in SMT multicores
with a progress-aware scheduler. In: Parallel and Distributed Processing Sympo-
sium (IPDPS), 2015 IEEE International. pp. 187–196. IEEE (2015)

5. Georgakoudis, G., Vandierendonck, H., Thoman, P., Supinski, B.R.D., Fahringer,
T., Nikolopoulos, D.S.: SCALO: Scalability-Aware Parallelism Orchestration for
Multi-Threaded Workloads. ACM Trans. Archit. Code Optim. 14(4), 54:1–54:25

6. Goel, A., Walpole, J., Shor, M.: Real-rate scheduling. In: Proceedings. RTAS 2004.
10th IEEE Real-Time and Embedded Technology and Applications Symposium,
2004. pp. 434–441 (May 2004)

7. Jordan, H., Thoman, P., Durillo, J.J., Pellegrini, S., Gschwandtner, P., Fahringer,
T., Moritsch, H.: A Multi-Objective Auto-Tuning Framework for Parallel Codes.
In: High Performance Computing, Networking, Storage and Analysis (SC), 2012
International Conference for. pp. 1–12 (Nov 2012)

8. Jordan, H., Pellegrini, S., Thoman, P., Kofler, K., Fahringer, T.: INSPIRE: The
Insieme Parallel Intermediate Representation. In: Proceedings of the 22Nd Inter-
national Conference on Parallel Architectures and Compilation Techniques. pp.
7–18. PACT ’13, IEEE Press, Piscataway, NJ, USA (2013)

9. Lee, S.J., Lee, H.K., Yew, P.C.: Runtime Performance Projection Model for Dy-
namic Power Management. In: Advances in Computer Systems Architecture. pp.
186–197. Springer Berlin Heidelberg (2007)

10. Steere, D.C., Goel, A., Gruenberg, J., McNamee, D., Pu, C., Walpole, J.: A
feedback-driven proportion allocator for real-rate scheduling. In: OSDI. vol. 99,
pp. 145–158 (1999)

11. Thoman, P., Zangerl, P., Fahringer, T.: Task-parallel Runtime System Optimiza-
tion Using Static Compiler Analysis. In: Proceedings of the Computing Frontiers
Conference. pp. 201–210. ACM (2017)

12. Thoman, P., Zangerl, P., Fahringer, T.: Static Compiler Analyses for Application-
specific Optimization of Task-Parallel Runtime Systems. Journal of Signal Pro-
cessing Systems pp. 1–18 (2018)

13. Wu, C., Li, J., Xu, D., Yew, P.C., Li, J., Wang, Z.: FPS: A fair-progress pro-
cess scheduling policy on shared-memory multiprocessors. IEEE Transactions on
Parallel and Distributed Systems 26(2), 444–454 (2015)


	Compiler Generated Progress Estimation for OpenMP Programs

