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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.
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A B S T R A C T

Today, with the growth of highly parallel and heterogeneous architec-

tures, systems composed of a combination of multicore CPUs, GPUs,

and accelerators are becoming more common in HPC. Although het-

erogeneous architectures bring considerable benefits from a perfor-

mance and energy perspective, they also make application develop-

ment very challenging introducing the necessity of different parallel

programming paradigms. Recently, in order to fully harvest the com-

putational capabilities of such architectures, researchers focused their

attention on software development tools to simplify the daunting pro-

gramming task. In a similar line of investigation, this dissertation

tackles the optimization and simplification of programs for heteroge-

neous computing systems. In the context of low-power architectures,

we analyze the performance and energy advantages of embedded

GPUs showing the benefits of this architecture for HPC workloads.

In order to maximize the performance of heterogeneous compute

nodes, we investigate a new compiler/runtime approach to gener-

ate programs that concurrently use all the heterogeneous resources

and we propose two low-complexity heuristics addressing the prob-

lem of scheduling independent tasks. Finally, to simplify the develop-

ment of heterogeneous distributed applications, we present libWater,

a library-based extension of the OpenCL programming model that,

with a simple interface, abstracts the underlying distributed architec-

ture without losing control over performance.
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1
I N T R O D U C T I O N

1.1 motivation

High Performance Computing (HPC) has been traditionally restricted

to important scientific challenges and few industrial domains where

investments were large enough to support the massive infrastructure

costs. However, nowadays HPC has been recognized as a powerful

means to increase the competitiveness of countries through the de-

velopment of their public and private sectors. Meaningful scientific

discoveries have been achieved using HPC and the range of disci-

plines that depend on it is continuously growing [48]. The current

roadmap for HPC aims at building computing systems capable of

one exaflops (10

18 floating point operations per second) by 2021 [35].

Going toward exascale, the current levels of power demand cannot

be met for cost and heat dissipation reasons. These constraints have

led to the introduction of supercomputers which take into account

not only performance but also power consumption. The Green500

list ranks the top 500 supercomputers in the world by energy effi-

ciency using the widely accepted metric FLOPS-per-Watt [107]. Over-

all, heterogeneous systems demonstrate better energy efficiency than

homogeneous systems and the current list is dominated by GPU

Clusters based on NVIDIA P100 Tesla GPUs [115]. Although GPUs

offer a clear advantage in terms of energy efficiency, recently also

other technologies are emerging. Striking examples are the Japanese

effort towards building supercomputers based on embedded ARM

processors [118] and the new Intel massively-parallel multicore pro-

cessor Knights Landing [55]. The uncertainty regarding which archi-

tecture will be dominant in the coming years poses an additional

challenge further complicating the already difficult task of designing

HPC applications. Nowadays, to efficiently access different hardware

resources and levels of parallelism, developers are required to com-

bine multiple languages and programming paradigms. Therefore, the

availability of automatic tools to mitigate the complexity of software
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and increase its portability across different hardware platforms has

become of paramount importance.

1.2 state of art

Several paradigms and frameworks have been proposed in the lit-

erature for programming parallel heterogeneous architectures. This

section will give an overview of the most successful models while the

related work for each area of contribution will be discussed in more

detail within their respective chapters.

Nowadays the main approaches used to program heterogeneous

hardware fall in two categories: explicit programming models and

directive-based models.

Explicit Programming Models. Explicit models give the developer

complete control over the hardware resources to create very efficient

and optimized code. The most renowned explicit programming mod-

els are CUDA and OpenCL.

CUDA [86] is a parallel computing model created by NVIDIA. It

allows software developers to use CUDA-enabled GPUs for general-

purpose processing. The CUDA platform is a software layer, designed

to work with programming languages such as C, C++, and Fortran,

that gives direct access to the GPU’s virtual instruction set and paral-

lel computational elements.

OpenCL [60] is an open standard for programming parallel het-

erogeneous architectures maintained by the Khronos Group consor-

tium. It provides an interface for writing programs that execute across

heterogeneous platforms as central processing units (CPUs), graph-

ics processing units (GPUs), digital signal processors (DSPs), field-

programmable gate arrays (FPGAs), and other hardware accelerators.

Directive-based Models. Programming with explicit models is of-

ten a difficult task, especially for non-computing specialists. An alter-

native is represented by directive-based models that allow develop-

ers to mark regions of code for parallel acceleration with a minimum

amount of effort. OpenMP and OpenACC are the most representative

models of this category.

OpenMP [89] is an API consisting of compiler directives and library

routines for high-level parallelism in C, C++, and Fortran programs.
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Starting with OpenMP 4.0, it is possible to offload parallel regions to

different devices, such as GPUs or accelerators. The OpenMP direc-

tives are platform independent, allowing a high degree of portability

and performance with little programming effort.

OpenACC [88] provides a collection of compiler directives to spec-

ify loops and regions of code in standard C, C++, and Fortran to

be offloaded from a host CPU to an attached GPU or accelerator. The

OpenACC directives allow programmers to create high-level host/de-

vice programs without the need to explicitly initialize the devices or

manage data transfers. All of these details are implicit in the pro-

gramming model and are managed by the OpenACC compilers and

runtimes.

Recently, SYCL [62], a new abstraction layer that builds on the con-

cepts of portability and efficiency, was introduced. SYCL is a royalty-

free, cross-platform layer that enables code for heterogeneous proces-

sors to be written in a single-source style using standard C++. Tem-

plate functions can contain both host and device code to construct

complex algorithms that use OpenCL acceleration.

1.3 thesis goals and organization

This thesis will focus on OpenCL that currently offers a clear advan-

tage in terms of number of accessible devices and level of hardware

control. Using the OpenCL programming model, we will explore and

discuss novel approaches aiming at both simplifying and optimiz-

ing programs for heterogeneous computing systems. This thesis is

divided into five additional chapters as follows:

Chapter 2 introduces the models that describe all the abstractions

used in this work.

Chapter 3 focuses on embedded systems analyzing the performance

and energy advantages of embedded GPUs for HPC. We identify, im-

plement and evaluate software optimization techniques for efficient

utilization of the ARM Mali GPU Compute Architecture showing for

the first time that embedded GPUs have qualities that make them

good candidates for HPC systems.

Chapter 4 investigates the distribution of tasks among the available

devices in order to maximize the performance of heterogeneous com-
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pute nodes. Based on a powerful compiler/runtime infrastructure, we

develop a new approach for converting a single-device OpenCL pro-

gram to a multi-device OpenCL program able to concurrently take

advantage of all the heterogeneous resources.

We also propose and implement two low-complexity heuristics ad-

dressing the problem of scheduling independent tasks in heteroge-

neous compute nodes.

Chapter 5 introduces libWater, an extension of the OpenCL pro-

gramming model that simplifies the development of heterogeneous

distributed applications. libWater consists of a simple interface, which

is a transparent abstraction of the underlying distributed architecture.

It provides a runtime system which tracks dependency information

enforced by event synchronization to dynamically build a DAG of

commands, on which we automatically apply optimizations.

Chapter 6 concludes the thesis discussing future work and provid-

ing the list of peer-reviewed publications which support our findings.
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2
M O D E L

In this chapter we introduce the models that describe all the abstrac-

tions used in the thesis. In Section 2.1, starting from basic concepts

we formally describe the structure of the hardware architectures ad-

dressed by the analyses and optimizations. The software model, pre-

sented in Section 2.2, introduces the terminology for program and

parallelism. In Section 2.3, we describe the concepts and the architec-

ture of the Open Computing Language model. Finally, in Section 2.4,

we present the message passing model.

2.1 hardware model

In this section, using a bottom-up approach, we introduce and define

the concepts that describe the hardware which is utilized in this thesis.

The hardware is represented through a formal model composed of

entities and relations.

Let E denote an entity set and let us define a basic entity e 2 E to

be a hardware item which can be distinctly identified. Let us define

r 2 R ✓ E⇥ E as a binary relation on E that enables the transfer of

data between two entities. Then a complex entity c = (E,R) consists

of a non-empty set E of basic or complex entities, and a set R ✓ E⇥ E

of relations. Relations can also be expressed in a more compact form

(e
i

, e
j

), (e
j

, e
k

) 2 R ⌘ he
i

, e
j

, e
k

i 2 R. This form defines a sequence of

connected entities and is useful to represent how data moves between

the different entities. Entities and relations can also feature attributes

that describe their elementary properties. An attribute : E_ R ! V

can be formally defined as a function which maps an entity set or re-

lation set into a value set V , also known as the domain of the attribute.
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Definition 2.1 (Latency and Bandwidth)

8 r = (e
j

, e
k

) 2 R 9 latency : R! R, 9 bandwidth : R!N

The attribute latency of a relation r is defined as the time, in sec-

onds, required to transfer a minimal amount of data between e
j

and e
k

. Similarly, the attribute bandwidth is defined as the amount

of data that can be transferred from e
j

to e
k

per second.

Definition 2.2 (Computing Unit)

8 cu = (E,R) 2 CU 9 es, eu 2 E | (es, eu) 2 R

A computing unit, cu, is defined as a complex entity that performs

arithmetic, logical, and control operations. Such an entity is com-

posed of an execution state, es, and one or more execution units, eu.

The execution state comprises general purpose and interrupt controller

registers, while an execution unit comprises the resources for the in-

struction execution. The execution unit also features an attribute width
that denotes the size of the data that can be processed in a single

step of execution. In some cases, to better utilize the resources, a

computing unit contains duplicated execution states that share the

same execution units. This technique is known as simultaneous multi-

threading (SMT) and is used to make a single computing unit appear

as multiple logical computing units.

Definition 2.3 (Memory Unit)

A memory unit, mu 2 MU, is defined as a basic entity capable of

temporarily storing user or system data. Such an entity holds a

relation with the entities which can access its content (i.e., com-

puting units or memory units) and features an attribute size that

expresses the total amount of memory available in bytes.

Particular memory units are cache and local memory. A cache, L
n

, is

defined as a small and low-latency memory unit whose content is au-

tomatically managed in hardware. Caches are usually organized in hi-

erarchies of memory units and feature an attribute level n : MU!N

that denotes their position in the hierarchy. A cache in a lower level

(e.g., L
1

) contains only a subset of the data present in a higher level

cache (e.g., L
2

). Caches that share common data need to be synchro-

nized to offer a coherent view of their content. This difficulty, gener-

ally known as cache coherence problem, is usually solved in hardware
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with the use of a protocol that tracks the state of all the shared data.

In addition to the size and level, a cache entity features the following

attributes:

• associativity - denotes the number of cache locations in which a

memory entry can be mapped.

• replacement policy - represents the heuristic utilized to choose the

cache entry to evict in order to make room for a new entry.

A local memory, LM, is defined as a small and low-latency memory

unit that can be directly addressed by the programmer. The local

memory does not operate like a cache since it is neither transparent

to the software nor does it contain hardware structures able to pre-

dict the data to load. For these reasons, it consumes relatively little

power compared with hardware-managed caches but also introduces

new challenges for the programmer that needs to explicitly maintain

the data consistency.

Definition 2.4 (Processor)

8 CPU = (E,R) 9 cu,L
1

, ...,L
n

2 E | hcu,L
1

, ...,L
n-1

,L
n

i 2 R

A processor, CPU, represents the core component of a computing

system and is defined as a complex entity consisting of one or

more computing units connected with one or more levels of cache.

The processor is designed to provide good performance during the

execution of the operating system and the broad range of user appli-

cations. As depicted in Figure 2.1, based on the number of computing

units and shared resources, a processor is named differently:

• single core - a processor with a single computing unit and one

or more levels of cache.

• multi-core - a processor with two or more computing units and

one or more levels of cache.

• multi-core with SMT - a multicore processor with simultaneous

multi-threading.

A processor entity features the following attributes:

• number of cores - denotes the number of computing units with

related L1 caches.
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Figure 2.1: Hardware model for different types of processors

• clock frequency - the maximum frequency at which the processor

can run.

Definition 2.5 (Graphics Processing Unit)
8 GPU = (E,R) 9 cu,L

1

,L
2

,LM,mu 2 E |

hcu,L
1

,L
2

,mui, hcu,LM,mui 2 R

A graphics processing unit, GPU, is defined as a complex entity able

to perform highly parallel operations on data. Such an entity con-

sists of a large memory unit and multiple computing units con-

nected with multiple cache levels and local memories.

GPUs have evolved from special-purpose entities purely used for

graphics processing to programmable entities that can execute a wide

range of applications. As depicted in Figure 2.2, each computing unit

of a GPU contains a large number of execution units that, combined

together, offer high theoretical peak performance. To absorb the mem-

ory request of the computing units, the GPU entity takes advantage

of a memory hierarchy and a high bandwidth memory unit. The

bandwidth attribute of the relation between the memory unit and
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Figure 2.2: Hardware model for the GPU entity

the caches/local memories is in the order of hundreds of GB/s.

A GPU entity features the following attributes:

• number of computing units - denotes the number of computing

units.

• clock frequency - expresses the maximum frequency at which the

computing units can run.

• memory size - denotes the total amount of GPU memory avail-

able in bytes.

Definition 2.6 (Accelerator)

8 ACL = (E,R) 9 cu,L
1

,L
2

,mu 2 E | hcu,L
1

,L
2

,mui 2 R

An accelerator, ACL, is defined as a complex entity able to acceler-

ate highly parallel computing workloads. Such an entity consists

of a large memory unit and many computing units connected with

multiple cache levels.

As depicted in Figure 2.3, the accelerator hardware model resembles

the CPU hardware model. Modern accelerators (e.g., Intel Xeon Phi)

are based on a many-core architecture that consists of a large num-

ber of computing units with simultaneous multi-threading running

at a low clock frequency. Similar to a GPU entity, an accelerator is

composed of a cache hierarchy, a high bandwidth memory unit and
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Figure 2.3: Hardware model for the accelerator entity

supports the same entity attributes.

Definition 2.7 (Secondary Storage)

A secondary storage or disc storage, ss, is defined as a basic entity

that is capable of permanently storing user or system data.

Definition 2.8 (Network Interface)

A network interface, ni, is defined as a basic entity used to physically

interface a compute node with other compute nodes or network-

attached secondary storages.

Different network interfaces offer different performance characteris-

tics. Usually, a relation between network interfaces based on high-

speed interconnects, like Infiniband EDR, has an attribute bandwidth

of around 100 Gbps and an attribute latency of 130 ns. A relation

based on more affordable interconnects, such as Ethernet, has an at-

tribute bandwidth of 10 Gbps and an attribute latency of 2 to 4 µs.
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Figure 2.4: Hardware model for the compute node entity

Definition 2.9 (Compute node)
8 cn = (E,R) 2 CN 9 CPU,GPU,ACL, ss,ni,mmu 2 E |

8e 2 E | e 6= mmu 9 (e,mmu) 2 R

A compute node is defined as a complex entity representing a com-

puting system (e.g., desktop, server). As depicted in Figure 2.4,

such an entity can consist of multiple CPUs, GPUs, accelerators,

secondary storages and network interfaces, all connected with the

same main memory unit, mmu.

Based on the entities that compose a compute node, it can be defined

as:

• homogeneous - a node with one or more CPUs but without GPUs

or accelerators.

• heterogeneous - a node with one or more CPUs and one or more

GPUs or accelerators.

GPUs and accelerators are external devices that need to be connected

through PCI Express expansion slots. Any data requested from such

entities needs to be copied from the compute node memory(mmu)

to the entity memory and back before being accessible by the CPU

entity. Due to the current bandwidth limitation of the PCI Express

(8-16 GB/s), these memory transfers can lead to significant overhead

during the transmission of data increasing the overall workload pro-

cessing time.
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Figure 2.5: Different types of clusters

Definition 2.10 (Cluster)

A cluster or distributed memory system is defined as a complex entity

composed of a set of locally connected compute nodes.

As depicted in Figure 2.5, based on the type of compute nodes that

compose a cluster, it can be defined as:

• homogeneous - composed of homogeneous compute nodes.

• heterogeneous - composed of heterogeneous compute nodes.

• mixed-node - composed of compute nodes of different types.

12



mmu

SoC

core

L2L2

Emb. CPU Emb. GPU

L2

core

core

Emb. CPU

Figure 2.6: Hardware model for the SoC entity

Definition 2.11 (System on Chip)

A system on chip, SoC, is defined as a complex entity composed

of embedded CPUs, embedded GPUs and memory units, packed

together into a single chip.

Differently from CPUs and GPUs present in compute nodes, the em-

bedded versions present in SoCs need to be designed taking into

account more strict power and space constraints. As depicted in Fig-

ure 2.6, to save space, embedded GPUs do not have a GPU memory

unit, but share the main memory unit with the other entities present

in the chip. Modern SoCs often also provide a big.LITTLE hardware

configuration [40] with multiple CPUs that feature different perfor-

mance and power characteristics. In such case, to reduce the overall

power consumption of the chip, the operating system can choose to

activate or deactivate the different CPUs depending on the applica-

tions workload.

2.2 software model

As mentioned in the previous section, a compute node is composed

of a variety of different hardware entities (i.e., memories, processors).

Application programs do not directly access the hardware but use

the abstract set of resources that the operating system provides. The

operating system accesses and manages the hardware controlling the

13



allocation of entities among the various programs that request them.

Definition 2.12 (Program)

A program, r = (M,V), is defined as a sequence of statements M,

and a program state V .

A variable is defined as a storage location, with a specific data type and

an associated identifier, which contains some quantity of information

referred to as value. The attribute data type determines the set of val-

ues that can be stored in a variable and the set of operations that can

be executed on it. A program state is defined, at any given point in the

program’s execution, as the content of all the variables v 2 V .

A statement, m 2 M, represents the basic element of a program and

describes the computation by altering the values stored in the vari-

ables v 2 V . Statements are generally executed in sequence from top

to bottom, however, the program may contain control flow statements

that alter the flow of execution (e.g., if, switch, for statements). To fa-

cilitate the readability of a program, statements are often grouped

together in functions that perform specific tasks.

A function is commonly defined as

name (v
0

, ..., v
n

)! type {m
0

, ...,m
m

}

where

• name - denotes the identifier by which the function can be called.

• v
0

, ..., v
n

- is an ordered list of variables, called parameters, that

are initialized with the corresponding arguments passed in the

function call.

• type - expresses the type of the value returned by the function.

• m
0

, ...,m
m

- represents the block of statements executed by the

function.

Every program contains a main function which designates the starting

point of the flow of execution.

Definition 2.13 (Compiler)

A compiler is a program capable of translating a source program into

a semantically equivalent target program.
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Figure 2.7: Compiler software model

As depicted in Figure 2.7, a compiler is composed of a frontend, an

analyzer/optimizer, and a backend. In step  , the frontend translates

the input code into an internal intermediate representation of the source

program, called IR. An important task of the frontend is to collect and

provide information regarding the syntactic and semantic errors en-

countered during the translation phase, so that the user can take cor-

rective actions in the source program. In step À, the analyzer applies

control-flow and data-flow analysis [2] on the IR to collect useful in-

formation. The optimizer, based on the results of the analysis, applies

some transformations with the purpose of optimizing the representa-

tion and improving the quality of the generated code. Finally, in step

Ã, the backend constructs the desired target program translating the

IR into the target language representation. A compiler is often cou-

pled with a runtime system, which implements the dynamic features

and capabilities of the source language and controls the execution of

the target program applying further optimizations.

Definition 2.14 (Process)

A process, p 2 P, is a software entity that represents an instance of

an executing program. Such an entity is composed of an address

space, and one or more threads of execution.

The address space, A
p

, represents the list of memory locations which

the process p can read and write and contains program text and data,

as well as other resources. These resources may include open files,

signal handlers, and more. A thread represents a basic entity capa-

ble of processing a sequential flow of execution. Multiple threads of

the same process share the same address space and consequently the
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Figure 2.8: Representation of multiple process entities

same resources. Each physical or logical computing unit of a CPU

runs only one thread at the time and quickly switches from thread

to thread. A CPU thread features an attribute state that can transit at

any time between three possible values:

• running - currently using a computing unit.

• ready - temporarily stopped to let another thread run.

• blocked - waiting for some external event.

As depicted in Figure 2.9, four transitions are possible among the

three values. Transition   occurs when the operating system discov-

ers that a thread cannot continue. Transition À occurs when the op-

erating system decides that the running thread has run long enough,

and it is time to let run another thread. Transition Ã occurs when the

operating system selects a thread to run. Transition Õ occurs when

the external event for which a thread was waiting happens.

Running

Blocked Ready

➊ ➋ 
➌ 

➍ 

Figure 2.9: Values of the attribute state of a thread

As previously describe in Section 2.1, GPUs contain computing

units with a large number of execution units. Differently from CPUs,

the GPU computing units are capable of executing multiple threads

in parallel. Following a model known as Single-Instruction, Multiple-
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Thread (SIMT), all the individual threads running in the same comput-

ing unit (thread group) start at the same program address and execute

in lock-step the same instructions. If some of these threads diverge

via a data-dependent conditional branch, the computing unit serially

executes each branch path taken, disabling the threads that are not

on that path, and when all paths complete, the threads converge back

to the same execution path. The execution context (program counters,

registers, etc.) for each thread group processed by a computing unit

is maintained until all threads have completed the execution. A com-

puting unit can therefore switch between different thread groups with

no additional cost. Full utilization of the GPU resources is achieved

when all computing units have always some instruction to issue for

some thread group, or in other words, when memory latency is com-

pletely hidden.

Definition 2.15 (Sequential/Parallel Program)

A sequential program is defined as a program which uses a single

process with a single thread of execution. On the contrary, a parallel
program is defined as a program which uses multiple threads of

execution in one or multiple processes.

Sharing the same address space, multiple threads of the same process

can communicate by accessing or updating the common memory re-

sources. This communication mechanism requires the use of synchro-

nization constructs to coordinate the execution of multiple threads

and allow exclusive access to share data. Differently, in case of mul-

tiple processes, the communication is done by message passing that

allows to exchange data by sending and receiving explicit messages

between processes. A formal description of this model will be pre-

sented in Section 2.4.
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Definition 2.16 (Speedup and Efficiency)

S
n

= T
s

/T
n

E
n

= S
n

/n

Let T
s

be the execution time of a sequential program, and T
n

be the

execution time of the parallel version of the same program using n

processing entities (e.g., threads, processes, compute nodes). The

speedup, S
n

, is then defined as the relation between the sequential

and the parallel execution times, while the efficiency, E
n

, is defined

as the relation between the speedup and the number of processing

entities.

The scalability of a parallel program describes how its execution time

varies with the number of processing entities n. There are two distinct

scalability measurement: strong scaling and weak scaling. In case of

strong scaling, the number of processing entities are increased, while

maintaining a constant problem size. A program is considered to

scale linearly if the speedup remains close to the ideal speedup, which

is obtained when S
n

= n. In case of weak scaling, the problem size

increases with the number of processing entities. A program is con-

sidered to scale linearly if the execution time stays constant while the

workload is increased. In general, it is harder to achieve good strong-

scaling with a large amount of processing entities since the commu-

nication overhead for many algorithms increases in proportion to the

number of entities used.

2.3 the open computing language model

The Open Computing Language, OpenCL [60], is the first open indus-

try standard for programming heterogeneous compute nodes com-

posed of devices with different capabilities such as CPUs, GPUs, and

accelerators. In the past few years, OpenCL has emerged as the de

facto standard for heterogeneous computing, with the support of

many industry vendors such as Adapteva, Altera, AMD, Apple, ARM,

Intel, Imagination Technologies, NVIDIA, Qualcomm, Vivante, and

Xilinx. In the next sections we will introduce the basic concepts and

the architecture of OpenCL, followed by a detailed description of its

execution and memory models.
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2.3.1 Platform Model

OpenCL views heterogeneous computing entities through an abstract,

hierarchical platform model. As depicted in Figure 2.10, this model con-

sists of a host connected to a set of compute devices.

Definition 2.17 (Host)

A host, is defined as a software abstraction of the hardware entity

that starts the execution of the OpenCL program. In a compute

node the host is always identified with the CPU.

Definition 2.18 (Compute Device)

A compute device is defined as a software abstraction of a device

hardware entity such a CPU, GPU or ACL. Each compute device

is composed of one or more compute units, and each compute unit

is composed of one or more processing elements.

A compute node with multiple vendor compute devices features mul-

tiple vendor platforms. OpenCL offers an API to discover the set of

vendor platforms and query the specific available devices. The rela-

tionship between the elements of a compute device and the compo-

nents of the respective hardware entity depends on how the platform

compiler optimizes the OpenCL source code, to best utilize the avail-

able physical resources. Consequently, every industry vendor offers

a customized compiler that generates device-specific executable code

and a runtime system capable of optimizing the execution of such

code.
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…
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…
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Figure 2.10: OpenCL Platform Model
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2.3.2 Execution Model

An OpenCL application consists of a host program, executed on the

host, and one or more kernels, executed on the compute devices.

Definition 2.19 (Host Program)

The host program is the part of the OpenCL program that coordi-

nates the execution by setting up the OpenCL environment, trans-

ferring data to and from the available compute devices and invok-

ing the execution of the kernels.

Definition 2.20 (Kernel)

A kernel is a special function of an OpenCL program that can be

executed on a compute device.

To enable host-device interaction, during the creation of the OpenCL

environment, a command-queue is associated with each compute de-

vice. The command-queue is then used by the host program to coor-

dinate the program execution using different types of commands:

• kernel execution commands - to enqueue a kernel for execution on

a device.

• memory commands - to transfer data between the host and device

memory.

• synchronization commands - to constrain the order of execution of

commands.

When a kernel is executed, based on a n-dimensional index space

(NDRange), a certain number of kernel instances are created and run

in parallel across multiple processing elements. Each instance, called

work-item, is identified by a global ID that represents its position in

the index space. The index space can also be subdivided into equally

sized work-groups, each of them consisting of many work-items. Work-

items can only communicate and synchronize locally, within a work-

group, providing flexible scheduling options to the runtime system

during the program execution. To request the execution of a specific

kernel from a compute device, the OpenCL API offers a function de-

fined as

EnqueueKernel (queue, kernel, work_dim, global_size, local_size)
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where

• queue - denotes the command-queue of the target device.

• kernel - identifies the kernel to be executed.

• work_dim - is the number of dimensions of the index space.

• global_size - denotes the number of work-items in each dimen-

sion of the index space.

• local_size - specifies the number of work-items in each dimen-

sion of the workgroups.

The programming language used to express the computation inside

the kernel functions is called OpenCL C and it is derived from the ISO

C99 specification. On the one hand, to ensure hardware portability,

some of the C99 features such as recursive functions, function point-

ers and bit fields were removed in the kernel language specification.

On the other hand, OpenCL C provides several beneficial features

such as support for vector intrinsics and vector data types, atomic

operations and a large set of optimized built-in functions.

The OpenCL specification also defines two different profiles: a pro-

file for compute devices (Full Profile) and a profile for embedded com-

pute devices (Embedded Profile). Embedded devices present in SoCs

have significant area and power constraints that require a relaxation

in the requirements defined by the Full Profile specification. The Em-

bedded Profile relaxes the floating-point precision requirements and

support for mathematical functions, does not require atomic func-

tions and reduces some of the minimum parameters of different com-

ponents of the framework.

2.3.3 Memory Model

The OpenCL memory model describes the structure and behavior of

the memory exposed by an OpenCL platform during the program

execution. Memory in OpenCL is divided into two parts: host memory,

available to the host, and device memory, available to kernels execut-

ing on the compute devices. As depicted in Figure 2.11, the device

memory comprises four memory regions:
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• global memory - largest memory space available to the device,

visible to all work-items.

• constant memory - read-only region of global memory.

• local memory - memory local to a work-group, to share data be-

tween work-items in a work-group.

• private memory - memory private to a work-item.

GlobalConstant

Work-group

Compute Device

Work-item

Private

Work-item

Private

Work-item

Private

…

Local

Work-group

Work-item

Private

Work-item

Private

Work-item

Private

…

… Local

Figure 2.11: Device Memory regions

To provide good scalability, OpenCL offers a relaxed consistency mod-

el in which, as the computation progresses, different work-items may

see a different view of global memory. Within a work-item, reads and

writes to all memory spaces are consistently ordered, but between

work-items, synchronization is necessary in order to ensure consis-

tency.

Definition 2.21 (Buffer)

A buffer is defined as an OpenCL memory object that stores a one-

dimensional collection of data elements. Elements of a buffer can

have a scalar data type (e.g., int, float), a vector data type (e.g.,

float4, double8), or a structure data type composed of scalar or

vector data types.

Buffers are used to exchange data between host and compute devices

and are passed as arguments to the kernels. The interaction between

the host memory and the device memory can occur by explicitly copy-

ing buffer data between the two memory regions, or by allowing the

host to map/unmap a region of the buffer into its own address space.
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2.3.4 Programming Model

To effectively allow the mapping of parallel algorithms, OpenCL sup-

ports two different programming models: task parallel and data par-

allel.

Definition 2.22 (Task Parallel Programming Model)

In a task-parallel programming model, problems are decomposed in

tasks that can be executed in parallel on the available hardware

resources.

In OpenCL to execute a program composed of multiple kernels, the

host program can asynchronously push many commands in different

command-queues without waiting for their completion. Each com-

mand can generate an event and be associated with a list of events

that specifies dependencies on other commands. The set of commands

and their respective dependencies define a task graph that the OpenCL

runtime system will schedule during the program execution.

Definition 2.23 (Data Parallel Programming Model)

In a data-parallel programming model, problems are decomposed in

collections of data elements that can be updated in parallel apply-

ing the same stream of instructions to each data element.

This data-centric model matches perfectly the OpenCL execution mod-

el in which work-items, defined in the index space, execute in parallel

the sequence of instructions specified in the kernel.

2.4 the message passing model

The OpenCL programming model is a complete solution for program-

ming heterogeneous compute nodes but it can not be used for inter-

node communications in distributed memory systems. Although in

some particular distributed memory system the physically separate

memories can be addressed as one logically shared address space (dis-

tributed shared memory system), in this thesis we will refer only to

distributed systems that rely on the message passing model to trans-

fer data between processes. In this model, processes from different

compute nodes communicate through the exchange of messages. The

Message-Passing Interface, MPI [83], is the de facto message-passing
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standard for parallel processing. The technical specification of the

standard is nowadays implemented in multiple libraries (e.g., Open-

MPI [90], MPICH [84], MVAPICH [85]). In the next sections we will

introduce the formal model of the communication protocol.

2.4.1 Point-to-Point Communication Model

In the message passing model data is moved from the address space

of one process to that of another process. This procedure is accom-

plished through the cooperation of the two processes involved in the

communication. The process responsible for sending the data is called

sender, while the one responsible to receive the data is called receiver.

Below, we formally describe multiple functions that the model offers

to allow collaborative point-to-point communications between pro-

cesses. In each function we denote with P the set of all processes of a

parallel program.

Definition 2.24 (Send/Receive)

The function send(addr
s

, size, p
d

) specifies that a sender p
s

2 P

transfers size bytes of data from the address addr
s

2 A
p

s

to a

destination process p
d

2 P.

The function receive(addr
d

, size, p
s

) specifies that a receiver p
d

2 P

receives size bytes of data from the process p
s

2 P and stores them

starting from the address addr
d

2 A
p

d

.

It is worth noting the asymmetry between send and receive functions:

a receiver may accept messages from an arbitrary sender, on the other

hand, a sender must specify a unique receiver. To allow the receiver

to accept a message from any source process p 2 P a wildcard * can

be specified as a parameter in the receive function.

Send and receive are blocking primitives. A send operation can be

started whether or not a matching receive function in a remote pro-

cess is called. However, the send will return only when a receive will

be invoked and the data transfer will be completed. Better perfor-

mance is often achievable with the use of nonblocking communica-

tion primitives.
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Definition 2.25 (Isend/Ireceive)

The functions isend(addr
s

, size, p
d

, rq) and ireceive(addr
d

, size, p
s

,

rq), differently from the blocking version defined in Def. 2.24, need

an additional request parameter rq used to query the status of the

of the asynchronous data transfer.

The isend and ireceive functions start respectively the send and the re-

ceive operations on the data, but return immediately without waiting

for a matching operation. This allows the program to proceed with

the computation while the communication is taking place. During

the data transfer, the sender must not modify the memory locations

[addr
s

,addr
s

+ size) 2 A
p

s

, while the receiver must not access the

memory locations [addr
d

,addr
d

+ size) 2 A
p

d

. To check for the com-

pletion of nonblocking operations the model offers two functions: test
and wait.

Definition 2.26 (Test/Wait)

The function test(rq, flag) sets the flag parameter to true if the

operation identified by the request parameter rq is completed. The

function sets the flag parameter to false otherwise.

The function wait(rq) returns when the operation identified by the

request parameter rq is completed.

2.4.2 Collective Communication Model

In addition to point-to-point communications, the message passing

model also defines communications that involve groups of processes.

In our model, we assume that all the processes of a parallel program

participate in collective communications. Below, we formally describe

multiple functions that the model offers to allow such communica-

tions.

Definition 2.27 (Broadcast)

The function broadcast(addr, size, p
r

) specifies that the root process

p
r

2 P transfers size bytes of data from the address addr
r

2 A
p

r

to the processes P - p
r

. All the processes need to call the broad-

cast function with the same root process p
r

2 P, but specify-

ing a different local destination address addr
d

such that 8 p
d

2
(P- p

r

) 9 addr
d

| addr
d

2 A
p

d

.
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It is worth noting that while for the root process the broadcast repre-

sents a read operation, for all the remaining processes it represents a

write operation in their local address spaces.

Definition 2.28 (Scatter)

The function scatter(addr, size, p
r

) specifies that the root process

p
r

2 P distributes size bytes of data from the address addr
r

2 A
p

r

to the processes P - p
r

. The outcome of the function is described

by the following formula:

8 p
d

2 (P- p
r

) 9 addr
d

2 A
p

d

| [addr
d

,addr
d

+ (size/|P|)) =

[addr
r

+ (size/|P|) ⇤ id
p

d

,addr
r

+ (size/|P|) ⇤ (id
p

d

+ 1))

Definition 2.29 (Gather)

The function gather(addr, size, p
r

) specifies that the root process

p
r

2 P receives (size/|P|) bytes of data from each process p
s

2
(P - p

r

) and stores them starting from the address addr
r

2 A
p

r

.

The outcome of the function is described by the following formula:

8 p
s

2 (P- p
r

) 9 addr
s

2 A
p

s

| [addr
r

+ (size/|P|) ⇤ id
p

s

,

addr
r

+(size/|P|) ⇤ (id
p

s

+ 1)) = [addr
s

,addr
s

+(size/|P|))

Definition 2.30 (Barrier)

The function barrier() blocks each caller process until all other pro-

cesses have reached the same barrier.

The barrier function is only used for synchronization purposes and

does not exchange any data between the processes.
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3
E N E R G Y E F F I C I E N T H P C O N E M B E D D E D S O C S

In order to improve energy efficiency, academia and industry have

been studying the suitability of low-power embedded technologies

for high performance computing. Although state-of-the art embed-

ded SoCs include GPUs that could deliver significant performance

and energy improvements, until now, the HPC capabilities of such

components have not been examined.

This chapter explores whether embedded GPUs can provide energy

and performance advantages over the embedded CPUs, and empha-

sizes the importance of OpenCL software optimizations.

In Section 3.2 we provide an overview of related work. Section 3.3

describes the ARM Mali T-604 GPU Architecture followed by the

OpenCL optimization techniques. In Section 3.4 we evaluate and pre-

sent the results of our experiments. Finally, Section 3.5 summarizes

and concludes our findings.

3.1 introduction

The high performance computing community has recognized GPUs

as powerful parallel computing entities, well suited for computation-

ally demanding applications with extensive data-level parallelism [69].

A broad range of computational algorithms from different HPC do-

mains have been successfully ported to GPUs, and heterogeneous

clusters have shown distinct performance and energy-efficiency im-

provements over their homogeneous counterparts [15, 44].

On the other hand, in order to improve energy efficiency, the com-

munity has been deploying large-scale HPC clusters using SoCs [100,

36, 51, 52, 82, 81]. Although state-of-the-art SoCs do integrate GPUs

that could provide significant improvements in terms of performance

and energy efficiency, up to now, the embedded GPUs have not been

used for high performance computing. The main reason behind this

is that the GPUs integrated in SoCs did not support parallel program-
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ming models such as OpenCL or CUDA, and neither did they sup-

port 64-bit floating-point precision.

Nowadays the situation is changing, and the latest embedded GPUs

satisfy 64-bit floating-point arithmetic precision constraints, and sup-

port computational languages such as OpenCL or CUDA [80, 114, 96].

Aware of this upcoming trend, we analyze the use of the ARM Mali

GPU Compute Architecture for HPC workloads. The contributions

which will be presented in this chapter are as follows:

• First, we investigated the possibility of using embedded GPUs

for high performance computing. We successfully ported nine

HPC benchmarks to OpenCL and executed them on ARM Mali-

T604 GPU [80] – the first embedded GPU with OpenCL Full

Profile support. We evaluated performance, power consump-

tion and energy-to-solution of the benchmarks and compared

the results with an embedded CPU composed of ARM Cortex-

A15 cores.

• Second, we identified the important OpenCL software optimiza-

tion techniques for efficient utilization of the ARM Mali GPU

Compute Architecture. This architecture differs in many aspects

from high-end GPU architectures and OpenCL code must be op-

timized taking into account the particular characteristics of the

underlying hardware.

• Finally, we deployed the proposed Mali GPU optimization tech-

niques on nine HPC benchmarks and we evaluated the impact

of the optimization techniques on system performance and en-

ergy consumption.

3.2 related work

Recently, embedded GPU computing has drawn a lot of attention

from the research community and the industry. In the embedded

world, the primary graphics programming interface is OpenGL ES [61].

OpenGL ES is a subset of the well-known OpenGL 3D graphics ap-

plication programming interface (API). Unlike the standard used in

desktop systems and gaming consoles the Embedded Systems ver-

sion removes some of the functionalities and at the same time extends
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it to better support the computational abilities of embedded GPUs.

Although the OpenGL ES API is mainly designed for graphics, some

recent studies have successfully investigated the acceleration of algo-

rithms in embedded devices.

Singhal et al. [109, 110] explored the implementation, optimiza-

tion, and evaluation of image processing and computer vision algo-

rithms. Cheng et al. [25] investigated the computing power and en-

ergy consumption of an embedded CPU-GPU platform for computer

vision applications. Lopez et al. [74] presented the first embedded

GPU implementation of Local Binary Pattern feature extraction. Ris-

ter et al. [102] implemented an efficient implementation of the Scale-

Invariant Feature Transform (SIFT) feature detection algorithm. Due

to the difficulty in mapping algorithms to graphics operations and

accessing the unexposed low-level hardware characteristics, all the

previously mentioned works are specific to the field of image analy-

sis and processing, leaving out a wide range of possible applications.

With the growth of the Open Computing Language (OpenCL) [60]

as an open standard for general-purpose parallel programming of

heterogeneous compute node, also the embedded community has be-

come interested in simplified models for embedded GPU computing.

Leskelä et al. [70] created a programming environment based on the

standard OpenCL Embedded Profile and tested their embedded CPU-

GPU backends implementation against an image processing work-

load. Wang et al. [122] studied the performance of an exemplar-based

inpainting algorithm on the Qualcomm Snapdragon S4 chipset which

supports the OpenCL Embedded Profile for both CPU and GPU [97].

Although these studies are using OpenCL, they are still restricted

to the image processing area and do not investigate whether non-

graphics workloads may benefit from embedded GPUs usage.

Other works have investigated how to simulate and evaluate GPUs

present in embedded devices. TEAPOT [8] provides full-system cycle-

accurate GPU simulation and power model for embedded workloads.

The system has been used to analyze techniques that trade image

quality for energy saving [8], exploit similarity between consecutive

frames to save memory bandwidth [7] and hide memory latency us-

ing a decoupled access/execute paradigm [6]. Maghazeh et al. [77]

investigated if a heterogeneous embedded platform with GPUs and

CPUs can be an attractive solution for different kinds of applications.
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They implemented five benchmarks from different application do-

mains and performed experiments on an i.MX6 Sabre Lite develop-

ment board with OpenCL Embedded Profile support.

3.3 arm mali t-604 gpu architecture

While the main focus of embedded GPUs is mobile 2D and 3D high-

quality graphics, both industry and academia are becoming inter-

ested in the general purpose compute capabilities of such devices.

The first effort in this direction from ARM Holdings is the Mali-T600

GPU Midgard series. The Mali GPU Compute Architecture is de-

signed to fully comply with the OpenCL Full Profile which has strict

requirements for precision and support for mathematical functions.

The first GPU based on this architecture is the Mali-T604 [80]. In ad-

dition to satisfying IEEE-754-2008 precision requirements for single

and double-precision floating point, Mali-T604 natively supports 64-

bit integer data types and implements barriers and atomics in hard-

ware.

Figure 3.1 depicts the architectural details of the Mali-T604 GPU.

The GPU supports up to four shader cores with two arithmetic pipes

per core. The Job Scheduler, implemented in hardware, abstracts the

GPU core configuration from the driver and distributes the compu-

tational tasks to maximize the GPU resource utilization. The Memory
Management Unit can easily map memory from the CPU’s address

space into the GPU’s address space to quickly copy or share infor-

mation. The level 2 cache is shared between the shader cores and

maintained coherent by the Snoop Control Unit.

3.3.1 OpenCL Optimizations for Mali GPU

OpenCL is a well designed language that allows access to the com-

pute power of heterogeneous devices from a single multi-platform

source code. Although the portability at code level ensures the exe-

cution of programs in all the devices that support the language, the

same portability is not present from a performance perspective [120].

Currently, the ARM Mali GPU Architecture, as depicted in Figure 3.1,

differs in many aspects from the high-end GPU architectures used
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Figure 3.1: ARM Mali-T604 GPU Architecture

in desktops and servers. Under this consideration, the OpenCL code

must be optimized taking into account the particular characteristics

of the hardware.

Below we analyze and explain the OpenCL software optimization

techniques that enable the ARM compiler to efficiently map the pro-

gram to the specific ARM Mali GPU Compute Architecture.

Memory allocation and mapping. OpenCL is typically executed

in desktop and server systems where the application processor and

the GPU have separate memories and copy operations have to be

used to exchange data between the host and the device. Differently,

the Mali GPU Architecture provides a unified memory system where

traditional copy operations are not required. Although from a hard-

ware point of view, time and power consuming data transfers can be

avoided, the Mali GPU cannot access memory buffers created with

the standard malloc function because they are not mapped into the

GPU memory space. To allow the GPU to access the data, OpenCL

buffer objects have to be created using the CreateBuffer function with

the CL_MEM_USE_HOST_PTR flag and data has to be copied by

31



the host processor with the EnqueueWriteBuffer and EnqueueReadBuffer
OpenCL functions. Although this method enables data exchange be-

tween host and device, it does not solve the additional copy issue.

To eliminate all the computationally expensive copies it is necessary

to allocate the memory through the OpenCL API and to use mem-

ory mapping functions. Buffers have to be allocated using the Create-
Buffer function with the CL_MEM_ALLOC_HOST_PTR flag and the

EnqueueMapBuffer and EnqueueUnmapMemObject have to be used to

enable both the application processor and the Mali GPU to access the

data.

Load distribution. Another important aspect of an OpenCL pro-

gram is the load distribution between the processing elements of a

device. As already described in Section 2.3.2, the API offers a func-

tion called EnqueueKernel to execute a kernel on a device. To allow

control over the load distribution some arguments of the function

describe the dimensionality of the data, the number of work-items

to be processed for each dimension (global_size) and the number of

work-items in a work-group for each dimension (local_size).

As suggested in the official Mali OpenCL Developer Guide [79]

the optimal global_size can be calculated as the device maximum_work-
group_size multiplied by the number of shader cores multiplied by a

constant. This constant for the Mali-T604 is four or eight. More gener-

ally, the global_size must be in the order of several thousand to maxi-

mize the GPU resources utilization and to achieve high performance.

With regard to the local work-group size, if the application is not re-

quired to share data among work-items, the Developer Guide [79]

suggests to set the local_size parameter to NULL and let the OpenCL

driver determine the most efficient work-group_size for the kernel. Al-

though this practice simplifies the selection of the work-group_size
value, during our experimental evaluation we noticed some perfor-

mance degradation and we strongly suggest to manually tune the

local_size parameter.

Memory Spaces. Defined as a generic language for heterogeneous

computing, OpenCL exposes a memory model composed of several

memory spaces that every vendor maps differently to the correspond-

ing available hardware. Usually dedicated GPUs present local mem-

ories with much higher bandwidth and lower latency than the GPU

memory unit. The OpenCL implementations offered by the two ven-
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dors map the local memory space to the local memories making the

exploitation of locality at code level one of the most important factors

in achieving high performance. Differently, Mali GPUs have a unified

memory system where local memory is physically mapped to the

global memory. For this reason, traditional code locality optimiza-

tions are not required, simplifying the coding of optimized OpenCL

kernels.

Thread Divergence. Other optimizations usually used in GPU com-

puting are those regarding warp or wavefront execution. Warps or

wavefronts represent the smallest executable units of parallelism on

NVIDIA or AMD devices (respectively 32 or 64 work-items). This

means that if two work-items inside a warp or a wavefront take di-

vergent paths of the control flow, all work-items of the same unit go

through both paths. This issue is called thread divergence and can

significantly affect the instruction throughput of the computational

kernel. The thread divergence problem is not present in the ARM

Mali GPU Architecture because the smallest unit of parallelism is a

single thread (work-item) that, being independent, cannot diverge.

Vectorization. One of the most important hardware characteristic

to take into account during the development of OpenCL code for the

ARM Mali GPU Architecture is that the shader cores contain 128-bit

wide vector registers. To allow the effective programming of such

units, OpenCL offers vector load and store instructions and vector

types of different sizes. Vectorization of an OpenCL scalar code can

be done by converting the scalar data types (e.g. float) to vector data

type (e.g. float4) increasing the number of elements processed by each

work-item and consequently reducing the global_size in the host code.

This optimization not only promotes the use of hardware resources,

but also allows a reduction of the run-time scheduling overheads due

to the decrease in the number of work-groups.

Vector Sizes. OpenCL, as already mentioned, provides vector types

of different sizes that the compiler must map to the corresponding

hardware vector registers. In case of the ARM Mali-T604, we noticed

that, after vectorizing the kernel, the best achievable performance is

not bound to a particular vector size but can vary from case to case.

Using types wider than the underlying hardware can improve the

instruction-level scheduling, but also increase register pressure. For

this reason, we suggest, whenever the code allows it, to experiment
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with different vector sizes (e.g. size of 4, 8, 16). It is also important

to keep in mind that vector load and store operations access multiple

data elements in memory with a single instruction leading to a more

efficient use of the available bandwidth. For this reason, such oper-

ations should be also used in kernels that do not take advantage of

vector registers but process each element of the vector array individ-

ually.

Loop Unrolling. Another opportunity for vectorization of the ker-

nel code is within loops. A loop can be unrolled and multiple instruc-

tions can be replaced with a single vector instruction which operates

on multiple data elements. Although this optimization usually leads

to performance improvements on relatively long loops, in case the

number of iterations is not a perfect multiple of the vector size, the

overhead due to the correct handling of the last iterations of the loop

has to be considered. The best performance for different kernel codes

can be achieved using vectorization and unrolling, taking into consid-

eration that code replication can also lead to performance degrada-

tion.

Data Organization. In vector architectures, the organization of data

is of primary importance. Typically in application code data is packed

in an Array of Structures (AOS). If we consider a set of three dimen-

sional points, their representation would be an array in which each

element is a structure with x, y, z coordinates. Although this repre-

sentation is the most natural, it typically requires multiple load/shuf-

fle/insert or gather instructions to correctly populate the vector reg-

isters. A more efficient data-packing approach is Structure Of Arrays

(SOA). In this representation, the data types are the same across the

vector. With this approach, the list of points would be organized as

three arrays containing respectively the x, y and z values that would

facilitate the application of vector instructions increasing the code

performance.

Directives and Type Qualifiers. Better performance can also be

achieved by passing additional information to the OpenCL compiler

through the use of directives and type qualifiers. With function inlin-

ing the user can increase the size of basic blocks (sequences of con-

secutive instructions without branches) and eliminate the overhead

associated with the function call. The use of the const keyword in

pointer declarations makes possible to declare pointers to constant
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data and allows the compiler to make more assumptions and there-

fore produce significant optimizations. The restrict qualifier, applica-

ble to the arguments of a kernel, enables the compiler to assume that

the pointer is the only way to access the object to which it points,

limiting the effects of pointer aliasing.

3.4 evaluation

In order to evaluate the Mali-T604 GPU and the OpenCL optimiza-

tions techniques presented in Section 3.3.1, we used a set of nine HPC

benchmarks. These benchmarks cover a wide range of algorithms em-

ployed in HPC applications and stress various architectural features.

They have been already used in previous studies [99, 101] to evaluate

the suitability of embedded platforms for HPC systems. Below, we

briefly describe each of the benchmarks.

Sparse Vector-Matrix Multiplication (spvm) benchmark multiplies

a vector and a sparse matrix to produce a new vector. It is useful as

metric to measure performance in cases of load imbalance.

Vector Operation (vecop) benchmark performs an addition of two

vectors in an element-by-element basis. Given the memory-bound na-

ture of the kernel, this benchmark stresses the memory bandwidth of

the platform under study.

Histogram (hist) benchmark computes the histogram of the val-

ues present in a vector using a configurable bucket size. It uses local

privatization that requires a reduction stage which can become a bot-

tleneck on highly parallel architectures.

3D Stencil (3dstc) benchmark produces a new 3D volume from an

input 3D volume. Each point of the output is a linear combination of

the point with the same coordinates in the input and the neighboring

points on each dimension. This benchmark is useful to evaluate the

performance in presence of memory accesses with regular strides.

Reduction (red) benchmark applies the addition operator to pro-

duce a single (scalar) output value from an input vector. Reduction

is a common operation in many computational kernels and allows to

measure the capability of the compute accelerator to adapt from mas-

sively parallel computation stages to almost sequential execution.
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Atomic Monte-Carlo Dynamics (amcd) benchmark performs a

number of independent simulations using the Markov Chain Monte

Carlo method. Initial atom coordinates are provided and a number

of randomly chosen displacements are applied to randomly selected

atoms which are accepted or rejected using the Metropolis method.

N-Body (nbody) benchmark takes as input, a list of bodies de-

scribed with a set of parameters (position, mass, initial velocity) and

updates their information after a given simulated time period based

on gravitational interference between each body.

2D Convolution (2dcon) benchmark produces a new matrix from

an input matrix of the same size. Each point of the output is a linear

combination of the point with the same coordinates in the input and

the neighboring points. Differently from the 3D stencil computation,

neighboring points can include points with the same coordinates as

the input point plus/minus an offset in one or two dimensions. This

benchmark is useful to evaluate the performance in presence of spa-

tial locality and strided memory accesses.

Dense matrix-matrix Multiplication (dmmm) benchmark performs

the multiplication of two dense input matrices. Matrix multiplication

is a common computation in many numerical simulations and mea-

sures the ability of the compute accelerator to exploit data reuse and

compute performance.

Each benchmark was implemented in four different versions: Serial,
OpenMP, OpenCL, and OpenCL Opt. The Serial benchmarks were de-

signed to execute on a single core. The OpenMP benchmarks, through

the use of threads, were designed to execute in parallel on several

CPU cores. The Serial and the OpenMP versions have been already de-

veloped and used by previous studies [99, 101] that tested the suitabil-

ity of SoCs for high performance computing. These versions do not

make use of vector instructions. This is due to the fact that the ARM

Cortex-A15 CPU does not incorporate a double-precision SIMD unit

and full IEEE-754-2008 floating-point vector support. The OpenCL ver-

sions of the benchmarks were developed in the Open Computing Lan-

guage to allow a parallel execution on the GPU.

Recently, data structures and data layout transformations have been

proposed to efficiently implement some of the algorithms used in our

benchmarks [17, 73, 45]. However, in order to maintain a similar code

base for all CPU and GPU implementations, we do not take advan-
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tage of them. One of the main goals of the study is to quantify the

performance and energy improvements of the proposed OpenCL op-

timization techniques. In this regard, we enhanced the OpenCL bench-

marks following only the guidelines presented in Section 3.3.1. The

new versions of the benchmarks are referred to as OpenCL Opt.
To avoid rewriting the host code with different data transfer tech-

niques, both, OpenCL and OpenCL Opt benchmarks make use of the

host memory mapping, exploiting the unified memory system of-

fered by the architecture. Due to the problem of data transfer al-

ready being well known in the heterogeneous computing field of

research [41], we want to place more emphasis on other important

optimization aspects during the comparison between the OpenCL and

OpenCL Opt versions of the benchmarks.

The experiments were executed on Samsung Exynos 5 Dual Arn-

dale Board [105]. The board comprises the Samsung Exynos 5250 em-

bedded system-on-chip (SoC) and is equipped with 2 GB of DDR3L-

1600 memory. The Samsung Exynos 5250 integrates a dual-core ARM

Cortex-A15, running at 1.7 GHz with 32 KB of private L1 instruction

and data cache, and 1 MB of shared L2 cache. Alongside the CPU, the

SoC features a four-core ARM Mali-T604 GPU whose architecture has

been already described in Section 3.3.

The operating system running on the platform is Ubuntu 11.10

with a Linux kernel version 3.0.31. The operating system image in-

cludes the driver needed for executing OpenCL programs on the

Mali-T604 GPU. The benchmarks were compiled with GCC version

4.6.1 with -O3 optimization flag. Even if the CPU floating-point hard-

ware includes the NEON extension, floating-point vector operations

are not automatically generated by GCC’s auto-vectorization pass

and we did not make use of the -funsafe-math-optimizations flag to

enable them.

In all the experiments, the problem size for all the four versions

of the same benchmark is maintained constant, so that each version

has the same amount of work to perform. The measurements were

collected only in the parallel regions of the benchmarks, excluding

the initialization and finalization phases. We adjusted the number of

iterations of the considered regions so that each benchmark runs for

long enough to get an accurate energy consumption figure. We re-

peated each experiment 20 times and we computed the mean value
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and the standard deviation of the measured performance and power

consumption. In all the presented experiments, the standard devia-

tion is negligible, thus we do not report it. The power consumption

of the board was measured with the Yokogawa WT230 power meter

that offers a sampling frequency of 10 Hz with 0.1% accuracy.

3.4.1 Performance Analysis

In Figure 3.2, we present the performance comparison between differ-

ent versions of the benchmarks. The benchmarks under study are

listed along the X axis of the figure, while the Y axis shows the

speedup relative to the Serial version of the code. We present the

result for two sets of experiments, in single-precision and double-

precision.

Single-precision: Single-precision results, depicted in Figure 3.2a,

show that the speedup of the parallel OpenMP benchmarks varies be-

tween 1.2⇥ and 1.9⇥ with an average of 1.7⇥. Regarding the OpenCL
version, three out of the nine benchmarks (spmv, vecop, hist) experi-

ence performance degradation with respect to the Serial code. OpenCL
version of 3dstc benchmark experiences a 1.4⇥ speedup over the Serial
version, however, the performance is lower than the OpenMP variant.

For red, amcd, and 2dcon benchmarks, the improvement over the Se-
rial version is 2.1⇥, 4.1⇥, and 3.6⇥, respectively, outperforming the

OpenMP version. Finally, dmmm and nbody benchmarks experience

speedup of 6.2⇥ and 17.2⇥. From these results, we can conclude that

porting code to OpenCL and running on the GPU, on its own, does

not guarantee significant performance improvement, and that a mul-

tithreaded OpenMP version may lead to better performance.

Significantly different results were obtained on applying optimiza-

tion techniques to the OpenCL code (OpenCL Opt). Sparse Vector-

Matrix Multiplication (spmv) is the only application that does not

perform well, but, we still detect some performance improvement

over the Serial implementation (1.25⇥ speedup). Four of the nine

benchmarks (vecop, hist, 3dstc, red) show a speedup between 2⇥ and

4⇥. Benchmark amcd experiences speedup of 4.7⇥, while benchmarks

38



0

1

2

3

4

5

6

7

8

spmv vecop hist 3dstc red amcd nbody 2dcon dmmm

17,2 20 24 25,5

Sp
ee

du
p 

ov
er

 th
e 

Se
ria

l v
er

sio
n

Serial OpenMP OpenCL OpenCL Opt

(a) Single-precision

0

1

2

3

4

5

6

7

8

spmv vecop hist 3dstc red amcd nbody 2dcon dmmm

309,3 10 9,6 8,9

Serial OpenMP OpenCL OpenCL Opt

Sp
ee

du
p 

ov
er

 th
e 

Se
ria

l v
er

sio
n

(b) Double-precision

Figure 3.2: Performance results on the Exynos SoC

nbody, 2dcon, and dmmm show improvement of 20⇥, 24⇥ and 25.5⇥,

respectively.

The significant difference in performance improvement for differ-

ent OpenCL and OpenCL Opt benchmarks can be explained by analyz-

ing the benchmarks’ characteristics. Each of the benchmarks under

study requires a certain amount of data from main memory. There-

fore, in absence of sufficient computation, the memory bandwidth

can limit the performance. Sparse Vector-Matrix Multiplication (spmv)

and Vector Operation (vecop) with large working sets and little com-

putation are good examples of this scenario. As already mentioned

in Section 3.4, our OpenCL versions do not take advantage of special
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data structures and for this reason, spmv can only partially exploit the

available bandwidth.

Histogram (hist) makes use of atomic operations supported at hard-

ware level to compute the result and shows good performance com-

pared to the Serial implementation. 3d Stencil (3dstc) does not take

advantage of vector instruction and limits the optimizations to work-

group size tuning and data reuse. Reduction (red) makes use of a two-

stage reduction, that performs a constant number of parallel reduc-

tions based on the number of used work-groups. The main difference

in performance between OpenCL and OpenCL Opt for this benchmark

is due to the vectorization and the use of a tuned work-group size.

The OpenCL version of amcd without optimizations can already reach

a speedup of 4.1⇥. We did not find many hot spots for optimizations

and the OpenCL Opt is only slightly faster.

The last three applications can reach significant speedups (up to

25.5⇥) over the Serial implementations. The OpenCL version of N-

Body (nbody) does not apply any change to the main data struc-

ture representation that would lead to an easier applicability of vec-

tor optimizations. For this reason, the OpenCL Opt version does not

show significant improvements over the non-optimized version. Dif-

ferently, 2D Convolution (2dcon) and Dense matrix-matrix Multiplica-

tion (dmmm) provide extensive parallelism at both vector and thread

level. In these cases, most of the optimizations can be successfully

applied (loop unrolling, vectorization, group-size and vector-size tun-

ing) leading to a considerable increase in performance.

Double-precision: Double-precision results are presented in Fig-

ure 3.2b. The Atomic Monte-Carlo Dynamics (amcd) OpenCL versions

are not presented due to a compiler issue that does not allow the cor-

rect termination of the compilation phase for the OpenCL kernel in

double precision. Since the compiler source code is not publicly avail-

able, we could not solve the problem. The problem is reported, and it

will be corrected in a future version of the compiler. For the remain-

ing benchmarks, we detect similar trends as for single-precision.

For the OpenCL version, two of the eight benchmarks (spmv, hist)
show lower performance than the Serial version. OpenCL version of

3dstc benchmark experiences a 1.6⇥ speedup over the Serial version,

however, it still experiences lower performance than the OpenMP vari-
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ant. Benchmarks vecop and red show 1.5⇥ and 1.7⇥ speedup over

the Serial version of the benchmarks, and negligible performance im-

provement over the OpenMP variant. Finally, three benchmarks expe-

rience a significant speedup: 2dcon (3.5⇥), dmmm (8.9⇥) and nbody
(9.3⇥). Regarding the OpenCL Opt version, three of the eight bench-

marks (spmv, vecop, red) show a performance improvement below 2⇥.

Benchmarks hist and 3dstc, experience a speedup of 3⇥ and 3.4⇥. Fi-

nally, 2dcon, nbody, dmmm benchmarks show speedup is 9.6⇥, 10⇥,

and 30⇥, respectively.

The speedup of OpenCL Opt over the OpenCL benchmarks in single-

precision (Figure 3.2a) and double-precision (Figure 3.2b) is compa-

rable. However, for the red, nbody and 2dcon benchmarks, we have

detected a significantly different trend. The reduction of the perfor-

mance gap between the OpenCL and OpenCL Opt version of bench-

marks nbody and 2dcon in double-precision is due the failure of opti-

mized version of the kernels (with CL_OUT_OF_RESOURCES Error).

The benchmarks were executed without the error in single-precision.

3.4.2 Power Analysis

In Figure 3.3, we present the comparison between power consump-

tion of Serial, OpenMP, OpenCL and OpenCL Opt versions of the bench-

marks. The benchmarks under study are listed along the X axis of the

figure, while the Y axis shows the power consumption relative to the

Serial version of the code. We present the result for two sets of exper-

iments, in single-precision and double-precision.

Single-precision: Single-precision results are presented in

Figure 3.3a. The increase in power consumption of the OpenMP bench-

marks over the Serial version varies between 23% (vecop) and 45%

(nbody) with an average of 31%. Results vary insignificantly between

OpenCL and Serial versions of the benchmarks. For spmv, vecop, and

hist, the power consumption of the OpenCL version is 13%, 7%, and

19% decreased with respect to the Serial version. The remaining bench-

marks have a slightly higher power consumption of up to 22% (amcd
and dmmm benchmarks). On average, OpenCL benchmarks show only

7% higher power consumption than the Serial version. Seven out of
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Figure 3.3: Power consumption results on the Exynos SoC

nine OpenCL Opt benchmarks have power consumption that is very

similar to the consumption of the corresponding OpenCL benchmarks.

Significant difference is detected only for hist benchmark that experi-

enced significant power increase with respect to OpenCL version, and

dmmm benchmark that showed significant power reduction.

Double-precision: Double-precision results are presented in Fig-

ure 3.3b and follow similar trends as the single-precision results.
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3.4.3 Energy-to-Solution Analysis

Figure 3.4 shows the energy-to-solution of the benchmarks in single-

precision and double-precision. The results presented are normalized

with respect to the energy-to-solution of the Serial implementation of

the benchmarks.

Single-precision: Single-precision results are shown in Figure 3.4a.

Energy-to-solution reduction of the OpenMP benchmarks over the

Serial version is 20% on average. The results for the OpenCL ver-

sions of the benchmarks can be clustered in two groups. Benchmarks

spmv, vecop, hist and 3dstc experience moderate energy-to-solution im-

provement (less than 20%) over the Serial code. Actually, the OpenCL
versions of hist and 3dstc consume more energy than correspond-

ing OpenMP implementations. For the remaining five OpenCL bench-

marks (red, amcd, nbody, 2dcon, dmmm), energy-to-solution improve-

ment (reduction) is significant, and it varies between 51% (red) and

93% (nbody). Finally, for all the benchmarks under study, the OpenCL
Opt versions experience the lowest energy-to-solution. Improvement

with respect to the Serial version of the benchmarks varies between

34% (spmv) and 96% (dmmm) with an average of 72%.

For all the benchmarks under study, the OpenCL Opt versions have

better energy-to-solution than the corresponding non-optimized im-

plementations. For seven out of nine benchmarks (spmv, vecop, hist,
3dstc, red, 2dcon, and dmmm), the energy consumption improvement

due to proposed OpenCL optimization is significant. On average, the

OpenCL Opt benchmarks require only 28% of the energy consumed by

the Serial implementation, while non-optimized OpenCL implementa-

tions require 56%.

Double-precision: Double-precision energy-to-solution results are

presented in Figure 3.4b. The results follow similar trends as the

single-precision results. The only significant difference is detected for

red OpenCL Opt benchmark. In this case, energy-to-solution of double-

precision increased significantly with respect to the single-precision

version. This is due to the relative performance loss of OpenCL Opt red
benchmark in double-precision with respect to single-precision (see
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Figure 3.4: Energy-to-solution results on the Exynos SoC

Figure 3.2). On average, the OpenCL Opt benchmarks require only

36% of the energy consumed by the Serial implementation, while non-

optimized OpenCL implementations require 56%.

3.5 summary

We analyzed the suitability of the ARM Mali GPU Compute Archi-

tecture for HPC workloads. We successfully ported nine HPC bench-

marks to OpenCL and executed them on the ARM Mali-T604 GPU

– the first embedded GPU with OpenCL Full Profile Support. It is

important to emphasize that, despite much higher theoretical peak

performance, the ARM Mali-T604 GPU usually cannot be effectively
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exploited with the creation of a simple OpenCL parallel version from

the sequential code. Based on the presented results, we see that achiev-

ing high performance requires proper utilization of the underlying

architecture that can only be obtained through the use of code op-

timizations and parameter tuning. The OpenCL optimization tech-

niques that we presented resulted in a significant performance in-

crease for most of the benchmarks under study. On the other hand,

we showed that power consumption varies insignificantly between

optimized and non-optimized versions of the OpenCL benchmarks.

Significant performance improvement and similar power consump-

tion translate into significantly lower energy-to-solution of the op-

timized OpenCL benchmarks. Our results also show that the Mali-

T604 GPU provides distinct improvements in terms of performance

and energy-to-solution over ARM Cortex-A15. On average, single-

precision and double-precision GPU benchmarks achieve a speedup

of 8.7⇥ over the benchmarks running on a single Cortex-A15 core,

while consuming only 32% of the energy. Our study confirms that,

in high performance computing, embedded GPUs can offer perfor-

mance and energy advantages over embedded CPUs, similar to their

high-end counterparts present in clusters.
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4
S C H E D U L I N G T E C H N I Q U E S F O R

H E T E R O G E N E O U S N O D E S

The transition from homogeneous to heterogeneous compute nodes

is challenging with respect to the efficient utilization of the hardware

resources and the reuse of the software stack. As heterogeneous com-

puting opens many new opportunities for developing fast parallel

algorithms, it also introduces additional levels of complexity. One of

the main challenges, in order to maximize the system performance, is

the partitioning and scheduling of tasks among the available compute

devices.

As previously described in Section 2.3.4, the OpenCL language is

based on a task-parallel model, in which each kernel task is data

parallel. Data-parallel tasks can often be split into smaller sub-tasks

and distributed across multiple devices. However, finding an efficient

partitioning is not trivial. The best performing partitioning is likely

to change with different applications, different (input) problem sizes,

and different hardware configurations. Furthermore, as pointed out

by other studies [42], dynamic scheduling approaches may not lead

to an optimal solution, due to the large difference in performance and

transfer bandwidth of the single devices.

In this chapter we investigate different techniques to tackle the par-

titioning and scheduling of tasks with a specific focus on heteroge-

neous compute nodes.

Section 4.1 describes an automatic, problem size sensitive method

for partitioning OpenCL tasks, while Section 4.2 describes two low-

complexity dynamic heuristics for the scheduling of OpenCL inde-

pendent tasks. Finally, Section 4.3 summarizes and concludes our

findings.

4.1 automatic task partitioning on heterogeneous nodes

In this section, we present a novel approach which automatizes task

partitioning of OpenCL programs on heterogeneous compute nodes.
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Our work is based on machine learning which combines compile time

analysis with runtime feature evaluation to predict an effective task

partitioning.

The contributions are as follows:

• We developed a new compiler approach for converting a single-

device OpenCL program to a multi-device OpenCL program.

• We extended the Insieme runtime system to support the par-

allel execution of OpenCL code across multiple heterogeneous

devices.

• We optimized the task partitioning of OpenCL programs on het-

erogeneous compute nodes with an off-line machine learning

generated problem size sensitive model.

• We empirically demonstrated the benefits of our approach com-

pared to traditional static task partitioning techniques using

23 different applications on two different heterogeneous multi-

device nodes.

This work was developed with the collaboration of Klaus Kofler.

The analysis, the compiler back-end for the generation of the code,

the runtime system, and the Support Vector Machine model are my

personal contributions.

4.1.1 Related Work

In recent years, heterogeneous systems have received great attention

from the research community. Several projects [113, 5, 12, 111, 64, 65]

mainly focused on OpenMP, CUDA, and OpenCL extensions, have in-

vestigated how to facilitate the programming of heterogeneous clus-

ters. Our work, while following the same idea, is focused on auto-

matic management of multiple devices in a single compute node. A

similar study was done by Chen et al. [24]. The authors introduce

an automatic parallelization process to use multiple GPUs. This work

targets mainly the analysis of access patterns for data decomposi-

tion, showing that many applications can be parallelized automati-

cally. Our approach, based on a similar analysis, not only derives the
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data partition schemes but also provides a solution for optimal task

partitioning on heterogeneous devices.

In a different perspective, much work has been done to address the

scheduling of tasks in heterogeneous compute nodes. Several frame-

works [113, 10, 71] have been created to support the developer in the

use of all available computing resources of a heterogeneous compute

node. Although these studies propose several possible solutions to

the problem, they are mostly based on performance estimations pro-

vided by the user. On the contrary, our approach is automatic and

does not require any additional user-supplied information. Further-

more, these approaches focus on optimizing the scheduling of multi-

ple available tasks, assuming that several parallel tasks are available.

Our system is designed to optimize the execution of a single task and

can, therefore, optimize also programs with a single task.

Other works have investigated the problem of automatic task par-

titioning. Luk et al. [75] introduced an adaptive mapping approach

based on a regression model. Their system considers every first run

of a program as a training run that can be then used to determine the

computation-to-processor mapping for the same program with a new

input problem. This approach expects that a program is trained once

and then used many times afterward. In contrast to our work, they

only show results of one target architecture equipped with only one

CPU and one GPU.

A similar approach was adopted by Kai et al. [58]. They proposed

a holistic energy management framework for heterogeneous nodes

which dynamically splits and distributes the workload over GPU and

CPU based on the observed performance. Their algorithm dynami-

cally adjusts the task partitioning based on the runtime difference

between devices. Our approach, on the other hand, does not require

any profiling or training runs of the program to optimize it. We can

derive an optimized task partitioning during the first run of a new

program by using a previously, off-line trained model.

Hong et al. [47] proposed MapCG, a framework that supports source

code level portability between CPU and GPU. By incorporating a

MapReduce programming model, a program can be compiled and ex-

ecuted on either CPUs or GPUs without modification. However, they

observed that CPU/GPU combinations did not yield significant per-

formance improvement for the 8 test cases they examined. In contrast
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to this work, on our target architectures, we observed the important

role of the hybrid task partitioning to achieve the best performance

for our test cases.

Grewe et al. [42] developed a purely static task partitioning ap-

proach based on predictive modeling and program features. Starting

from a multi-device OpenCL code, the authors predict the partition-

ing of a task with a machine learning model based on static features

analysis for fixed problem sizes. Our work uses a similar machine

learning approach but combines static program features detected at

compile time with dynamic features collected at runtime that allow

the adaptation of the task partitioning to different problem sizes. We

test our approach for different target architectures emphasizing the

importance of the problem size and the hardware configuration for

the tuning of the task partitioning. Furthermore, our system is not

limited to a CPU-GPU configuration but can handle an arbitrary num-

ber of heterogeneous devices in a single compute node.

4.1.2 The Insieme Compiler-Runtime Framework

Heterogeneous compute nodes are difficult to program, and more-

over the performance capability of individual devices can vary signif-

icantly across different applications and problem sizes which often

makes static, problem size insensitive distribution techniques unsuit-

able. Our work based on the Insieme Compiler and Runtime frame-

work relieves the developer from this difficult task. It consists of a

source-to-source compiler that translates single-device OpenCL pro-

grams into multi-device OpenCL programs that the runtime system

executes among the available heterogeneous devices. Using such a

framework we proposed a machine learning approach that, based on

analysis of the program structure and input data, try to predict the

optimal partitioning for an OpenCL program a priori. Our approach

is composed of two main phases: training and deployment. The goal of

the training phase, depicted in Figure 4.1, is to build a task partition-

ing prediction model. In step  , a set of OpenCL programs is pro-

vided to the system and translated into the Insieme parallel interme-

diate representation [57] by the code analyzer. This IR offers a formal

and compact representation of programs that facilitates code analysis
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Figure 4.1: Training phase

and transformation. In step À, from this representation, the features

of the program (static program features) are extracted and stored in a

database. The static program features count the occurrence of certain

activities (e.g., arithmetic operations, memory accesses) or describe

the ratio between two characteristics (e.g., the ratio between com-

putation and memory accesses or the ratio between the number of

branches and all instructions). In step Ã, the intermediate represen-

tation of the program is then passed to the backend which generates

multi-device OpenCL code. Once generated, in step Õ, the new pro-

gram will be executed by the Insieme Runtime system with various

problem sizes and different available task partitionings. In step Œ, the

obtained performance measurements, together with the problem size-

dependent features of the program (i.e. runtime features), are collected

and added to the database. Apart from the problem size itself, the run-

time features describe how much data has to be transferred between

the host and the devices during the program execution. Finally, after

all the previous steps have been accomplished for all programs, the

trainer uses the features and the performance measurements stored

in the database (step œ) to generate a task partitioning prediction

model (step –).

To generate a multi-device OpenCL program, we extended the In-

sieme Compiler to analyze the generated IR of the input program and

infer the bounds of OpenCL buffer regions. This analysis identifies

whether a buffer should be replicated or distributed evenly among

several devices. After deriving and collecting all the buffer’s access
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Figure 4.2: Deployment phase

patterns, the analysis checks if the access expression is (a) a constant,

(b) the result of a convex function depending on the thread id, or (c)

something different. If only accesses of type (b) occur, the buffer is

split among all devices (i.e. it is splittable). If accesses of type (a) or

(c) happen, part of it (a) or the entire buffer (c) has to be copied to

every device (i.e. the buffer is non-splittable). In case of (a) and (c),

the amount of data to be transferred increases linearly with the num-

ber of devices used. Obviously, copying the same data to each device

is only feasible if there are only read accesses to these buffers. When

write accesses of type (a) or (c) occur, our framework is not capable

of distributing the kernel. A kernel can be distributed over several

devices if and only if all its buffers with write accesses are splittable.

However, due to the limited synchronization capabilities of OpenCL,

in the majority of all kernels, the write accesses use access pattern (b).

The access pattern analysis is based entirely on the kernel code. How-

ever, also the host code has to be adapted according to the results of

the access pattern analysis in order to guarantee the correct distribu-

tion of data. For this reason, our source-to-source compiler connects

the host and kernel code during the translation of the input OpenCL

program into IR, enabling the analysis of the entire program. After

the analysis, the IR is translated by the backend to a multi-device

OpenCL program. The generated code is semantically equivalent to

the input code, but its kernels can be distributed among a generic

number of devices by the runtime system. This implies that some

buffers are replicated while others are distributed over the selected

devices, depending on their access pattern inside the kernel.
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During the deployment phase, depicted in Figure 4.2, the partition-

ing prediction model is applied to a new input OpenCL program. In

step   and À, the OpenCL program is provided to the analyzer and

the static features are extracted. In step Ã and Õ, the intermediate rep-

resentation is passed to the backend which generates a multi-device

OpenCL program. When the program is executed, the runtime fea-

tures are provided to the previously trained model (step Œ), which

combines them with the static program features to predict an effective

task partitioning for the current program with the selected problem

size (step œ). Finally, in step –, the runtime system executes the pro-

gram on the given hardware using the predicted task partitioning.

To access the multiple devices available in the heterogeneous com-

pute node, we extended the Insieme runtime system with OpenCL

support. During compilation, the source code generated by the back-

end is embedded with appropriate runtime calls responsible for de-

vices initialization, data transfers, and kernels execution. It is worth

noting that OpenCL cannot synchronize the execution across differ-

ent vendor platforms. We enhanced the Insieme runtime system to

avoid such limitation and orchestrate the concurrent execution in

the available devices. This investigation laid the foundation for other

studies that culminated with the creation of the libWater library. Chap-

ter 5 will analyze and describe the library in more detail.

4.1.3 Experimental Environment

To evaluate the performance of our approach we used the set of 23

programs listed in Table 4.1. These programs have been drawn from

OpenCL vendors example codes, benchmark suites [27, 38, 23], appli-

cations from our department and VRC at the Universität Stuttgart [93].

As shown in Figure 4.1, all training codes are compiled with the In-

sieme source-to-source Compiler and their static program features

are collected in a database. After the compilation, the programs are

executed with various problem sizes (9 to 18 problem sizes, depend-

ing on the program) and task partitionings, adding to the database

information about runtime features and execution times. In order to

generate the training patterns needed for the model generation, we

perform an exhaustive search on the set of explored task partitionings,
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Machine
Name mc1 mc2
CPU Vendor AMD Intel
CPUs 2x Opteron 6168 2x Xeon X5650

Compute Units 24 24

Clock Frequency 1.9 GHz 2.67 GHz
Peak Performance 364 GFLOPS 256 GFLOPS
Memory Size 32 GB 24 GB
Memory Bandwidth 83 GB/s 62 GB/s
Compiler GCC 4.6.3 w/ "-O3"
Operating System CentOs 5.8
OpenCL Version AMD APP SDK 2.7
GPU Vendor Ati NVIDIA
GPUs Radeon HD 5870 GeForce GTX 480

Compute Units 20 15

Clock Frequency 850 MHz 1401 MHz
Peak Performance 2.7 TFLOPS 1.3 TFLOPS
Memory Size 2 GB 1.5 GB
Memory Bandwidth 153 GB/s 177 GB/s
Host Connection PCIe 2.0 x16 PCIe 2.0 x16

OpenCL version AMD APP SDK 2.7 CUDA 4.1.1

Table 4.2: Experimental target architectures.

finding the one with the best execution time. Each training pattern

consists of the static features of a program, its runtime features for a

certain problem size as well as the best task partitioning for the given

program with the current problem size. Such task partitioning will

then be used as target value during the training of our model. Based

on the training patterns we build a model with one input for each

feature and one output, which represents the task partitioning pre-

dicted by the model. Our framework currently offers Support Vector

Machines [26] (SVM) and Artificial Neural Networks [26] (ANN) for

the construction of the model. To ensure a fair comparison between

different task partitionings, we measured the execution time of the

kernels including the memory transfer overhead [41]. For each task

partitioning, we executed a series of five experiments, recording the

average execution time. The result has been validated with the Stu-
dent’s t test [98], ensuring reliable results with a confidence level of

95%.
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The experiments were performed on two different heterogeneous

target architectures composed of three OpenCL devices: two GPUs

and two multi-core CPUs in a dual-socket infrastructure. While both

GPUs represent a separate device, the two CPUs are reported as a

single OpenCL device. The first platform, mc1, consists of two AMD

Opteron CPUs and two Ati Radeon GPUs, while the second, mc2,

holds two Intel Xeon CPUs and two NVIDIA GeForce GPUs. Table 4.2

gives a more detailed listing of the two systems’ characteristics.

For the target architectures used in this study, consisting of one

CPU device and two GPU devices, we characterize each task parti-

tioning with a tuple of three numbers representing the percentage of

the workload executed on a specific device. The first number repre-

sents the portion to be executed on the CPU while the second and

third number represent the percentage for the first and second GPU,

respectively. Task partitioning (100, 0, 0), for example, means that the

entire workload is assigned to the CPU, while (0, 50, 50) means that

the work is distributed evenly among the two GPUs while nothing

is assigned to the CPU. The entire set of task partitionings P is con-

structed as follows:

X ={0, 10, 20, ..., 100}

P =
[

x2X

�
(x, 100- x, 0), (x, 100-x

2

, 100-x

2

)
 

Where X is the set of different percentage values of the workload

considered to be executed by the CPU. The remaining workload is

then executed by the first GPU or it is distributed evenly among

the two GPUs. The resulting set P consists of 21 different task par-

titionings. From this set P our runtime system tries to select an ef-

fective task partitioning using the prediction model as described in

Section 4.1.2.

To evaluate the performance of our approach we compare the exe-

cution times of a program with two different task partitionings. The

first one is proposed by the Insieme Runtime system and the second

one is found by an exhaustive search over all task partitionings in the

set P. In order to evaluate the quality of our models we do a leave-
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one-out cross validation [34] on all our training programs of the set C

listed in Table 4.1. For each program c 2 C, we train the model with

all programs except c. Obviously, this means not leaving out only

one training pattern, but all training patterns related to program c

(all different problem sizes).

4.1.4 Evaluation

As performance metric for our evaluation, we use the achieved per-

centage of the maximum performance. We calculate it using the exe-

cution time of the best task partitioning (identified with an exhaustive

search over all task partitionings used) and the actual execution time

of the selected task partitioning.

Depending on the target architecture, the problem size and the pro-

gram, it can be important to select a certain task partitioning, whereas

in other cases, several different task partitionings may deliver simi-

lar good performance. For instance, as can be seen in Figures 4.3a

and 4.3b, when executing matrix multiplication with large problem

sizes it is very important to distribute the workload over both GPUs.

Furthermore, for hybrid solutions, it is not important if one or two

GPUs are used since the CPU is always the limiting factor. For smaller

problem sizes, in particular for mc2, several task partitionings yield

good performance. In contrast to that, on mc1 small matrices should

be multiplied on the CPU alone. The penalty for selecting a non-

optimal task partitioning on intermediate problem sizes on mc1 is

less severe than on mc2.

The situation is different when running our integer compression im-

plementation. Figure 4.3c shows that on mc1 with a problem size of

16384 work items, the CPU substantially outperforms all other task

partitionings, while on mc2 the difference is much smaller and all task

partitionings deliver 40% or more of the maximum performance, as

revealed in Figure 4.3d. For the larger problem sizes, on both target ar-

chitectures, a hybrid task partitioning delivers the best performance.

However, the best performing task partitioning is different for each

problem size and target architecture. In this test case, using a het-

erogeneous distribution can reduce the execution time by up to 23%

over any homogeneous task partitioning (including the dual GPU
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Figure 4.3: Performance of different programs on two target architectures
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Task Par- Execution Time
titioning Training (sec) Deployment (ms) Performance

Approach mc1 mc2 mc1 mc2 mc1 mc2 Avg.

CPU only - - - - 73 58 65.5
GPU only - - - - 48 77 62.5
Random - - 0.12 0.09 44 55 49.5

SVM 22 19 0.28 0.18 82 85 83.5
ANN 317 201 0.07 0.06 86 89 87.5

Table 4.3: Properties and performance of different machine learning algo-
rithms

task partitioning). From the 355 training patterns considered for this

study, more than 25% deliver best performance when using a hybrid

task partitioning.

For the Insieme Runtime system, we tested a variety of models,

generated either with a Support Vector Machine [26] (SVM) or an Ar-

tificial Neural Network [26] (ANN). For both techniques, we used the

implementation provided by the Shark library [53]. In this section, we

compare the performance of our model-guided runtime system with

the performance of the two default strategies which use either one

CPU or one GPU. These are the only available options when using the

unchanged input programs, without the generation of multi-device

code by the Insieme Compiler. Furthermore, without using Insieme

framework, the challenging task of choosing the most appropriate de-

vice is left to the user. We also show the advantage of our approach

over the expected performance of a random scheduler, calculated by

taking the average execution time over all task partitionings in our

set P (described in Section 4.1.3).

Table 4.3 shows the average performance for a cross validation over

all test cases in Table 4.1 using different scheduling approaches. On

mc1 the CPU-only strategy outperforms the GPU-only strategy while

on mc2 we observe the opposite behavior. This underlines the com-

plexity of choosing the most appropriate device in a heterogeneous

environment. On average, over the two target architectures, both de-

fault strategies fail to reach 70% of the maximum performance. In

most cases, there are only a few well performing task partitionings

while the others show rather poor performance. Therefore, the ran-
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dom scheduler is not a good solution and even lags behind the two

default strategies.

Our SVM approach uses the MulticlassSVM implementation of [53].

As kernel function we used Radial Basis Function [26] (RBF). This ker-

nel function is the most widely used for classification with SVMs. The

parameter � of the RBF was set to 2.5, the regularization parameter c

was set to 15 for both positive and negative examples. We observed,

that the performance does not vary by more than 4 - 5% when chang-

ing these values, which demonstrates the robustness of SVMs with

regard to these parameters.

The ANNs used for our study are three-layer feed-forward percep-

tron networks with a sigmoid activation function and five neurons in

the hidden layer [26]. All three layers are fully connected with their

neighboring layers. For our ANN we use the FFNet implementation

of [53]. All weights inside an ANN are initialized randomly within

the same range, equal to +/- 0.125.

As training algorithm we used the conjugate gradient method pro-

vided by Shark, which automatically adapts the training rate. To de-

termine the number of training iterations for the neural network, we

use the early stopping method which terminates the training automati-

cally after a certain level of convergence is reached. The training data

is split into a training set, used to train the model, and a validation set

which is not used for training. The level of convergence is measured

by observing how the error on the validation set evolves over consec-

utive training iterations [26]. Depending on what test case is removed

from the training set to perform the cross validation, the training is

stopped after 36 to 749 iterations. The training times shown in Ta-

ble 4.3 refer to the training for all test cases without cross validation.

As shown in Table 4.3, the ANN shows a better performance than

the SVM and it is also faster to predict the task partitioning of a pro-

gram. For both of our approaches, the time to predict the task parti-

tioning is negligible (in the range of 0.06 to 0.28 ms). The downside of

ANN is the corresponding relatively long training time as well as the

associated sensitivity regarding the tuning parameters like network

structure or weight initialization range. SVMs do not have these many

tuning parameters and the quality of the result does not depend that

much on the parameters’ value.
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In Table 4.1 we compare the performance of the task partitionings

predicted by the Insieme Runtime based on an SVM and ANN, with

the performance delivered by the CPU/GPU only strategy for each

code and each target architecture individually. For almost all test

cases, the CPU-only strategy delivers a higher performance on mc1
than on mc2, while the GPU-only strategy usually performs better

on mc2. This is related to the weaker performance of the GPU (Ati

Radeon HD 5870) in mc1. Its VLIW architecture with a very wide in-

struction width and high branch miss penalty would require specific

fine-tuning of each code to perform well [120]. However, none of our

test cases was tuned for a specific device.

Our models are capable of representing the target architecture’s

characteristics in order to find performance efficient task partition-

ings. Our approaches also determine which device is to be favored

on a specific target architecture. This is underlined by the fact that

they show their worst performance in atypical test cases, i.e. test cases

which perform better on the GPU than on the CPU on mc1 (e.g. Simu-

lation of a Swinging Pendulum) or vice versa on mc2 (e.g. Symmetric

Rank-2k Operations on mc2). On average considering both target ar-

chitectures, our machine learning guided approaches reached up to

87.5% of the optimal performance across 23 programs outperforming

the default strategies of using only the CPU or only the GPU, which

achieve 65.5% and 62.5%, respectively.

4.2 tensor computation on heterogeneous nodes

In the previous section we focused on automatic methods for parti-

tioning OpenCL tasks on heterogeneous compute nodes. Differently,

in this section we will focus on the scheduling of independent OpenCL

tasks and in particular on exploiting the computational power of

emerging heterogeneous compute nodes in order to improve the ten-

sor computation of massive datasets of millions of points in the VISH

visualization shell [18]. VISH is a productive framework that provides

functionalities for both efficient data processing and visualization of

big data.

The contributions are as follows:
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• First, we implemented a new tensor computation code in

OpenCL using a uniform grid space partitioning approach, and

evaluated its performance against the current KD-Tree imple-

mentation available in VISH.

• Second, we investigated the performance of the OpenCL imple-

mentation on 8 different devices, comprising four GPUs, three

CPUs and one accelerator, from desktop and server domains.

• Finally, we proposed two low-complexity dynamic heuristics for

the scheduling of independent dataset fragments and compared

them with three static scheduling heuristics in two multi-device

heterogeneous compute nodes.

4.2.1 Related Work

The study of the interaction of millions of points, present in modern

datasets, requires scalable systems capable of supporting the large

computational demands. In order to actually improve the scalability

of such systems many spatial partitioning methods were proposed

and investigated [13, 124, 125]. Some of these approaches are suitable

for simulations which frequently have high density in one or several

spatial locations and some perform best with uniformly distributed

points. In recent years, among such methods, uniform grid data struc-

tures have received great attention from the research community. Erra

et al.[32], leveraging the GPU processing power, implemented an ef-

ficient framework which permits to simulate the collective motion

of high-density individual groups. Aaby et al. [1] presented the par-

allelization of agent-based model simulations (ABMS) with millions

of agents on multiple GPUs and multi-core processors. Vigueras et

al. [121] proposed different parallelization strategies for the collision

check procedure that takes place in agent-based simulations. Green

[39] described how to implement a simple particle system in CUDA

using a uniform grid data structure. Husselmann et al. [49] presented

a GPU solution for grid-boxing in multi-spatial-agent simulations.

While the uniform grid approach of these works is similar to ours,

they are restricted by the language of choice to some specific hard-

ware. Differently, using OpenCL, our work is not limited to a single

platform and can be executed in multiple heterogeneous devices. This
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advantage allows us to compare different platforms and fully exploit

the computational performance of heterogeneous compute nodes as

shown in other recent works [66, 37].

4.2.2 Tensor Computation

For a set of N points {P
i

: i = 1, ...,N} the point distribution tensor S

at the point P
i

is defined as:

S(P
i

) =
1

N

NX

k=1

!(|t
ik

|)(t
ik

⌦ t⌧
ik

), (1)

whereby !(x) = ✓(r- x) is a threshold function dependent on a ra-

dius r [104], t
ik

= P
i

-P
k

, ⌧ is the transpose and ⌦ denotes the tensor

product. Figure 4.4 depicts a graphical result of the computation ap-

plied to the river Rhein dataset.

The naive approach for the tensor computation is, therefore, to test

every point with all the others, leading to a quadratic algorithmic

complexity. In real models composed of millions of points this ap-

proach is not applicable due to the inherent performance problem. To

mitigate this problem spatial partitioning methods have been inves-

tigated [13, 124, 125]. Currently, the VISH visualization shell offers

a tensor field computation algorithm that makes use of a KD-Tree

data structure to find the neighbors of a certain point. After the tree

building phase, in which the points of the dataset are inserted into

the KD-Tree, the computation of the tensor distribution is executed

in parallel for each point with a series of range queries dependent on

a given search radius (threshold function). The KD-Tree code was im-

plemented via C++ STL containers and parallelized using OpenMP

[89] with dynamic scheduling and packets of 10000 loop iterations.

Differently, a uniform grid space partitioning approach involves

a spatial partitioning of the model system into equally-sized boxes

(cells) containing different numbers of points. It is important to en-

sure that the grid box size is not smaller than the radius size, as this

would force the algorithm to check many surrounding grid boxes.

On the other hand, if the grid box is larger than the radius, each box

would contain numerous points and the process of locating neighbors

would once again be checking many points outside the radius area.
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Figure 4.4: Input point distribution (left) and output tensor (right) of the
river Rhein dataset

In our case, the uniform grid approach is effective because the radius

is an input parameter of the program and therefore we are able to

tune the grid box size accordingly.

We implemented the tensor computation application in OpenCL

using a uniform grid space partitioning approach. We used a grid

with a cell size of two times the radius, which implies that each point

can only interact with points in the neighboring cells (27 in a 3D

space). The complete program, described in Algorithm 4.1, is com-

posed of three phases: initialization, computation, and finalization.

During the initialization phase, the OpenCL devices are initialized,

the OpenCL kernels are compiled and the metadata of the dataset

is loaded. The metadata contains information about the number of

fragments present in the dataset, the number of points for each frag-

ment, plus other additional information useful for the graphical visu-

alization. The dataset consists of independent fragments of spatially

ordered points to facilitate the data manipulation and visualization.

Each fragment contains a small percentage of replicated data neces-

sary for the computation of the tensor algorithm at points close to the

border of the fragment. Once the initialization phase is completed the

system is ready to schedule the fragments on the available devices

and the computation phase will start. For each fragment, the point’s

coordinates will be loaded in main memory and transferred to the de-

vice memory where the computation will take place. On the device,

the uniform grid will be created and used during the tensor computa-

tion in the search for the neighboring points. Once the computation is

done, the computed tensor data is transferred back to the host’s main

memory and finally saved to the disk. The finalization phase releases

all the devices and the used memory.
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Algorithm 4.1 The OpenCL tensor computation algorithm
1: devices_initialization() . Initialization Phase
2: metadata load_dataset_metadata()
3: for all fragments in dataset do . Computation Phase
4: pts_ar load_points_data(fragment)
5: write_points_to_device(pts_ar)
6: create_uniform_grid(pts_ar, radius){
7: hash_ar compute_hash_values(pts_ar)
8: index_ar sort_points_indices(hash_ar)
9: begin_end_ar compute_interval(hash_ar)

10: }

11: compute_tensor(pts_ar, index_ar,begin_end_ar)
12: tsr_ar read_tensor_from_device()
13: write_tensor_to_disk(tsr_ar)
14: end for
15: devices_finalization() . Finalization Phase

The steps necessary for the creation of the uniform grid are de-

scribed in Algorithm 4.1 (lines 6-10). The algorithm consists of multi-

ple OpenCL kernels. The first kernel (line 7) calculates a hash value

for each point based on its cell ID and stores them in an array in de-

vice main memory (hash_ar). The array is then sorted based on the

cell IDs while updating at the same time the order of the point IDs.

Sorting is performed using a bitonic algorithm [14]. The result of this

computation is an array of point IDs sorted by cell (index_ar). The last

kernel (line 9) is then executed to find the begin and the end position

of any given cell. The kernel generates an OpenCL work-item for each

point and compares the cell ID of the current point with the cell ID of

the previous one in the hash_ar array. If the two indices are different,

the current work-item ID is used as start index of the current cell and

the begin_end_ar array is updated using a scattered write operation.

During the execution of the compute_tensor kernel (line 11), using the

begin_end_ar and index_ar arrays, we calculate the neighbor cells for

each point in the fragment and for each point present in the cells we

compute the difference to the current point in each dimension (x, y,

z). If the length of the difference vector is less than the radius, the ten-

sor array and the points counter are updated. Finally, in the last step,

each element of the tensor array is divided by the points counter.

65



4.2.3 Scheduling Independent Fragments

As mentioned in the previous section, the tensor computation is ap-

plied on single fragments that compose the complete dataset. The

fragments are completely independent of each other and can be com-

puted in parallel using the available devices present in the compute

node. During program execution, a scheduler is responsible for the

allocation of the fragments among the heterogeneous devices. The

scheduling problem has been extensively investigated and numerous

methods have been reported in the literature [20, 30, 76, 72]. In our

program we implement two low-complexity scheduling heuristics:

SimpleH and SimpleHS. SimpleH analyzes the dataset metadata and

sorts the list of fragments based on the number of points contained

in each of them. The algorithm then proceeds by dynamically assign-

ing the fragment with the smallest number of points to the slowest

device and the fragment with the biggest number of points to the

fastest device. Following this pattern, the scheduler continues to dy-

namically assign fragments until all of them are processed. SimpleHS
follows a similar pattern. A fragment is assigned to the slowest de-

vice if the predicted execution time of the fragment on that device

is lower than the predicted execution time of all the remaining frag-

ments on the fastest device. The execution time for each fragment

is predicted with a quadratic regression model using the number of

points of the fragment. During the program execution, information re-

garding the number of points per fragment and execution times are

stored. This information will then be used to build a more accurate

model whenever the slowest device is ready to compute a new frag-

ment. Although for simplicity the heuristic algorithms are described

taking into consideration only two devices, they can be applied to het-

erogeneous compute nodes composed of a single slow device (CPU)

and multiple equally fast devices (e.g. GPUs). In Section 4.2.5 we eval-

uate and compare SimpleH and SimpleHS with three heuristics which

are widely used to address the problem of scheduling independent

tasks in heterogeneous compute nodes: Min-Min [50, 20], Max-Min
[50, 20], and Sufferage [78]. Because these are static heuristics, it is as-

sumed that an accurate estimation of the expected execution time for

each fragment on each device is known prior to execution and con-
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tained within an ETC (expected time to compute) matrix. The Min-
Min heuristic proceeds by assigning a previously unassigned frag-

ment to a device in every iteration. The assignment is decided based

on a two-step procedure. In the first step, the algorithm computes

the minimum completion time (MCT) of each unassigned fragment

over the devices in order to find the best device which can complete

the processing of that fragment at earliest time. This decision is made

taking into account the current loads of the devices and the execution

time of the fragment on each device. In the second step, the algorithm

selects the fragment with the minimum MCT among all unassigned

fragments and assigns the fragment to its best device found in the

first step. The Max-Min heuristic differs from the Min-Min in the frag-

ment selection policy adopted in the second step of the fragment-to-

device assignment procedure. Unlike Min-Min, which selects the frag-

ment with the minimum MCT, Max-Min selects the fragment with the

maximum MCT and then assigns it to the best device found in the

first step. Sufferage is also similar to Min-Min but adopts a different

fragment selection policy. In the first step of the process, the algo-

rithm computes the second MCT value in addition to the MCT value

for each fragment. In the second step, the sufferage value, which is

defined as the difference between the MCT and the second MCT val-

ues of a fragment, is taken into account. Sufferage selects the fragment

with the largest sufferage and assigns it to the best device found in

the first step.

4.2.4 Experimental Environment

In order to evaluate the performance of the KD-Tree and OpenCL

implementations presented in Section 4.2.2, we use a dataset of 58

million points, generated using a combination of LIDAR and echo

sounding data captured at the river Rhein in Rheinfelden [29]. The

dataset is stored in the HDF5 [116] format, based on the scientific

data format F5 [103, 19], to be easily manipulated with the VISH

infrastructure. The dataset is composed of 65 fragments that contain

between one thousand and 3.5 million points each.

To represent the broad spectrum of OpenCL-capable hardware we

selected eight devices, comprising four GPUs, three CPUs, and one
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Device S9000 K20m Phi7120 2x E5-2690v2 2x Opt.6168

OpenCL Vendor AMD NVIDIA Intel Intel AMD
OpenCL Version SDK v2.9 CUDA 6.5 SDK 2014 SDK 2014 SDK v2.9
Operating System CentOS6.5 CentOS6.5 CentOS6.5 CentOS6.5 CentOS6.5
Host Connection PCIe 3.0 PCIe 3.0 PCIe 2.0 - -
Device Type GPU GPU ACL CPU CPU
Class server server server server server
Compute Units 28 13 240 40 24

Max Workgroup 256 1024 8192 8192 1024

Clock (MHz) 900 705 1333 3000 1900

Cache R/W R/W R/W R/W R/W
Cache Line 64 128 64 64 64

Cache Size (KB) 16 208 256 256 64

Global Mem (MB) 3072 4799 11634 129006 64421

Constant (KB) 64 64 128 128 64

Local Type Scratch Scratch Global Global Global
Local (KB) 32 48 32 32 32

(a) Server devices

Device Radeon5870 GTX480 i7-2600K
OpenCL Vendor AMD NVIDIA Intel
OpenCL Version SDK v2.9 CUDA 6.5 SDK 2014

Operating System CentOS5.9 CentOS5.9 Mint16

Host Connection PCIe 2.0 PCIe 2.0 -
Device Type GPU GPU CPU
Class consumer consumer consumer
Compute Units 20 15 8

Max Workgroup 256 1024 8192

Clock (MHz) 850 1401 3400

Cache None R/W R/W
Cache Line - 128 64

Cache Size (KB) - 240 256

Global Mem (MB) 1024 1536 7965

Constant (KB) 64 64 128

Local Type Scratch Scratch Global
Local (KB) 32 48 32

(b) Consumer devices

Table 4.4: Benchmarked OpenCL devices
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accelerator. Their device characteristics as reported by OpenCL are

summarized in Table 4.4.

To exploit the computational capabilities of heterogeneous com-

pute nodes, we evaluated different scheduling heuristics. The exper-

iments were performed on two different heterogeneous target archi-

tectures composed of three OpenCL devices: two GPUs and one CPU.

The first platform, mc3, consists of an Intel i7-2600K CPU and two

NVIDIA GTX 480, while the second, mc4, holds two Intel Xeon E5-

2690 v2 CPUs (reported as a single OpenCL device) and two AMD

Fire Pro S9000 GPUs. For the static scheduling heuristics we utilized,

as estimation time for each fragment (ETC matrix), the actual execu-

tion time of the fragment on the different devices. Differently, for the

computation of the coefficients in the SimpleHS heuristic, we used the

multi-parameter fitting present in the GNU Scientific Library.

All the benchmarked programs were compiled with GCC version

4.8.1 with the -O3 optimization flag. In each different device, the

OpenCL kernels were compiled by the respective vendor compilers at

runtime during the program initialization. All the experiments were

conducted on the previously described dataset. The measurements

were collected for the computational phase of the program, exclud-

ing the initialization and finalization phases. We repeated each exper-

iment 10 times and we computed the mean value and the standard

deviation of the measured performance. In all the presented exper-

iments, the standard deviation is negligible, thus we do not report

it.

4.2.5 Evaluation

To compare the performance of the KD-Tree version and our OpenCL

implementation, we executed the tensor computation on the input

dataset on the same multi-core CPU (Intel i7-2600K). Both implemen-

tations are parallel: the KD-Tree version uses OpenMP to parallelize

the loop over all points, while the OpenCL approach is inherently par-

allel. The building phase of the tree in the KD-Tree implementation

is sequential, however, it represents a very small part of the overall

execution time. The OpenCL version of the program experiences a

significant speedup (24⇥) over the currently implemented VISH KD-
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Figure 4.5: Normalized execution time spent in the different parts of the
OpenCL tensor computation algorithm
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Figure 4.6: Speedup of the different devices over the Intel i7-2600K

Tree version, reducing the execution time from 1 hour to 150 seconds.

The performance improvement comes from different reasons. First,

grid data structures are more suited for range queries (all the parti-

cles around a point in a given radius) while KD-Tree structures are

more suited for k-nearest neighbors queries (first N-points close to a

given point). Second, vectorization is rather hard in KD-Tree codes

where many data-dependent branches are present. In contrast, the

uniform grid OpenCL code can be more easily autovectorized by com-

pilers. Third, we applied a few code optimizations that improve the

performance of the OpenCL code. However, the optimizations only

partially affect the speedup over the KD-Tree version, which remains

significant even in their absence (12.9⇥).

Since OpenCL supports heterogeneous devices, we analyzed the

performance of our OpenCL code on a set of heterogeneous devices

described in Table 4.4. Figure 4.5 depicts the percentage of execution
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time spent in the different phases of the OpenCL tensor computa-

tion described in Algorithm 4.1. Write represents the transfer of the

fragment points to the device (line 5), Build represents the time spent

building the uniform grid structure (line 6-10), Compute indicates the

time spent in the computation (line 11), while Read identifies the trans-

fer of the tensors to the host device (line 12). In all the tested hardware

the movement of data does not represent an important part of the ex-

ecution time. Write and Read functions are always under 5% of the

total time. The only exception is the AMD Fire Pro S9000 where the

data transfers represent 9.0% and 11.6% of the execution time, respec-

tively. This is mainly due to the small amount of time spent in the

tensor computation thanks to the strong computational capabilities

of the device.

In Figure 4.6 we present the performance comparison of the hetero-

geneous devices. The speedup of the CPUs respects the characteristics

of the hardware. The AMD Opteron, with a higher number of com-

pute units but a lower clock rate, experiences a 1.6⇥ speedup over

the Intel i7 while the Xeon, with 40 compute units and a similar clock

rate, reaches a 4.5⇥ speedup. All the GPUs show significant improve-

ments in performance compared to the Intel i7. The desktop GPUs

AMD Radeon 5870 and NVIDIA GTX 480 reach a speedup of 4.7⇥
and 12.0⇥, respectively. The server GPUs NVIDIA K20m and AMD

Fire Pro S9000, designed for the HPC market, show a speedup of

14.5⇥ and 23.8⇥, respectively. It is worth underlining that although

the NVIDIA K20 offers higher theoretical peak performance, in our

test the AMD Fire Pro S9000 is around 1.5 times faster. The only ac-

celerator present in our test is the Intel Xeon Phi. Although its peak

performance is comparable with the tested server GPUs, it reaches

only a speedup of 4.4⇥ compared to the Intel i7. The difference in

performance between the GPUs and the Xeon Phi is difficult to inves-

tigate as it derives from the differences in the architecture and from

the different maturity of the OpenCL toolchains.

In conclusion, the results show that the problem is well-suited for

GPUs, reducing the processing time of the complete input dataset to

6.3 seconds in case of the AMD Fire Pro S9000.

As previously described in Section 4.2.4, we conducted a set of ex-

periments with scheduling heuristics in two heterogeneous compute

nodes. The objective of our scheduler is to find a fragment-to-device
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Device Scheduling Heuristics

C
on

su
m

er
Pl

at
fo

rm

Sufferage Min-Min Max-Min SimpleH SimpleHS

mc3-CPU1

5976.34 [15] 0.00 [0] 5980.55 [7] 6124.42 [21] 4807.08 [19]

mc3-GPU1

5971.16 [25] 5993.26 [32] 5988.02 [29] 5962.76 [23] 6014.41 [24]

mc3-GPU2

5974.84 [25] 6502.75 [33] 5988.23 [29] 5984.76 [21] 6049.29 [22]

Ex. time (ms) 5976.34 6502.75 5988.23 6124.42 6049.29

Norm. to Suff. 100.00% 91.90% 99.80% 97,58% 98.79%

Se
rv

er
Pl

at
fo

rm

Sufferage Min-Min Max-Min SimpleH SimpleHS

mc4-CPU1

2708.42 [21] 1341.58 [7] 2711.67 [12] 2758.30 [28] 2758.30 [28]

mc4-GPU1

2706.41 [22] 2986.75 [29] 2710.42 [26] 2797.53 [20] 2797.53 [20]

mc4-GPU2

2709.77 [22] 2766.57 [29] 2712.34 [27] 2838.69 [17] 2838.69 [17]

Ex. time (ms) 2709.77 2986.75 2712.34 2838.69 2838.69

Norm. to Suff. 100.00% 90.73% 99.91% 95.45% 95.45%

Table 4.5: Performance of the different scheduling heuristics in two hetero-
geneous compute nodes

assignment that minimizes the total execution time (makespan). Table

4.5 shows, for each device in the two compute nodes, the time spent to

execute the number of assigned fragments (in square brackets) for the

particular scheduling policy. The table also presents for each heuris-

tic the makespan and the normalized result to the Sufferage heuristic.

In both nodes Sufferage reaches an almost perfect load balancing be-

tween the three available devices, fully utilizing the available hard-

ware. In both nodes the static scheduling heuristics obtain similar re-

sults, with Max-Min that reaches almost the same performance of Suf-
ferage, while Min-Min shows 91.90% and 90.73% of the performance,

respectively. These results are justified by the structure of the dataset.

Usually, datasets collected with LIDAR technology contain few frag-

ments with a big number of points and many small fragments with

fewer points. Due to the fragment selection policy, Sufferage and Max-
Min perform the assignment of the large fragments in early iterations

resulting in a better load balancing between the devices. Differently,

Min-Min favors the assignment of fragments with lower cost in early

iterations, not reaching the same performance in terms of makespan.

It is noteworthy that the three static scheduling heuristics assume

an accurate estimation of the expected execution time for the frag-

ments (ETC matrix) that will not be available at scheduling time. The

resulting performance of the heuristics is therefore only useful as a

comparison parameter for our low-complexity heuristics SimpleH and

SimpleHS, which are only based on information available at schedul-
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ing time. SimpleH, based on the assumption that the GPUs are always

faster than the CPU, dynamically assigns the fragments with more

points to the GPUs and the one with fewer points to the CPU. This

simple mechanism facilitates the devices load balancing by avoiding

assigning large fragments to slow devices. Although SimpleH is capa-

ble of reaching good performance, it also shows its weakness with

our input dataset. The heuristic does not take into account the num-

ber of remaining fragments to assign and, when few are left, contin-

ues to distribute them to the CPU. This behavior can lead to load

imbalance if the GPUs have to wait for the CPU that received one of

the last fragments. This issue is solved with the SimpleHS heuristic,

previously described in Section 4.2.3. SimpleHS tries to predict the ap-

proximate execution time of a new fragment based on the execution

time of the previous ones. Although at the beginning the prediction

error is high, it rapidly decreases during the scheduling of fragments.

It is noteworthy that the overhead introduced by the prediction model

is negligible and does not impact the performance of the scheduler.

In our tests, SimpleHS is able to correctly predict when to stop the as-

signment of fragments to the CPU, obtaining a better load balancing

between the devices. As depicted in Table 4.5, SimpleHS, scheduling

fewer fragments to the CPU, always achieves better or equal perfor-

mance compared to SimpleH, reaching 98.79% and 95.45% of the Suf-
ferage performance in the two compute nodes.

These results validate the success of the proposed heuristics which,

using only information available at scheduling time, show perfor-

mance comparable to more sophisticated methods which require an

accurate estimation of the expected execution times.

4.3 summary

In this chapter we introduced different techniques to partition and

schedule OpenCL tasks on heterogeneous compute nodes.

In Section 4.1 we proposed a novel approach which can automati-

cally distribute OpenCL programs on heterogeneous compute nodes.

It consists of a source-to-source compiler, which translates a single-

device OpenCL program into a multi-device OpenCL program and

a runtime system which distributes the workload over all heteroge-
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neous resources using a machine learning based, off-line generated

prediction model. On average our approach outperformed default

strategies showing that state-of-the-art compilers can automatize com-

plex tasks with substantial impact on performance and productivity.

Differently, in Section 4.2 we proposed an OpenCL implementa-

tion of the second order tensor field computation of massive point

datasets. We investigated the performance of our implementation on

a set of heterogeneous devices, showing a remarkable reduction of

the execution time. Furthermore, we investigated different scheduling

policies on two heterogeneous compute nodes. The obtained results

validate the success of the proposed heuristics, which show perfor-

mance comparable to more complex static ones, only using informa-

tion available at scheduling time.
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5
S I M P L I F Y I N G T H E P R O G R A M M I N G O F C L U S T E R S

Ease of programming and best performance exploitation are often

conflicting goals while designing programming models and abstrac-

tions for high performance computing (HPC). For instance, when pro-

gramming a cluster, better performance can be obtained directly us-

ing low level and error prone communication layers like MPI [83].

Alternatively, high level models like domain specific languages and

frameworks can be employed to simplify the programmability and

portability of the code. This simplification, however, may also reduce

performance due to the level of abstraction that is too far away from

the underlying hardware.

In this chapter, we introduce libWater, a library-based extension of

the OpenCL programming model that simplifies the development of

applications for heterogeneous clusters improving both productivity

and implementation efficiency. libWater does not alter the kernel logic

of OpenCL kernels, but replaces the host-side API with a new, simpler

and transparent interface which abstracts the underlying distributed

architecture.

The remainder of this chapter is structured as follows. Section 5.2

provides an overview of related work. Section 5.3 and section 5.4

describe respectively the libWater programming model and the dis-

tributed runtime system with the underlying optimizations. The ex-

perimental evaluation is presented in Section 5.5. Finally, Section 5.6

summarizes and concludes our findings.

5.1 introduction

Although OpenCL is a big leap forward in order to assure porta-

bility between different hardware, potentially replacing other stan-

dards, it also presents some limitations. A first problem is that it

does not allow interactions between different platforms; for exam-

ple, it is not possible to use event synchronization between devices

from different vendors. Secondly, the semantics of OpenCL host ap-
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plications is too verbose, as it includes different levels of abstraction

(e.g., platform, device, queue). Moreover, while writing an applica-

tion targeting heterogeneous or mixed-node clusters, we still require

an intricate mix of OpenCL with a communication layer like MPI.

Despite OpenCL can be easily extended in order to support remote,

distributed devices[65, 3, 59, 33], the host-device paradigm forces the

use of a centralized communication pattern, which is a strong limita-

tion for scaling on large-scale distributed systems.

The contributions which will be presented in this chapter are as

follows:

• The libWater programming model, which extends the OpenCL

standard by replacing the host code with a simplified and con-

cise interface. It defines a novel device query language (DQL)

for OpenCL device management and discovery, and introduces

new features such as inter- and intra-platform synchronization.

• A lightweight distributed runtime environment, which dispatch-

es the work between remote devices, based on asynchronous

execution of both communications and OpenCL commands. lib-
Water runtime also collects and arranges dependencies between

commands in the form of a powerful representation called com-

mand DAG.

• Two effective uses of the command DAG in order to improve

scalability: (a) a Dynamic Collective Replacement (DCR) opti-

mization, which identify collective communication patterns and

replaces them with MPI collective operations; (b) a Device-Host-

Device Copy Removal (DHDCR), where device-device commu-

nications supersedes device-host-device ones. Both optimizations

overcome the limitation of the OpenCL host-device semantic,

improving scalability on large-scale clusters.

• A study of the scalability of libWater on two real production

clusters using up to 64 devices. Results show high efficiency and

demonstrate the suitability of the presented command DAG op-

timizations for seven computational application codes. Finally

we demonstrate the suitability of libWater for a mixed-node clus-

ter for two codes.
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5.2 related work

In recent years, heterogeneous systems have received a great amount

of attention from the research community. Although several projects

have been recently proposed to facilitate the programming of het-

erogeneous clusters [63, 65, 11, 28, 5, 3, 59, 33, 91, 126, 92], none of

them combines support for high performance inter-node data trans-

fer, support for a wide number of different devices and a simplified

programming model. Our work takes into account all these aspects

through the development of the libWater library.

Kim et al. [63, 65] proposed the SnuCL framework that extends the

original OpenCL semantics to heterogeneous cluster environments.

Their work is closely related to ours. SnuCL relies on the OpenCL

language with few extensions to directly support collective patterns

of MPI. Indeed, in SnuCL, it is the programmer responsibility to take

care of the efficient data transfers between nodes. In that sense, end

users of the SnuCL platform need to have an understanding of MPI

collective calls semantics in order to be able to write scalable pro-

grams. This deeply differs from our system where such optimizations

are transparently applied by the libWater runtime system.

Also other works have investigated the problem of extending the

OpenCL semantics to access a cluster of nodes. The Many GPUs Pack-

age (MGP) [11] is a library and runtime system that using the MOSIX

VCL layer enables unmodified OpenCL applications to be executed

on clusters. Hybrid OpenCL [5] is based on the FOXC OpenCL run-

time and extends it with a network layer that allows the access to

devices in a distributed system. The clOpenCL [3] platform comprises

a wrapper library and a set of user-level daemons. Every call to an

OpenCL primitive is intercepted by the wrapper which redirects its

execution to a specific daemon at a cluster node or to the local run-

time. dOpenCL [59] extends the OpenCL standard, such that arbitrary

compute devices installed on any node of a distributed system can

be used together within a single application. Distributed OpenCL [33]

is a framework that allows the distribution of computing processes

to many resources connected via network using JSON RPC as com-

munication layer. OpenCL Remote [91] is a framework which extends

both OpenCL’s platform model and memory model with a network
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client-server paradigm. Virtual OpenCL [126], based on the OpenCL

programming model, exposes physical GPUs as decoupled virtual

resources that can be transparently managed independently of the

application execution.

While the objectives of these approaches are similar to ours, none

of them provides an abstraction layer to reduce the complexity asso-

ciated with the OpenCL development and, furthermore, they show a

very limited scalability in clusters of 4 to 8 compute nodes. In particu-

lar, none of them employs dynamic communication optimizations as

we do.

Besides OpenCL-based approaches, also CUDA solutions have been

proposed to simplify distributed systems programming. CUDASA
[112] is an extension of the CUDA programming language which

extends parallelism to multi-GPU systems and GPU-cluster environ-

ments. rCUDA [31] is a distributed implementation of the CUDA API

that enables shared remote GPGPU in HPC clusters. cudaMPI [68] is

a message passing library for distributed-memory GPU clusters that

extends the MPI interface to work with data stored on the GPU using

the CUDA programming interface. All of these approaches are lim-

ited to devices that support CUDA, i.e. NVIDIA GPU accelerators,

and therefore they cannot be used to address heterogeneous systems

which combine CPUs and accelerators from different vendors.

Other projects have investigated how to simplify the OpenCL pro-

gramming interface. Sun et. al [113], proposed a task queueing exten-

sion for OpenCL that provides a high-level API based on the concepts

of work pools and work units. Intel CLU [54], OCL-MLA [87] and Sim-
pleOpencl [108] are lightweight API designed to help programmers

to rapidly prototype heterogeneous programs. DIANA [94] provides

a common interface to hide the complexity of managing different

application programming interfaces APIs and libraries for different

many-core devices. OmpSs [22] relies on user directives to avoid the

boilerplate OpenCL host code configuration and generate a DAG for

task scheduling purpose. FastFlow [4] is a structured parallel pro-

gramming framework targeting clusters of multi-core workstations.

StarPU [9] provides a runtime and a programming language exten-

sions to support task-based programming model in a cluster. Besides

the simplified interface, libWater differently from other approaches

78



provides fine-grained control over device selection (i.e. DQL) and an

improved device synchronization based on events.

5.3 the libwater programming interface

libWater is a C/C++ library-based extension of the OpenCL program-

ming model that simplifies the development of distributed hetero-

geneous applications. It inherits the main principles from OpenCL

trying to overcome its limitations. While maintaining the notion of

host and device code, libWater exposes a very simple programming

interface based on four key concepts: device, buffer, kernel and event. A

device represents a compute device but, differently from the original

paradigm, this single object is an abstraction of the OpenCL platform,

device, and queue concepts. Such simplification reduces the number

of source code lines necessary for the initialization of the devices, and

thus avoids the boilerplate configuration code that is usually present

in every OpenCL program. Furthermore, the library is not restricted

to a single node but, taking internally advantage of the message pass-

ing model, it provides access to devices on remote nodes as if they

were locally available.

Since libWater can grant access to a large number of distinct de-

vices, the selection of a particular one can be cumbersome. In order

to simplify this important aspect, libWater introduces a novel domain

specific language for querying devices. A device query language (DQL)

query statement follows an SQL-like structure, that is composed of 4

basic clauses with the following syntax:

SELECT [ALL | TOP k | POS i]

FROM NODE [n [, ...]]

WHERE [restrictions attribute values]

ORDER BY [attribute [, ...]]

The SELECT clause (the only one which is mandatory) respectively

allows the selection of all the devices, the first top k, or a particular

device from the device list generated under the restrictions on the

following clauses. With FROM NODE a single node or a list of nodes

can be specified narrowing the range of selectable devices to those

particular nodes. The clauses WHERE and ORDER BY allow the control of
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Device Management (wtr_)

void init_devices(’DQL’, ...) device get_device(’DQL’, ...)

int get_num_devices() void release_devices()

void print_device_infos(device)

Buffer Management (wtr_)

buffer create_buffer(device, mem_flag, size, evt)

void write_buffer(buffer, size, source_ptr, wait_evt, evt)

void read_buffer(buffer, size, dest_ptr, wait_evt, evt)

void release_buffer(buffer, wait_evt, evt)

Kernel Management (wtr_)

kernel create_kernel(device, name, kernel_name, build_options,

flag, evt)

void run_kernel(kernel, work_dim, global_size, local_size,

wait_evt, evt, num_args, ...)

void release_kernel(kernel, wait_evt, evt)

Event Management (wtr_)

event create_event() void release_event(evt)

event merge_events(num, ...) void wait_for_events(num, ...)

void init_event_array(num, evt)

void release_event_array(num, evt)

Table 5.1: The complete libWater API

the device restrictions on attribute values and the order in which the

devices will be returned. The possible attribute values are currently

those exposed by the OpenCL GetDeviceInfo function. A DQL use case

is shown and discussed in Section 5.4. DQL queries can be used for

both device initialization and device selection. The latter must be a

subset of the former and since libWater’s device concept represents a

single device only, the function wtr_get_device only accepts queries

that make use of the POS clause.

Table 5.1 presents the complete API of the libWater library. The pre-

fix wtr_ and the C language pointer syntax has been removed from

the table for readability reasons. Initialization and selection of de-

vices is done, respectively, by using the wtr_init_devices and the
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wtr_get_device routines. Once a device is created, it is possible to

allocate data and execute computation on it. In libWater, this is done

through the use of the buffer and the kernel concepts. These two objects

are similar to their respective OpenCL versions, with the main differ-

ence that, during their creation, they are bound to a specific device.

For this reason, no device must be specified for buffer and kernel re-

lated functions. The principal kernel functions are wtr_create_kernel

and wtr_run_kernel. The former receives as parameter a flag that

specifies whether the name input argument contains the kernel code

or it is the name of a file containing the OpenCL kernel. The lat-

ter is used for executing a kernel in the previously bound device.

The parameters work_dim, global_size and local_size are the same speci-

fied in the OpenCL EnqueueKernel. The num_args parameter states the

number of input arguments accepted by the kernel. This parameter

is followed by a list of a variable number of pairs. Each pair con-

sists of a size (in bytes) and a pointer to the corresponding kernel

argument. The first value of the pair distinguishes between buffers

– when is equal to 0 – or a valid address in the host memory. The

fourth concept in libWater is the event object. Most of kernel and buffer
functions have one or two parameters called wait_evt and evt. The

latter is an output argument which is used by the invoked command

to generate an event object. If not specified, libWater assumes block-

ing semantics for the routine. The former specifies the event object

on which the execution of the command depends. If not present, the

command has no dependencies and thus it can be immediately exe-

cuted. Since there can be a dependency between several commands,

the wtr_merge_events function can be used to merge multiple event

objects into one.

The last major difference between libWater and the OpenCL model

is the fact that initialization and release of buffers and kernels can

be invoked using a non-blocking semantics. The main reason for this

is to increase the amount of operations that the runtime system can

overlap. In the next section we explain how dependency information

enforced by events are then exploited by libWater’s runtime system.
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5.4 the libwater distributed runtime system

While the main focus of the programming interface of libWater is on

simplicity and productivity, the underlying runtime system aims at

low resource utilization and high scalability. Calls to libWater routines

are forwarded to a distributed runtime system which is responsible

for dispatching the OpenCL commands to the addressed devices and

for transparently and efficiently moving data across the cluster nodes.

The libWater distributed runtime is written in C++ and internally uses

several paradigms, such as pthreads, OpenMP and MPI for paral-

lelization.

Figure 5.1 shows the organization of the libWater distributed run-

time system. The host code, which directly interacts with libWater’s

routines, runs on the so called root node, which by default is the cluster

node with rank 0. This thread will be referred to as the host thread. In

the background, a second thread, i.e. the scheduler thread, is allocated

to execute an instance of the WTRScheduler. On the remaining clus-

ter nodes, a single scheduler thread is spawned independently of the

number of available devices (only one MPI process is allocated per

node). This thread executes an instance of the WTRScheduler which

represents the backbone of libWater’s distributed runtime system.

Each WTRScheduler continuously dequeues wtr_commands from the

local command queue. wtr_commands in the system are generated in

two ways, either by (i) libWater’s routines (step  ), or (ii) by delegation

from the root scheduler (step Ã). Calls to the libWater’s interface are

converted into command descriptors (i.e. command design pattern)

and immediately enqueued into the root node local command queue

(step  ) of Figure 5.1. Since all wtr_commands are generated by the

root node itself, we refer to its queue as the runtime global command

queue.

wtr_commands are either wrappers for OpenCL commands or data

transfer jobs (i.e. send_job or recv_job) which are generated by the

library routines whenever the device addressed by a read or write

buffer operation is located in a remote (i.e. rank 6= 0) compute node.

The descriptor of a wtr_command is self-contained since it carries all

the information necessary for its execution. To be portable across

cluster nodes, OpenCL objects such as kernels, buffers, and events
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Figure 5.1: libWater’s distributed runtime system architecture

are identified, within the wtr_command object, by a unique ID. The

root scheduler continuously fetches the wtr_commands from the global

command queue, decodes its content and – depending on the tar-

geted device – dispatches the command to the correct node. When

the wtr_command addresses one of the local OpenCL devices, the cor-

responding OpenCL command is created and enqueued into the de-

vice command queue (step À). When a remote OpenCL device is

addressed, an MPI message is generated – serializing the content of

the wtr_command descriptor – and dispatched to the cluster node host-

83



ing the requested device. The WTRScheduler of the target node then

de-serializes the wtr_command and, instead of immediately executing

it, enqueues the wtr_command instance into the local command queue

(step Ã). The same WTRScheduler is then responsible to dispatch the

corresponding OpenCL command into one of its local device queues

(step À).

The heartbeat of the WTRScheduler is an advanced event system

which allows the management of an entire compute node – hosting

multiple OpenCL devices – using only a single application thread.

Indeed, because one instance of the WTRScheduler runs on every clus-

ter node, trying to keep the resource usage as low as possible is of

paramount importance in order to avoid wasting CPU cycles which

can be used to run an OpenCL kernel. Different from related work,

which exclusively reserves an entire cluster node and a physical CPU

core in each compute node only for scheduling purposes, our system

does not exclusively reserve any user resources for scheduling. Fur-

thermore, using a single thread, for both executing local wtr_commands

and for performing scheduling decisions, reduces the amount of syn-

chronization since accesses to events and the command queues do

not need to be synchronized.

Relying on a single thread can, however, easily become a perfor-

mance bottleneck. An interesting example is the interaction with MPI

routines. By default many MPI implementations implement blocking

behaviour with a spin-lock mechanism in order to minimize latency.

This means for example that a blocking receive, waiting for a message

from the communication channel, continuously checks for incoming

data usually saturating the cycles of a CPU core. In an environment

like ours, where CPU cores may be used to run OpenCL kernels, this

behaviour must be avoided. Our solution is to avoid in every event

handler routine any call to blocking MPI or OpenCL routines and al-

ways use the non-blocking semantics. The main idea is the creation of

periodic events, handled by the event system using a priority queue

based on timestamps, to check for the completion of pending opera-

tions. For OpenCL routines, we exploit the OpenCL event system and

the associated callback mechanism. In this way, the WTRScheduler is

able to dispatch several commands on the OpenCL devices, or MPI

data transfers, which although being issued sequentially (by the sin-

gle flow of the execution) are concurrently executed by the available
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1 wtr_init_devices("SELECT ALL WHERE (type = gpu AND vendor = nvidia)");

2 wtr_event* evts[2];

3 for (int i=0; i<2; ++i) {

4 size_t offset=size/2*i;

5 wtr_device* dev = wtr_get_device("SELECT POS 1 FROM NODE %d

6 WHERE global_memory > 1024MB",i);

7 assert(dev != NULL && "Device does not exist!");

8 wtr_event* e[8];

9 wtr_init_event_array(7,e);

10 wtr_kernel* kern = wtr_create_kernel(dev,"kernel.cl","fun", "", WTR_SOURCE, e+0);

11 wtr_buffer* buff = wtr_create_buffer(dev, WTR_MEM_READ_WRITE, size/2, e+1);

12 wtr_write_buffer(buff, size/2, ptr+offset, e+1, e+2);

13 e[7] = wtr_merge_events(2, e+0, e+2);

14 wtr_run_kernel(kern,1,(size_t[1]){size/2},NULL,e+7,e+3,2,
15 0, buff,

16 sizeof(size_t), &offset);

17 wtr_read_buffer(buff, size/2, ptr+offset, e+3, e+4);

18 wtr_release_buffer(buff, e+4, e+5);

19 wtr_release_kernel(kern, e+3, e+6);

20 evts[i] = wtr_merge_events(2, e+5, e+6);

21 wtr_release_event_array(8, e);

22 }

23 /* Blocks until buffers and kernels are released */

24 wtr_wait_for_events(2, evts+0, evts+1);

25 wtr_release_event_array(2, evts);

Listing 5.1: A complete multi-device program example using libWater’s
routines

resources (i.e. OpenCL devices and the network controller). The same

event-based technique utilized to manage multiple OpenCL devices

in a single node is also exploited on the large scale across cluster

nodes.

As already explained in the previous section, libWater puts a strong

emphasis on events. Following the semantics of OpenCL, dependency

information enforced by programmers are used to select wtr_commands,

which can be safely enqueued into one of the cluster nodes. libWa-
ter provides an event object, i.e. wtr_event. Internally, wtr_events are

mapped either to an OpenCL event object, or to a wtr_command identi-

fier which is automatically generated for each wtr_command enqueued

into the system. These dependencies allow the runtime system to or-

ganize enqueued wtr_commands into a DAG.

A complete multi-device libWater-based host program is shown in

Listing 5.1. This code initializes all the available NVIDIA GPU de-

vices. It then selects two devices belonging respectively to node rank

0 and 1, with a global memory larger than 1024MB. For each device

the code in Listing 5.1 does the following: create a kernel (i.e. kern,
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in line 10) and a read/write buffer (i.e. buff, line 11). Then the con-

tents from the host memory is written into the device buffer by the

wtr_write_buffer command (line 12) and the wtr_run_kernel com-

mand is issued providing buff as an input argument (lines 14-16).

The computed result is then retrieved by the wtr_read_buffer com-

mand (line 17) which moves data from the device memory back to

the host memory. From the runtime system point of view, the exe-

cution of the previous code generates a set of dependent commands

structured as the DAG depicted in Figure 5.2. The DAG G(V ,E) is

composed of vertices, i.e. wtr_commands 2 V , interconnected through

directed edges (a,b) 2 E |a,b 2 V , or events, which guarantee that

the correct order of execution, and therefore the semantics of the in-

put program, is maintained. The set of dependencies associated with

a command c 2 V is defined as c.deps = {v 2 V | (v, c) 2 E}. It is

worth mentioning that not all libWater library routines generate a cor-

responding wtr_command. For example, creation, merging and release

of events are only meaningful in the root node, therefore there is no

need for serializing them. In Figure 5.2, each wtr_command carries a de-

scriptor in the form x|y where x represents the node rank, c.node_id,

on which the targeted device, c.dev_id, is hosted and y is the unique

command identifier assigned by the runtime system. As already men-

tioned, for buffer operations on remote devices (i.e. device on node

1) explicit data transfers are automatically inserted by the libWater li-

brary (e.g. wtr_commands 10 and 14).

Events determine when a wtr_command can be scheduled for exe-

cution. The scheduler uses a just-in-time strategy to select the next

wtr_command from the local command queue. The logic works as fol-

lows: enqueued wtr_commands are analyzed in a FIFO fashion and, for

each ready command, the scheduler checks whether dependencies –

explicitly specified by event objects – are satisfied. If a command has

no dependencies, it can be executed. Since the host program gener-

ates all the commands solely on the root node, scheduling is done at

this node. However, a centralized scheduler on a single node is not

an effective strategy since it limits command throughput and thus the

overall scalability of the system.

In order to solve this problem, we rely on the fact that the OpenCL

runtime system already has the capability of scheduling commands

and handling dependencies by using events. It is worth noting that
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Figure 5.2: DAG of wtr_commands generated during the execution of the
code snippet in Listing 5.1

in OpenCL this mechanism is limited since events cannot be used

to perform command synchronization across different platforms. lib-
Water unifies event handling through WTRScheduler instances which

manage inter-platform synchronization and offload intra-platform syn-

chronization to the OpenCL driver.

We implemented a three-level hierarchical scheduling approach as de-

scribed in Algorithm 5.1. At the top level, the root node of the lib-
Water runtime system pro-actively schedules wtr_commands from the

global queue to the targeted cluster nodes. cmd, fetched from the

command queue, is sent to the target node (i.e. cmd.node_id) only

if each of its dependent commands (i.e. the set cmd.deps) are to

be executed on the same remote node (lines 6–9). The second level

scheduling is local to each node (lines 11–14). The scheduler checks

whether cmd only depends on wtr_commands addressing the same

OpenCL device. In such case, the command is enqueued into the

corresponding device queue (i.e. dev.dev_id) and dependencies are

mapped to local OpenCL events. Alternatively, if a wtr_command C
1

depends on a second wtr_command C
2

, scheduled in another platform
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Algorithm 5.1 The WTR_Scheduler’s algorithm
1: cmd_queue . Local FIFO wtr_command queue
2: my_rank . MPI process rank
3: while true do
4: cmd cmd_queue.pop();
5: if cmd.node_id 6= my_rank then
6: if 8d 2 cmd.deps |d.node_id = cmd.node_id then
7: send(cmd, cmd.node_id,SCHED) . Delegates cmd to node
8: continue
9: end if

10: else
11: if 8d 2 cmd.deps |d.dev_id = cmd.dev_id then
12: issue(cmd.cl_cmd, cmd.deps) . Delegates to corresp. dev.
13: continue
14: end if
15: end if
16: cmd_queue.push(cmd) . Failed to schedule event due to deps.
17: end while

Algorithm 5.2 Update wtr_command dependencies
1: function callback_cmd_completion(c)
2: for cmd in cmd_queue do
3: cmd.deps.remove(c) . Removes c from the dependencies
4: end for
5: if my_rank 6= 0 then
6: send(c, 0,DONE) . Notifies the root node of c completion
7: end if
8: end function

(of the same node), the local WTRScheduler ensures that C
1

is not en-

queued into the OpenCL device queue before C
2

is completed. The

third-level scheduling is implemented by the OpenCL runtime sys-

tem itself which is responsible of managing single device queues. If

cmd cannot be scheduled, due to unsatisfied dependencies, then it is

pushed back in the command queue.

Dependencies are automatically updated when a wtr_command c

completes. Locally, a command completion event is generated. The as-

sociated callback function is depicted in Algorithm 5.2. The function

removes, for every command in the local queue, any dependence on c.

Additionally, nodes notify the root scheduler with a message (lines 5–

7) triggering a similar completion event internally at node 0. In such

a way, commands in the global queue waiting for the completion of

c can be scheduled – depending on the targeted device – either to a

local device or to a remote node.
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This multi-level scheduling allows the runtime system to hide the

costs of the scheduling, as well as data transfers, with the actual work

being done by the devices in the background. The main idea is to use

non-blocking semantics when OpenCL commands are scheduled in

the corresponding devices. In this way, the WTRScheduler can contin-

uously dispatch commands to other devices or move data from and

to the root node. In the example in Figure 5.2, commands 0|1 and 0|2

can be executed in parallel. Events at addresses e+ 0 and e+ 1 are

handled by the root WTRScheduler since the OpenCL standard does

not allow non-blocking semantics for these operations. The remaining

commands (i.e. 0|3, 0|4 and 0|5) are inserted asynchronously into

the OpenCL device queue of node 0, upon completion of commands

0|1 and 0|2. Events e+2 and e+3 are therefore handled directly by the

OpenCL runtime system. Following the same logic, wtr_commands ad-

dressing the second OpenCL device (i.e. 1|⇤) are sent to the node

with rank 1. The blocking function wtr_wait_for_events stops the

execution of the host until the release operations on both nodes have

completed.

5.4.1 Runtime System Optimizations

The underlying architecture of the libWater runtime system and the

emphasis on events, promoted by its interface, enables several run-

time optimizations which are transparent to the user. This capability

is a direct consequence of adhering to the OpenCL queuing seman-

tics. Indeed, while commands are being enqueued into the system, a

command DAG (as shown in Figure 5.2) is internally created. Since

OpenCL issues commands to the appropriate device only when an

explicit flush is invoked by the programmer, the runtime system can

analyze large portions of the application DAG and optimize it for

improving scalability.

An optimization which has been implemented in the libWater run-

time system is the dynamic detection and replacement of collective

communication patterns (DCR). Whenever the addressed device

is not hosted in the root node, a call to wtr_write_buffer and

wtr_read_buffer respectively generates an MPI send and receive op-

eration. When an OpenCL application is distributed among all avail-
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Figure 5.3: DCR libWater runtime DAG optimization

able devices, input buffers are usually either split or replicated be-

tween compute nodes. This parallelization strategy is common and it

results in a DAG containing several send/receive transfer operations

for every device of the cluster. An example is depicted in Figure 5.3

which represents a realistic DAG resulting from the splitting of an

input and output buffer among a set of OpenCL devices.

Point-to-point data transfers performed by the libWater runtime sys-

tem imply an increased latency when compared with the native MPI

send or receive routines. The reason for that is the polling mech-

anism implemented by the libWater runtime system – mainly em-

ployed to save node resources – which replaces the spin-lock mech-

anism commonly used by MPI libraries. Additionally, the number

of required data transfers is directly proportional to the cluster nodes

(and thus devices). This results in a large number of commands being

dispatched by the runtime system and consecutively negatively im-

pacts the overall scalability. MPI offers a large set of communication

patterns called collective operations [83]. These routines are highly effi-

cient since nearly all modern supercomputers and high-performance

networks provide specialized hardware support for collective oper-

ations [67]. Additionally, the implementation of such collective op-
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erations employs dynamic runtime tuning techniques which choose,

among a set of semantically equivalent algorithms, which best fit the

underlying network topology and architecture [21, 95, 106].

Related work analyzed the problem of automatic detection of col-

lective patterns from a set of point-to-point communications. This

technique is common in MPI performance tools which are capable of

detecting such patterns via post-mortem analysis of program traces.

The general problem of collective communication pattern detection is

NP-hard, however, under particular restrictions, the problem can be

solved in polynomial time. A more recent work [46] proposed a fast

solution, with a complexity of O(n logn), which makes the approach

more suitable for runtime systems.

The goal of our DCR optimization algorithm is to analyze the com-

mand DAG isolating point-to-point data transfers and detect whether

a subset of those resembles one of the collective patterns supported

by MPI. This is possible since – if the application is carefully written

using events for command synchronization – the command DAG will

be available to the runtime system scheduler before the first blocking

command is invoked (e.g. wtr_wait_for_event(s)). Since data trans-

fers in our environment have all the same root (the node 0), the anal-

ysis for patterns is simplified.

The optimization algorithm is composed of two phases. First, the

command DAG is traversed and all the transfer commands are col-

lected into n separate lists, one per device. Second, on the extracted

n lists, pattern analysis is performed. The collective pattern check is

done by considering elements having the same position within the

transfer job lists. Furthermore, the check is simplified by the fact that

every send and receive wtr_command carries information of the buffer

location (buf ) and the amount of bytes being transferred (size). The

pattern analysis starts by taking the first transfer wtr_command from

the n lists and by checking against a supported pattern, i.e. broadcast,
scatter or gather. For instance, in a broadcast n send operations are

expected where 8 i | 0 6 i < n- 1, buf
i

= buf
i+1

_ size
i

= size
i+1

. If

the check fails, the transfer jobs are tested against a scatter or gather

pattern 8 i | 0 6 i < n- 1, buf
i

+ size
i

= buf
i+1

.

Once a pattern is recognized, single point-to-point transfers are re-

moved from the command DAG and replaced by the corresponding

collective communication operation. A visual example of this opti-
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Figure 5.4: DHDCR libWater runtime DAG optimization

mization is depicted in Figure 5.3, where multiple send operations

are collapsed into a single scatter operation and correspondingly, re-

ceives are rewritten as a gather operation. By doing so, dependencies

between successive commands are updated in order to keep the se-

mantics of the input program unchanged.

Since collective operations must involve all the processes in a com-

municator, the current implementation of the DCR optimization works

when all the initialized devices participate in the computation. There-

fore, the analysis is limited to regular applications which must involve

all OpenCL devices in data transfers. This is important to keep the

pattern recognition algorithm simple and fast since this optimization

is applied during runtime.

Another optimization which has been implemented as part of the

libWater runtime systems is the detection and optimization of device-
host-device copy patterns. As the libWater API closely matches the

OpenCL host-device model, it does not include any device-device

communication. This limitation is based on the OpenCL model which

does not include functions operating on different platforms. However,
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on distributed computing environments, this limitation imposes the

use of centralized host-device instead of more efficient device-device

distributed communication.

An example of this problem arises when a buffer which has been

distributed over n devices to be used as the output in a first kernel,

is later used as input of one or multiple devices of a second kernel.

For instance, let’s consider the matrix chain multiplication ABCD. As

matrix multiplication is associative, we can compute first AB, then

CD, and finally the product (AB)(CD). While the first two multipli-

cations work normally, the latter requires device-host-device commu-

nications that drastically affects scalability.

To address this issue, we implemented a new optimization which

attempts to replace similar device-host-device communications with

direct device-device data transfers. This optimization, called device-

host-device copy removal (DHDCR) is implemented as follows.

Whenever an application contains call to wtr_write_buffer and

wtr_read_buffer involving devices not belonging to the root node,

libWater generates MPI send and receive operations. If a sequence of

write, read, write occurs on the same buffer (or on part of the same

buffer) then this sequence is a candidate for optimization. Once the

pattern is recognized, the two consecutive device-to-host and host-to-

device transfers are removed from the command DAG and replaced

by a single device-to-device transfer. A visual example of this opti-

mization is depicted in Figure 5.4. The TransJob, generated by the

DHDCR optimization, is a wtr_command which the root scheduler dis-

patches on both nodes involved in the data transfer (node 1 and 2 in

the example), the other nodes are not involved. However, in order to

maintain the host semantics of the program unchanged, the updated

value of the buffer (generated by node 1) must also be copied back on

the host node. Therefore a RecvJob command is generated to collect

the buffer. The main difference with the original code is that this oper-

ation can be completely overlapped with the execution of the second

kernel on the node rank 2.

Note that simple applications such as the ones listed in Table 5.2,

only show a simple pattern (write, run kernel, read) and do not show

any possibility to apply DHDCR. However, more complex applications

are usually consisting of several kernels, with nontrivial inter-node
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Application OpenCL
LOC

libWater

LOC Input size
In/Out
buffers

(splittable)

Short
Description

PerlinNoise 412 301 20K x 20K 0(0) / 1(1)
Gradient

Noise
Generator

Nbody 450 324 600K bodies 2(0) / 2(2) N-body
Simulation

kNN 234 101 ref : 8M, query:
80K 2(1) / 2(2) k-Nearest

Neighbor

Floyd 222 113
Vertices 8K,
Adjacency
matrix 64K

1(0) / 1(1) Floyd-Warshall

MatrixMul 219 104 7K x 7K
(A = B = C) 2(1) / 1(1) Matrix

Multiplication

LinReg 298 149 1000K 4(2) / 1(1) Linear
Regression

Table 5.2: Application codes used for libWater evaluation

data transfers, and are more suitable for this optimization (e.g. matrix

chain multiplication).

5.5 evaluation

We used libWater to encode 6 computational kernels, some of them

taken from various OpenCL benchmarking suites (i.e. AMD and IBM),

and studied their scalability. In four of them, the kernels were opti-

mized for local memory, i.e. PerlinNoise (from IBM), Nbody (from

AMD), Floyd and kNN manually written by us. For the remaining two

codes, MatrixMul and LinReg we used a naive implementation un-

optimized for what concern local memory. Table 5.2 shows, for each

kernel, the number of input and output buffers used by the kernel.

We define a buffer as splittable when its content can be distributed

among the devices. The nature of a buffer is strictly related to the

algorithm being implemented within the OpenCL kernel, and thus

the application. Non-splittable buffers are always replicated on every

device. All six applications utilized for our study do not contain un-

splittable output buffers. In the presence of such buffers, the merge of

the result coming from different devices would generate memory con-

sistency issues that libWater is currently not able to handle. Table 5.2

also shows the reduction, in terms of lines of code, achieved when

the application is written using our library. It is worth mentioning

94



Site Vienna Scientific Cluster BSC

Cluster VSC2 MinoTauro GPU Cluster

Max # of Nodes 1314 128

CPUs 2 x AMD Opteron 6132 HE 2 x Intel Xeon E5649

Cores per Node 2 x 8 2 x 6

Clock Frequency 2.2 GHz 2.5 GHz

Memory per Node 32 GB DDR3 24 GB DDR3

GPUs – 2 x NVIDIA M2090

Interconnection Infiniband 4x QDR Infiniband 4x QDR

Open MPI Version 1.6.1 1.6.1

OpenCL Version AMD APP 2.6 CUDA 4.1

Site University of Innsbruck

Cluster Ortler

Nodes mc5 mc6 mc7

CPUs 2 x Intel Xeon E5-2690v2

Cores per node 2 x 10

Clock Frequency 3.0 GHz

Memory per Node 128 GB DDR3

GPUs or ACLs 2 x AMD FirePro
S9000

2 x NVIDIA
Tesla K20m

2 x Intel Xeon
Phi 7120P

Interconnection Infiniband 4x QDR

Open MPI Version 1.6.5

OpenCL Version AMD APP 2.9 CUDA 5.5 XE 2013 R3

Table 5.3: The experimental target architectures

that while the original OpenCL applications were single device codes,

the libWater based implementation is instead multi-device code. On

average, we were able to reduce the lines of the host code by approx-

imately a factor of 2 due to the higher level abstractions provided by

libWater.

For the scalability analysis, we used two large-scale production

clusters, the Vienna Scientific Cluster VSC2 [119] and the MinoTauro

Barcelona Supercomputing Center GPU Cluster [117]. A second study

was conducted to test the suitability of libWater to exploit the compu-

tational capabilities of a mixed-node cluster configuration. For this

purpose, we used the Ortler Cluster at the University of Innsbruck,

composed of three heterogeneous compute nodes (i.e. mc5, mc6 and

mc7). The hardware details of the clusters are depicted in Table 5.3.
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5.5.1 VSC2 CPU Cluster

The applications shown in Table 5.2 were executed on the VSC2 CPU

cluster. We were able to access up to 64 nodes with a total of 1024

CPU cores. Since the 2 AMD CPUs which are hosted per node are

considered by the OpenCL driver as a single device, the speedup was

computed based on the number of compute nodes (and thus OpenCL

devices) instead of single CPU cores. The workload partitioning is

implemented, for each test case, by assigning to each OpenCL device

an equal amount of work.

The scalability tests were performed in the following way: the orig-

inal OpenCL versions of the applications were executed on a single

node and their execution times used as a reference measurement. lib-
Water was then used for node numbers ranging from 2 to 64. The

main differences between the original version of the application codes

and the one written using libWater are mainly in the host code. The

kernel code was slightly modified only to forward the offset value

used by the workload partitioning (as shown in Listing 5.1). We com-

puted the ideal scaling for each application using the reference exe-

cution time and dividing it by the number of nodes. We conducted

experiments with libWater by using two different settings: the first,

named baseline, uses the runtime system without dynamic optimiza-

tions enabled; the second, DCR, uses the collective pattern replacement

mechanism as described in Section 5.4.1. The results of our experi-

ments are depicted in Figure 5.5 and Figure 5.6.

For each of the six applications, we show the execution time (in sec-

onds) for up to 64 nodes and the corresponding speedup with respect

to a single node. Overall, we observe that our approach scales almost

linearly, especially for those codes using few input/output buffers.

PerlinNoise, Figure 5.5a, is an example of those since it has no de-

pendencies on input buffers and the data produced by the kernel is

distributed between the devices. For such code, the baseline configu-

ration of our runtime system achieves a speedup of 53 for 64 nodes,

and thus an efficiency of 83%. When the number and size of the in-

put/output buffers increases, the efficiency of our system decreases.

The worst case is represented by the LinReg application, Figure 5.6c,

which stops scaling after 32 nodes. This kernel has 4 input buffers, 2
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Figure 5.5: Strong scaling of libWater on the VSC2 (1 of 2)

of them are not splittable (because of dependencies within the kernel

code) and therefore must be replicated on every node. The remain-

ing 2 input and output buffers are instead splittable. For such code,
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Figure 5.6: Strong scaling of libWater on the VSC2 (2 of 2)

we have an immediate decrease (75% on two nodes) of the efficiency.

This is because the kernel execution is delayed due to the fact that sev-

eral wtr_commands are executed (and transferred to the target nodes)
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to create and initialize the input/output buffers. However, this delay

is a constant and system efficiency remains almost unvaried up to

16 nodes. On 32 and 64 nodes the efficiency of the baseline runtime

system starts decreasing significantly.

This problem is largely addressed by the dynamic collective pat-

tern replacement, i.e. DCR, optimization which was introduced in Sec-

tion 5.4.1. This optimization reduces the load on the scheduler since

it replaces several single transfer jobs with one collective operation.

In LinReg this optimization improves the scalability of the system by

a factor of 2 achieving an efficiency of 55%. A small effect of this opti-

mization can be observed for smaller node configurations because col-

lective operations are optimized for a large number of nodes. An inter-

esting result is the effect of the DCR optimization on the PerlinNoise

test case. In such a case, the DCR optimization fails to improve perfor-

mance over the baseline. The reason is that collective operations are

blocking while point-to-point communications in the runtime system

are non-blocking thereby allowing overlapping of multiple transfers.

The synchronization costs introduced by the gather operation is there-

fore not properly compensated by the amount of exchanged data. We

believe that this problem can be eliminated by using non-blocking col-
lective routines which have been introduced in the latest MPI stan-

dard [83]. Additionally, since this optimization is done dynamically,

and therefore the amount of data being transferred is known by the

scheduler, heuristics can be integrated to decide when such optimiza-

tion should be applied.

On average, libWater achieves an efficiency of 80% on 32 nodes and

64% when 64 nodes are used. Without the DCR optimization, the sys-

tem has an efficiency of 47% on 64 nodes. This means that the DCR

optimization improves the system efficiency by 17% on 64 nodes and

we expect this value to increase proportionally with the number of

nodes.

To show the effectiveness of the device-host-device copy removal

optimization (DHDCR) we conducted another experiment on the VSC2

Cluster. Using libWater library, we manually coded a multi-device ver-

sion of the matrix chain multiplication ABCD. We ran the experiment

using two different settings: the first (baseline), uses the runtime

system without the optimization while the second (DHDCROpt), uses

the device-host-device copy removal mechanism as described in Sec-
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Figure 5.7: Strong scaling of matrix chain multiplication on the VSC2 Clus-
ter

tion 5.4.1. Notice that in both cases the DCR optimization is also per-

formed. When both runtime optimizations are enabled, the optimizer

first tries to rewrite indirect data transfers to direct ones (using the

TransJob command). Then, in a second pass, DCR is applied. In or-

der to optimize the execution even further, the DCR analysis has been

updated to also take into account TransJob commands during the

collective pattern analysis phase.

The results of our experiments are depicted in Figure 5.7. For this

application, we show the execution time (in seconds) for up to 16

nodes and the corresponding speedup with respect to a single node.

The baseline approach scales almost linearly up to 8 nodes with an ef-

ficiency of 87%. For 16 nodes the runtime system efficiency decreases

significantly reaching 48%. The main reason is the high communi-

cation overhead caused by the unnecessary copies of intermediate

buffers to the root node. Before proceeding with the (AB)(CD) op-

eration, the results of AB and CD have to be gathered by the root

scheduler and then distributed again on the remaining nodes. While

the buffer containing AB can be directly reused, the result of CD can

be copied to remaining nodes using a more efficient collective pattern.

The benefit of this optimization starts to show with a large number

of nodes because of the increased pressure on the root scheduler. For

smaller node counts, the data movement of AB is completely over-

lapped with computation, so that by the time AB is distributed to

the nodes also CD is available and the final computation can start

without any delay. For larger nodes, the execution of the last kernel
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is delayed since there is not enough computation (kernel execution

becomes shorted since more devices are used) to overlap the commu-

nication overhead. This causes a sensible decrease in the efficiency.

By avoiding this communication, the DHDCR optimization improves

the speedup from 7.6 to 10 achieving an efficiency improvement of

15%.

5.5.2 MinoTauro GPU Cluster

Another scalability study was conducted executing the N-body sim-

ulation described in Table 5.2, line 2, in a GPU cluster. We were able

to access up to 32 nodes of the MinoTauro cluster with a total of

64 GPU devices. In all the experiments, the workload was equally

partitioned between the available devices. The optimization of the N-

body simulation on the GPU processor is an active research problem

[123, 16, 43, 56]. The problem is well known to be suitable for the

GPU architecture and in case of a high number of particles for cluster

of GPUs.

We ran the NBody test case using 3 different input sizes that show

the benefit of using a high number of GPUs in case of large number

of bodies. The results of our experiments are depicted in Figure 5.8.

The 3 tests were conducted respectively with an input size of 2, 5 and

10 Million bodies. With the smallest input size, the application scales

almost linearly up to 16 GPUs and stops scaling after 32 GPUs. In-

creasing the input size by a factor of 2 increases the execution time

by a factor of 4, due to the quadratic complexity of the implemented

algorithm. With an input size of 5 and 10 million bodies the applica-

tion becomes more suitable for a GPU cluster and with the biggest

tested input size achieves a speedup of around 49 on 64 GPUs with

an efficiency of 77%. It is worth mentioning that in such environment

is important from a user perspective to find a trade-off between the

number devices and the desired efficiency.

5.5.3 Ortler Mixed-node Cluster

Since OpenCL allows access to heterogeneous devices we conducted

a second experiment which demonstrates libWater on a mixed-node
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Figure 5.8: Strong scaling of NBody on the MinoTauro BSC GPU Cluster

cluster as described in Table 5.3. In order to run applications on such

environment, the input code was rewritten so that the workload dis-

tribution was controllable via command line arguments. It is worth
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Device Workload Partition Configurations

Nb
od
y

C1 C2 C3 C4 C5 C6 C7 C8

mc5-GPU1 100% 50% - - - - 23% 22.5%

mc5-GPU2 - 50% - - - - 23% 22.5%

mc6-GPU1 - - 100% 50% - - 27% 26.5%

mc6-GPU2 - - - 50% - - 27% 26.5%

mc7-ACL1 - - - - 100% 50% - 1%

mc7-ACL2 - - - - - 50% - 1%

Ex. time
(sec.)

42.2 21.2 35.9 18.2 659.6 335.8 9.9 9.7

Li
nR
eg

mc5-GPU1 100% 50% - - - - 15% 11%

mc5-GPU2 - 50% - - - - 15% 11%

mc6-GPU1 - - 100% 50% - - - 14%

mc6-GPU2 - - - 50% - - - 14%

mc7-ACL1 - - - - 100% 50% 35% 25%

mc7-ACL2 - - - - - 50% 35% 25%

Ex. time
(sec.)

15.5 7.8 11.8 6.0 6.9 3.9 3.2 2.8

Table 5.4: Performance of Nbody and LinReg on the Ortler cluster

mentioning that workload partitioning for heterogeneous compute

nodes is still an active research problem [37, 66, 58, 42]. However,

this aspect is completely orthogonal to our library and for the sake

of this experiment, we derive workload partitionings in an empiri-

cal way. We ran the NBody and the LinReg test cases using different

combinations of devices. For each device configuration, several differ-

ent workload splittings were tested and the fastest one was chosen.

The partitionings and their corresponding execution times are shown

in Table 5.4. For example, in NBody, configuration C1 assigns all the

workload to the first GPU of node mc5. The execution time for this con-

figuration is 42.2 seconds. By equally splitting the workload between

the two GPUs on the same node, i.e. C2, we double the performance.

Between the devices, the NVIDIA Tesla k20m is the fastest device re-

quiring 35.9 seconds to complete the work. However, libWater can be

used to improve the execution time even further. The overall execu-

tion time can be reduced by 70% by using the workload partition as

described by configuration C8 which assigns 22.5% to each GPU in

mc5, 26.5% to each GPU in mc6 and the remaining 1% to each acceler-

ator in mc7. For LinReg results are different since the execution times
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for the different devices are more balanced. The best performance can

be achieved in this case splitting the workload between the nodes by

assigning 11% to each GPU in mc5, 14% to each GPU in mc6 and 25%

to each accelerator in mc7.

5.6 summary

In this chapter, we introduced libWater, a library for simplifying the

programming of heterogeneous distributed systems.

The proposed interface demonstrates that raising the abstraction

level of the OpenCL programming model is possible without losing

control over performance. We showed with an example how a multi-

device distributed host program can be written using approximately

25 lines of code. By defining a simple, but powerful, device query

language (DQL), libWater simplifies the management and discovery

of a large number of OpenCL devices. The simple API makes the

library a perfect target for automatic code generation tools, thus it

can be easily integrated in compilers.

libWater’s interface is tightly bound to a lightweight distributed run-

time system which is designed from scratch for high scalability and

low resource usage. Because of the non-blocking semantics promoted

by the library interface, commands can be organized by the runtime

system into a DAG to be used for dynamic analysis and optimiza-

tions. We studied the performance of the library on three clusters,

demonstrating the high efficiency that the system can achieve.
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6
C O N C L U S I O N A N D F U T U R E W O R K

Programming parallel architectures is a difficult task since it often

requires a combination of hardware and software expertise. High-

level models and frameworks can be employed to simplify the pro-

grammability and portability of parallel code, however, often they

provide limited performance due to the level of abstraction that is too

far away from the underlying hardware. Differently, industry stan-

dards, such as OpenCL, provide a certain degree of portability be-

tween heterogeneous architectures without sacrificing performance,

that can be achieved through hardware-specific optimization tech-

niques. In Chapter 3 we showed the importance of such techniques

identifying and evaluating OpenCL software optimizations for the

ARM Mali GPU Compute Architecture. Our results showed that the

Mali-T604 GPU provides distinct improvements in terms of perfor-

mance and energy-to-solution over ARM Cortex-A15, achieving in

average a speedup of 8.7⇥ while consuming only 32% of the energy.

Our study confirmed that, with highly optimized code, embedded

GPUs can offer performance and energy advantages over embedded

CPUs, similar to their high-end counterparts present in clusters.

Although expert programmers can manually optimize OpenCL

code for a particular architecture, other challenges arise in case of

heterogeneous nodes composed of multiple devices. In such systems,

it is really demanding to write OpenCL code to take advantage of all

the heterogeneous resources. In order to tackle this problem, in Chap-

ter 4, we introduced a compiler approach that automatically gener-

ates, from a single-device OpenCL program, a multi-device OpenCL

program. Through the use of a novel runtime system, the generated

program is not only capable of running on multiple devices but also

to predict an effective distribution strategy using a machine learn-

ing based prediction model. On average, our novel approach reached

up to 87.5% of the optimal performance across 23 programs outper-

forming the default strategies of using only the CPU or only the

GPU, which achieved 65.5% and 62.5%, respectively. These results
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confirmed that the combination of state-of-the-art compilers and run-

times can automatize complex tasks with substantial impact on per-

formance and productivity. In the same chapter, we also proposed

two low-complexity heuristics addressing the problem of scheduling

independent tasks in heterogeneous compute nodes. SimpleHS is able

to balance the workload between different devices predicting the ap-

proximate execution time of a new task with a quadratic regression

model. Our results validated the success of the proposed heuristics

which, using only information available at scheduling time, show per-

formance comparable to more sophisticated methods which require

an accurate estimation of the task execution times.

Finally, in Chapter 5 we introduced an extension of OpenCL to

simplify the development of heterogeneous distributed applications.

libWater combines the MPI and OpenCL programming models to

realize a simple, but yet powerful framework which hides the dis-

tributed nature of the underlying system to the developer. It consists

of a lightweight interface and a powerful distributed runtime system

which automatically recognizes inefficient communication patterns

and transparently optimizes them at runtime. We assess libWater’s

performance for multiple large clusters demonstrating improved per-

formance and scaling with different test applications and configura-

tions.

6.1 contributions

The following peer-reviewed papers and journals contributed to the

respective chapters of the thesis.

Chapter 3

ipdps14 : Ivan Grasso, Petar Radojković, Nikola Rajović, Isaac Gelado,
Alex Ramirez, “Energy Efficient HPC on Embedded SoCs: Opti-

mization Techniques for Mali GPU”, 28th IEEE International Par-
allel and Distributed Processing Symposium, May 19-23, Phoenix,

Arizona, USA
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Chapter 4

ppopp13 : Ivan Grasso, Klaus Kofler, Biagio Cosenza, Thomas Fahringer,

“Automatic Problem Size Sensitive Task Partitioning on Het-

erogeneous Parallel Systems”, 18th ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming (poster paper),

February 23-27, Shenzhen, China

ics13 : Klaus Kofler, Ivan Grasso, Biagio Cosenza, Thomas Fahringer, “An

Automatic Input-Sensitive Approach for Heterogeneous Task

Partitioning”, 27th ACM SIGARCH International Conference on
Supercomputing, June 10-14, Eugene, Oregon, USA

iccs15 : Ivan Grasso, Marcel Ritter, Biagio Cosenza, Werner Benger, Gün-
ter Hofstetter, Thomas Fahringer, “Point Distribution Tensor Com-

putation on Heterogeneous Systems”, International Conference on
Computational Science 2015, June 1-3, Reykjavík, Iceland

Chapter 5

ics13 : Ivan Grasso, Simone Pellegrini, Biagio Cosenza, Thomas Fahringer,

“libWater: Heterogeneous Distributed Computing Made Easy”,

27th ACM SIGARCH International Conference on Supercomputing,

June 10-14, Eugene, Oregon, USA

jpdc14 : Ivan Grasso, Simone Pellegrini, Biagio Cosenza, Thomas Fahringer,

“A uniform approach for programming distributed heteroge-

neous computing systems”, Journal of Parallel and Distributed
Computing - Volume 74, Issue 12

6.2 future work

HPC systems have become increasingly complex and difficult to pro-

gram with the emergence of highly parallel heterogeneous architec-

tures. The Khronos Group is continuously working on the evolution

of the OpenCL standard trying to solve some of the programming

difficulties faced by developers. Recently, the OpenCL C++ kernel

language and the SPIR-V binary intermediate representation were in-

troduced. The first allows the programming of OpenCL kernels with
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a static subset of the C++14 standard, while the latter allows to easily

map novel high-level languages to heterogeneous hardware.

Although these additions will simplify the programming of het-

erogeneous devices, they will not solve the resource utilization chal-

lenge present in heterogeneous compute nodes and clusters. To over-

come this problem, the research community is investigating runtime

systems able to exploit semantic information provided by state-of-

art compilers. Such systems will utilize machine-learning and auto-

tuning techniques to automatically explore the space of possible im-

plementations and code optimizations improving the performance of

parallel applications.

In conclusion, this thesis investigated multiple different aspects of

heterogeneous computing such as performance tuning techniques,

novel programming interfaces, and advanced compiler/runtime sys-

tems. We believe and hope that the combination of the previously de-

scribed approaches in conjunction with the advancements in the field

of artificial intelligence will lead us into a new era in which program-

ming of heterogeneous clusters will be extremely simplified, allowing

domain scientists to finally focus on their main target: science.
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