
Analysis, Modeling and Optimization

of Execution Time and Energy

for Parallel Programs

PhD thesis in Computer Science

by

Philipp Gschwandtner

submitted to the Faculty of Mathematics, Computer

Science and Physics of the University of Innsbruck

in partial fulfillment of the requirements

for the degree of doctor of philosophy

advisor : Prof. Dr. Thomas Fahringer, Institute of Computer Science

Innsbruck, February 20, 2017

Certificate of Authorship and Originality

I certify that the work in this thesis has not previously been submitted

for a degree nor has it been submitted as part of requirements for a degree

except as fully acknowledged within the text.

I also certify that the thesis has been written by me. Any help that

I have received in my research work and the preparation of the thesis

itself has been acknowledged. In addition, I certify that all information

sources and literature used are indicated in the thesis.

Philipp Gschwandtner, Innsbruck, February 20, 2017

iii

Abstract

Traditionally, high performance computing (HPC) considered execution

time as the most important objective for optimizing parallel programs.

However, the power wall and also the subsequent rise of multi- and many-

core designs forced the scientific community and industry to shift their

focus towards additional concerns, such as energy consumption, power

consumption or thermal budgets. Nowadays, these concerns often pose

the limiting factor when designing faster hardware or optimizing software.

Contrary to much related work in this field, targeting hardware de-

sign, scheduling, or resource management, the research presented in this

thesis investigates several non-functional parameters (including execu-

tion time and energy consumption) from a compiler perspective. Em-

ploying the unique capabilities of a compiler, it tackles three research use

cases. First, we examine the conflicting nature of three non-functional

parameters in the context of multi-objective auto-tuning. Second, we

investigate the concept of code significance and how it can be leveraged

to drive program execution on unreliable hardware in order to reduce

energy consumption. Third, we discuss the benefits of compiler-assisted

predictive models with regard to overhead reduction.

To investigate these open research problems, a hardware and soft-

ware model suitable for compilers is established in this doctoral thesis,

enriched with key properties with respect to the aforementioned tasks.

Implemented and integrated into the Insieme compiler and runtime sys-

tem framework, it supports the automatic identification of target code

regions, enables the specification of key properties, extensible by addi-

tional concepts such as user-defined metrics.

v

Acknowledgements

Foremost, I would like to express my sincere gratitude to my advisor Prof.

Dr. Thomas Fahringer for his continuous support of my Ph.D study and

research, for his patience, motivation, knowledge and experience. His

guidance helped me in all the time of research and writing of this thesis.

Additionally, I would also like to thank my second supervisor Prof. Dr.

Sabine Schindler for her support and the opportunity to participate in the

Doctoral School Computational Interdisciplinary Modelling, the external

reviewers for their valued perspective on my work, and the rest of the

thesis committee.

I also thank Dr. Juan Durillo for his highly valued assistance in major

parts of my research, and Dr. Radu Prodan for his insightful comments

and experience. Additionally, I would like to express my gratitude to

both Dr. Dimitrios Nikolopoulos and Dr. Bernd Mohr for their highly

esteemed guidance, support, and access to research facilities abroad —

they helped me broaden my horizon in science, work, and also culture.

My sincere thanks also go to all my fellow students and colleagues,

most notably Ferdinando Alessi, Luis Ayuso, Alex Hirsch, Bernhard

Höckner, Matthias Janetschek, Herbert Jordan PhD, Klaus Kofler, Ste-

fan Moosbrugger, and Peter Zangerl. They all contributed to our com-

mon projects and goals, and we shared a great many productive and

entertaining discussions about work-related topics and also virtually ev-

erything else that came to mind during our time in the office. I particu-

larly thank Dr. Peter Thoman for our fruitful and fun discussions in the

office, my car, and on the trail, and for his and Herbert’s demands for

high-quality work.

Finally, I would like to thank both my parents, my sister, and Lisa

for supporting me in all my endeavors. They encouraged me to pursue

my dreams throughout all these years, and continue to do so.

vii

Contents

Certificate of Authorship iii

Abstract v

Acknowledgements vii

Table of Contents ix

1 Introduction 1

1.1 Motivation . 1

1.2 State of the Art . 2

1.2.1 Multi-objective Auto-Tuning 2

1.2.2 Significance-driven Optimization of Code Execution 3

1.2.3 Compiler-assisted Execution Time and Energy Modeling . . . 4

1.3 Organization . 5

2 Model 7

2.1 Hardware Model . 7

2.1.1 Physics Background . 7

2.1.2 Topology . 9

2.1.3 Non-functional Hardware Properties 12

2.2 Software Model . 20

2.2.1 Software Structure . 20

2.2.2 Non-functional Software Properties 22

2.3 Summary . 24

3 Insieme Measurement Framework 25

3.1 Compiler Component . 26

3.1.1 Overview . 26

3.1.2 Region Specification, Identification and Instrumentation . . . 27

ix

x CONTENTS

3.1.3 Measurement Framework . 28

3.2 Runtime Component . 30

3.2.1 Overview . 30

3.2.2 Measurement Framework . 30

3.2.3 Platform-specific Features . 34

3.2.4 Control features . 36

3.3 Additional Research . 36

3.4 Summary . 36

4 Multi-Objective Auto-Tuning 39

4.1 Introduction . 39

4.2 Related Work . 40

4.3 Insieme Compiler . 42

4.3.1 Auto-Tuning Infrastructure 42

4.3.2 Optimizers . 43

4.4 Experiment Design . 45

4.4.1 Objectives . 45

4.4.2 Benchmarks and Target Platform 46

4.4.3 Configuration of the Optimizers 47

4.4.4 Comparison Criteria . 48

4.5 Experimental Results . 50

4.5.1 RS-GDE3 Evaluation . 50

4.5.2 Energy-Time Trade-off as a Function of Resource Usage . . . 51

4.5.3 Impact of Turbo Boost . 56

4.5.4 Evaluation of RS-GDE3 for Dual-Objective Optimization . . 59

4.5.5 Tiling Effects . 59

4.6 Summary . 61

5 Significance-driven Optimization of Code Execution 63

5.1 Introduction . 63

5.2 Related Work . 65

5.3 Significance . 66

5.4 Methodology . 70

5.4.1 Fault Model . 70

5.4.2 Energy Savings Through Unreliability 71

5.4.3 Experiment Setup . 72

5.4.4 IEEE 754 Double-precision Floating-point Format 74

5.5 Results . 75

CONTENTS xi

5.5.1 Sequential Reliable Jacobi . 76

5.5.2 Parallel Reliable Jacobi . 78

5.5.3 Significance-dependent Reliability Switching 79

5.6 Summary . 82

6 Compiler-assisted Time and Energy Modeling 83

6.1 Introduction . 83

6.2 Related Work . 85

6.3 Model . 86

6.3.1 Method . 86

6.3.2 Automatic Region and Parameter Detection 87

6.3.3 Automatic Parameter Extraction 90

6.3.4 Execution Time Prediction 90

6.3.5 Energy Prediction . 97

6.4 Experimental Setup . 98

6.5 Results . 100

6.6 Summary . 104

7 Conclusion 105

7.1 Contributions . 105

7.2 Future Work . 108

Appendices 111

List of Symbols 113

List of Figures 115

List of Tables 119

List of Definitions 121

List of Examples 123

List of Algorithms 125

Bibliography 127

Chapter 1

Introduction

1.1 Motivation

Originally, research in the field of hardware design and software engineering mainly

targeted high computational performance, the reduction of execution time being the

chief concern of processor architects and software developers. However, increasing

clock frequencies imposed a limit regarding sequential speed improvement, as pro-

cessor designs of this era hit a power wall that made any further advances in this

direction technically infeasible. This marks an important occurrence of increased

non-functional interests in high performance computing, as additional concerns such

as power consumption, energy costs and heat dissipation started to pose limiting fac-

tors in new hardware designs. Researchers and engineers shifted to multi-core and

later many-core computing as the means to further increase performance partly due

to these constraints. While this paradigm change toward increased parallelism offers

large potential, providing high performance at reduced power, energy and heat ex-

penses, these non-functional concerns are still the main design limitation of today’s

architectures [48], and consequently also software design and optimization. Also,

they opened up new branches of research that tackle previously non-existent prob-

lems or exploit new potential. These non-functional concerns, specifically analysis

and optimization of energy in addition to execution time, represent the focus of the

research presented in this thesis.

The original first-class citizen among non-functional parameters is high perfor-

mance or short execution time, and it has been targeted by various branches of

computer science research since the beginning of high performance computing. The

increasing memory gap [139], which is the time delay for a memory access to be

completed, has led to memory hierarchies composed of caches. Optimizing their

1

2 CHAPTER 1. INTRODUCTION

usage gave rise to many fields of research, with examples in the area of source code

transformations such as loop tiling [23], optimizing data cache usage, or program

repositioning [85], which aims at reducing instruction cache misses. Similar endeav-

ors followed every other new development in hardware design.

However, in the past two decades, also power and energy have become increas-

ingly important entities, evident by a growing amount of literature dating back to the

1990s dealing with power modeling [22] and simulation [9], or energy modeling [108],

and also a plethora of optimization techniques addressing power and energy. Al-

though not as long-established as performance optimization, energy and especially

power represent the main constraint when designing new hardware. This entailed

technologies such as dynamic voltage and frequency scaling (DVFS), one of the most

ubiquitous means of providing a trade-off between execution time and power or en-

ergy, and more recently Turbo Boost [25]. The importance of power (and also energy

in part) has been further aggravated by recent events such as the 20 megawatt power

limit [131]. It states that supercomputing centers must not consume more than 20

MW of power in order to be feasible with regard to infrastructure costs. Combined

with the strive for exascale computing, a redoubling of efforts is required to achieve

these goals.

1.2 State of the Art

There is an abundance of related work regarding performance, power, energy, or

other non-functional parameters in the field of HPC, investigating instrumentation,

measurement, analysis, modeling, and optimization. However, this section will focus

on the most recent work directly related to the research presented in this thesis in

Chapters 4 to 6. For clarity, only an outline is given here, with more detailed discus-

sions of related work presented in the respective section of the individual chapters.

1.2.1 Multi-objective Auto-Tuning

Despite the rising of new concerns such as power and energy over the past two

decades, high performance has always remained among the most important goals

of research in HPC hardware and software optimization. In order to address this

presence of multiple optimization goals, a lot of related work evaluates their new op-

timization methods in a multi-objective manner. Examples include hardware design

exploration [94], self-tuning libraries for linear algebra [135, 137] or signal process-

ing [42, 100], or application-specific auto-tuning [4, 30].

1.2. STATE OF THE ART 3

Open Problems

Many works that address multi-objective problems assign fixed weights to these

objectives, effectively reducing the problem to a mono-objective one and masking

any potential trade-offs between conflicting objectives. The energy-delay-product

(EDP) [48] is among the most popular of such fixed-weight functions. While, over

time, additional metrics were established that balance the importance of the individ-

ual objectives, they fail at capturing the true trade-off between conflicting objectives

but rather sample this trade-off at pre-defined points. This results in limited flexi-

bility in case the preference regarding the objectives changes. Hence, very few works

apply true multi-objective optimization. Furthermore, there are additional objec-

tives such as resource usage [65] that might need to be considered besides execution

time and energy. However, at this time, there are no works in HPC that consider

more than two objectives.

For this reason, we present a true multi-objective auto-tuner in Chapter 4, pub-

lished in [53], that optimizes parallel programs for three conflicting objectives, ex-

ecution time, resource usage and energy consumption. Additionally, based on a

combined compiler-runtime framework, our method allows for both compile-time

parameters (such as source code transformations) and run-time parameters (such as

degree of parallelism and DVFS) to be combined in the same optimization process,

whereas many works are limited to one of the two. Finally, we obtain generalized

guidelines that can aid in tuning parallel programs for these three conflicting objec-

tives.

1.2.2 Significance-driven Optimization of Code Execution

One of the results of the industry’s shift towards including energy and power concerns

is the development of efficient tools such as DVFS. It provides the means to manage

the trade-off between time and power or energy by reducing the frequency and volt-

age. However, DVFS as deployed throughout most of today’s commodity hardware

is limited to operating well above the threshold voltage that is required for transis-

tors to function reliably. On the other hand, the concept of near-threshold voltage

(NTV) operates hardware closer to this threshold voltage, offering much larger power

reductions at the expense of performance. Nevertheless, while NTV has been a topic

of interest for some time [69], its entailed higher probabilities of hardware faults have

prevented its wide-spread deployment in HPC beyond research projects. However,

popular goals such as exascale performance at 20 megawatts might depend on such

innovative methods. As a result, the scientific community has studied hardware and

software mechanisms that render programs fault-resilient [34, 68, 69, 70]. Also, there

4 CHAPTER 1. INTRODUCTION

is research investigating the effect of faults on software [35] but it ignores the impact

of fault recovery on energy or how to leverage fault resilience for energy reduction.

Also, very few works deal with partial protection schemes [78].

Open Problems

Although there is research in both NTV operation and the effect of faults on codes

in the context of HPC, few works combine these aspects. Those that do employ

protection mechanisms that are explicitly designed to cope with the unreliability of

hardware when operated at NTV. Contrary to that, we investigate the effect of this

unreliability on unprotected codes in the context of reducing energy consumption

in Chapter 5, published in [52]. Specifically, we examine the behavior of iterative

solvers that naturally converge to solutions. We aim at reducing overall energy

consumption by reducing power via NTV and mitigating the performance impact via

parallelism. Moreover, we investigate partial protection mechanisms by evaluating

the significance of individual parts of the target program and its data.

1.2.3 Compiler-assisted Execution Time and Energy Modeling

A lot of literature dealing with non-functional parameters investigates their pre-

dictive modeling. This is often required by optimization methods that open large

parameter search spaces to be explored. For this reason, many works tend to employ

predictive models that aid in the navigation of these search spaces. Establishing a

basis, there are many analytical works that attempt to model non-functional param-

eters or their relationships. Prominent examples are the roofline model for execution

time [140] and energy [26], Wattch [22] or ECM [115]. Then, a vast number of pre-

dictive models is built on top of this basis. These include models requiring user

input [18, 113, 117], as well as automatic approaches [19, 55, 77]. While most of

them aim at performance prediction, some also target power or energy prediction,

and many stochastic approaches support additional non-functional parameters.

Open Problems

The majority of predictive methods uses run-time information such as performance

counters to generate or train their models. Often, a parameter study involving

multiple search space samples is required for example to obtain enough support

nodes for function fitting. Hence, these methods require multiple target program

executions. However, static information can help in this process and reduce the

number of samples required for achieving a desired level of accuracy. Few works

1.3. ORGANIZATION 5

incorporate static information, nevertheless they still partially rely on stochastic

methods that require multiple target program executions [19] or employ the user

to provide key information regarding important program parameters. Furthermore,

many of the models found in literature are problem-size or machine-size specific and

need to be re-trained if these parameters change.

Contrary to these works, in Chapter 6, we investigate a modeling approach based

on the capabilities of a compiler that employs a single execution of distributed mem-

ory parallel programs for model generation. We show that using a compiler’s data

flow analysis, we can obtain models parametrized for both problem size and machine

topology without depending on user directives. In addition, we show how automatic

source code transformations can be used to reduce the overhead of model generation.

Finally, we build and evaluate these models for both execution time and energy.

1.3 Organization

This thesis is structured as follows. Chapter 2 introduces a formal model that de-

scribes the hardware entities, software entities and their relationship this research is

based on. The realization of this formal model in a practical non-functional instru-

mentation and measurement framework within the Insieme Compiler is described in

Chapter 3. Thereafter, Chapters 4 to 6 present some of the research based on this

model.

First, Chapter 4 discusses auto-tuning trade-offs of parallel programs between

execution time, resource usage, and energy consumption in a multi-objective con-

text using iterative compilation. Second, Chapter 5 introduces the notion of code

significance, how it can be attributed to code regions of parallel programs and their

data, and investigates whether code significance can drive code execution on unre-

liable hardware. Third, Chapter 6 shows how compiler knowledge can facilitate the

generation of analytical models for execution time and energy prediction and reduce

their training overhead. Finally, Chapter 7 provides a conclusion to the research

done thus far and lists potential future work to be explored.

Chapter 2

Model

In order to model the power, energy and time behavior of hardware and software

in the context of today’s high performance computing systems and applications, a

model regarding their behavior and technical background with respect to the physics

involved is required. Section 2.1 will introduce the hardware model on which the

remainder of the thesis is based. Subsequently, Section 2.2 will establish the corre-

sponding software model used to represent the programs targeted in this work.

This chapter is based on work on performance and energy benchmarking and

analysis, published by under the titles Performance Analysis and Benchmarking of

the Intel SCC, see [50], and Modeling CPU Energy Consumption of HPC Applications

on the IBM POWER7, see [51].

2.1 Hardware Model

The major non-functional parameters of interest in this work are the execution time

and energy consumption of parallel programs. However, they are actually properties

of the hardware that executes these programs. For this reason, we require a hardware

model. First, we describe the physical relationship between computer hardware,

time, power and energy consumption. Second, a hardware topology model is defined

that describes the type of hardware components, their connections and semantics.

Finally, a list of key properties is established with respect to the goals of this thesis.

2.1.1 Physics Background

In this section, a brief overview of the relationship between time, power and energy

is presented within the context of computer hardware.

7

8 CHAPTER 2. MODEL

Energy E is defined as the integral of power over time, i.e.

E =

∫ t

0
Pinst dt (2.1)

where Pinst is the instantaneous power. However, for several reasons such as the

highly dynamic nature of power and measurement limitations, etc, instantaneous

power is usually difficult to work with in practical contexts. Instead, Equation (2.1)

is often numerically approximated by using average power Pavg instead:

E = t · Pavg (2.2)

For brevity, throughout this thesis, P always denotes Pavg over a given interval,

unless specified otherwise. The majority of today’s high performance computing

hardware comprises up to billions of transistors [12]. These transistors and their

interconnects are the main causers for execution time, power dissipation and hence

energy consumption1. For any piece of transistor hardware, P can be divided into

its static and dynamic component

P = Pstatic + Pdynamic (2.3)

where Pstatic denotes the static power drawn by the hardware without doing any

actual work (e.g. no clock signal, no state changes, etc.) and Pdynamic denotes the

dynamic power drawn by the transistors processing the actual workload. These terms

are affected by parameters such as fabrication process size (e.g. 22 nanometers [29]),

material choice and quality, supply voltage, temperature, and others, and may differ

between multiple samples of the same integrated circuit.

Since Pstatic is a static component and not affected by the workload, we focus on

Pdynamic, which can be further broken down into

Pdynamic = C · V 2 · F · α (2.4)

where C is the electrical capacitance (a fixed property for a given component), V is

the supply voltage, F is the clock frequency and α commonly known as the switching

factor or activity factor [22], with 0 ≤ α ≤ 1. This switching factor denotes how

often transistors switch upon a clock signal, with 0 meaning that transistors never

1Note that according to the first law of thermodynamics, energy can never be actually destroyed
in an isolated system but only converted from one form to another (e.g. electric into thermal).
Nevertheless, for brevity, the term “energy consumption” is used synonymously in this thesis to
denote the conversion and dissipation of electric energy as waste heat.

2.1. HARDWARE MODEL 9

switch and 1 meaning they switch at every clock signal. The term α represents a

major impact software has on the power and hence also on the energy consumption

of hardware. Normal workloads in high performance computing will cause moderate

switching factors, and some works simply assume e.g. α = 0.5.[22]

Equation (2.4) also evidently shows that the clock frequency F only affects the

dynamic power consumption linearly, whereas the voltage appears as a power of 2

and hence has quadratic impact on Pdynamic. However, since higher clock frequencies

imply shorter switching times as mentioned above, F and V are tightly coupled

to a certain degree and changed in unison to ensure stable operation. Literature

sometimes coarsens this to a term of power of 3 and refers to this as the “cube root

rule” [14], where the power consumption is a cubic function of the speed of computer

hardware.

Transistors work on the well-known basis of changing the current between one

pair of terminals by applying voltage or current to another pair of terminals. This

is commonly known as switching on or off. To operate, a certain minimum V , com-

monly referred to as the threshold voltage [47] or VTH, is required at the controlling

terminals for the transistor to switch states reliably within a specific time (dictated

by the clock rate F), where shorter switching times require higher threshold volt-

ages for reliable operation. Most of today’s computer hardware supports operation

at varying levels of F and V , with VTH << V to ensure stable operation.

2.1.2 Topology

The target hardware architecture for this work are distributed and shared memory

parallel computers. This encompasses single-chip many-core systems as well as clus-

ters comprised of a large number of multi-core-based nodes. This section defines

a hardware topology model that specifies the types of hardware components, how

they are connected, what their semantics are, and establishes several key character-

istics and relationships among them. A very brief overview of the model is presented

at the beginning, with detailed definitions and examples for actual HPC hardware

following in the remainder of this section.

In short, a parallel computer is modeled as a directed graph with its vertices

representing hardware components of three types (functional units, caches, memory

units), with additional components such as cores or nodes that are obtained via

composition. The edges of the graph denote the physical and logical links between

these components. This topology model is then enriched in Section 2.1.3 with non-

functional properties such as clock frequencies that affects the performance of model

components with regard to time and power, and as a result also energy. Additionally,

10 CHAPTER 2. MODEL

domains are introduced that comprise graph components with combined properties.

All parts of this model are focused on the research carried out during the course of

this thesis. Hardware details that are omitted have no relevance for this research.

Definition 2.1 (Parallel Computer)

Let U be a set of vertices that model hardware units or hardware components,

and L ⊆ U2 be a set of edges representing unidirectional links among them,

where l = (u1, u2) with l ∈ L and u1, u2 ∈ U denotes a hardware connection

that can transfer instructions or data from u1 to u2. Then a parallel computer

is defined as a connected, directed graph M = (U ,L). A hardware component

u ∈ U is defined as an instance of any of the following types:

� Functional Unit: performs computations,

� Cache: caches memory locations, or

� Memory Unit: stores program or data.

These types are denoted by ufunc ∈ Ufunc, ucache ∈ Ucache and umem ∈ Umem

respectively, and it is required that Ufunc 6= ∅ and Umem 6= ∅.

As the remainder of this section will show, the three hardware component types

of Definition 2.1 are sufficient for modeling distributed memory and shared memory

parallel computers. The edges l ∈ L linking individual components represent both

on-chip interconnects and network connections. While caches are not required for

a purely functional model, we include them explicitly to model their non-functional

effects on program execution. The individual components are further defined as

follows.

Definition 2.2 (Functional Unit)

A functional unit is a hardware component that performs actual computations

on a specific type of data. It is always linked to at least one memory unit directly,

or transitively via one or more caches. A functional unit fetches input data and

instructions from memory units or caches, performs the requested computation,

and writes output data back to memory units or caches.

Examples of frequently-occurring data types that functional units operate on are

� integer,

� vectorized integer,

� floating-point, or

2.1. HARDWARE MODEL 11

� vectorized floating-point.

Non-vectorized functional units operating on integer or floating-point data are com-

monly referred to as ALU and FPU respectively. Vectorized functional units fre-

quently occur in various HPC architectures (for example the Streaming SIMD Exten-

sions (SSE) [119] in the x86 architecture, the Vector Multimedia Extensions (VMX)

and Vector Scalar Extensions (VSX) [20] in the PowerPC architecture, etc.) to hide

computation latencies and hence speed up computation throughput.

Definition 2.3 (Memory Unit)

A memory unit is a hardware device in which program or data are stored during

program execution. A parallel computer may consist of multiple memory units,

some or all of which which may share physical address spaces.

A memory unit (most often RAM) is always managed by a memory controller.

However since such a controller is always present, the hardware model presented here

implicitly includes such a controller for every memory unit and memory controllers

are not defined or listed separately.

Definition 2.4 (Cache)

A cache is defined as a small but fast portion of memory that mirrors a subset

of memory locations of memory units for faster access. Caches can be chained,

however the ends of such a chain must be connected to a functional unit and

a memory unit, respectively. Caches can either hold both program and data

(unified caches), or be dedicated to only one of the two (instruction caches and

data caches).

Caches are fast, usually on-chip types of memory providing quick access to data

residing in memory units (RAM). There are usually multiple levels of caches present

in a system, with lower levels holding less data at the benefit of lower latency.

The first level (L1) is also typically split into dedicated instruction and data caches.

Caches can be private to or shared among multiple execution units and other caches.

In cache-coherent systems, complex protocols and policies are employed to ensure

data consistency between multiple cores and CPUs, and these protocols and policies

can differ between CPU models.

While these definitions are sufficient for modeling the majority of today’s HPC

hardware, we define a number of aggregated hardware components that denote

commonly-occurring compositions of hardware components in HPC hardware.

12 CHAPTER 2. MODEL

Definition 2.5 (Core)

A core consists of at least one functional unit and a number of private caches

ucore
cache ∈ Ucore

cache with 0 ≤ |Ucore
cache| and Ucore

cache ⊂ U . A cache is private if it is linked

only to functional units or other private caches of the same core.

Definition 2.6 (CPU)

A CPU consists of at least one core, and a number of shared caches ucpu
cache ∈ U

cpu
cache

with 0 ≤ |Ucpu
cache| and Ucpu

cache ⊂ U . A cache is shared if it is linked to two or more

functional units or caches of different cores.

Definition 2.7 (Node)

A node consists of at least one CPU and at least one memory unit.

Example 2.1 (Intel Xeon E5-4650). Figure 2.1 illustrates the usage of aggregated

hardware components as per Definitions 2.5 to 2.7, depicting a parallel computer

consisting of 4 nodes, each holding 4 Intel Xeon E5-4650 [28] processors or CPUs.

Each CPU comprises 8 cores and a shared, unified L3 cache. Every core is equipped

with an ALU, an FPU and several functional units operating on vector types (for

clarity, only one such vector unit for SEE instructions is shown). Additionally, every

core holds a private, unified L2 cache and two private L1 caches, one for instructions

and one for data.

Example 2.2 (Intel SCC). Similarly, Figure 2.2 illustrates the model representation

of the Intel Single-chip Cloud Computer, an experimental prototype with 48 Pen-

tium cores created by Intel Labs [59, 83]. Contrary to most HPC architectures, the

individual CPUs of the SCC are connected to their respective memory units via a

fast mesh network instead of dedicated memory links and form a distributed memory

parallel computer of 48 single-core, single-cpu nodes. The mesh network forwards

all data loads/stores between CPUs and memory units, as well as messages passed

between the CPUs.

2.1.3 Non-functional Hardware Properties

To reason about the performance or energy consumption of hardware, we need to

attribute special properties to every hardware component u ∈ U and links l ∈ L.

These properties are the individual terms to compute Pdynamic of Equation (2.4).

We omit C and α since the former is a fixed physical property, whereas α is a term

2.1. HARDWARE MODEL 13

core

A
L
U

L2 cache

L1 cache
instr.

F
P
U

S
S
E

L1 cache
data

(a) a core

CPU

core 0

L3
cache

core 1

core 2

core 3

core 4

core 5

core 6

core 7

(b) a CPU

node

CPU 0

RAM

CPU 1

CPU 2 CPU 3

RAM

RAM RAM

(c) a node

computer

node 0 node 3

node 1 node 2

(d) a computer

Figure 2.1: Hardware model representation for a parallel computer comprising four
nodes each equipped with four Intel Xeon E5-4650 [28] CPUs. For clarity, not all
edges are drawn.

14 CHAPTER 2. MODEL

core

A
L
U

L2 cache

L1 cache
instr.

F
P
U

L1 cache
data

(a) a core

CPU

core 0

(b) a CPU

nodenodenode computer

cpu 0

cpu 1

cpu 46

cpu 47

RAM

RAM

RAM

RAM
RAM

(c) a node and the entire SCC

Figure 2.2: Hardware model representation for a single Intel Single-chip Cloud Com-
puter (SCC) [59].

affected by the software that is executed. What remains, are the clock frequency F ,

which affects both performance and energy of a hardware device, and V 2, which has

direct impact on its energy. However, since they are commonly changed in unison,

V 2 also indirectly affects performance.

2.1. HARDWARE MODEL 15

Definition 2.8 (Power Properties)

Let M = (U ,L) be a parallel computer. Furthermore, let P ⊆ V × F be a

set of tuples (v, f), each representing a specific voltage V and a specific clock

frequency F as per Equation (2.4). Then there is a Px 6= ∅ for all x ∈ U ∪L that

denotes valid operational clock frequency and voltage combinations for hardware

component x, and every hardware component is always set to work at a specific

(vx, fx). The tuples (v, f) ∈ P are also called power states.

Example 2.3 (Intel SCC). The cores of the Intel SCC support 15 frequency levels

that are derived by dividing a base clock frequency of 1600 MHz by divisors 2 through

15. Therefore, F = {1600
i ∈ Q|i ∈ N ∧ 2 ≤ i ≤ 16}. Furthermore, the SCC cores

support 208 voltage levels from 0 V to 1.3 V with a granularity of 6.25 mV. Thus,

V = {i · 6.25 ∈ Q|0 ≤ i ≤ 208}. Note that while V × F leads to a total of 3120

possible frequency and voltage combinations, not all of them actually lead to stable

system operation. For this reason, |P| is usually much less than |V × F|.

Definition 2.9 (Domain)

A domain of a specific non-functional parameter or observable is defined as

a set D ⊆ U ∪ L of hardware components and links that are all equally and

simultaneously affected. Hence, they represent topological aggregations in a

specific non-functional context.

Example 2.4 (DVFS Domains). DVFS domains are an omnipresent example for

non-functional parameter domains in HPC hardware. They encompass hardware

components for which the voltage or frequency can only be set in unison, or more

formally, ∀x, y ∈ D|(vx, fx) = (vy, fy) for any point in time.

An example of a DVFS domain is present on all Intel Sandy Bridge-EP based

CPUs (including the Xeon E5-4650), where DVF for a CPU is the set of all cores of

this CPU, since all cores adhere to both the same frequency and voltage — in con-

trast to the Haswell-EP, which supports per-core DVFS settings, leading to multiple

DDVFS with |DDVFS| = 1.

The Intel SCC is an example hardware where frequency and voltage domains

are separate domains that do not match. For voltage, cores are grouped into 2x4

clusters, each forming a domain DV,i with |DV,i| = 8 for 0 ≤ i ≤ 5. Analogously,

for frequency, cores are grouped into 1x2 clusters (also referred to as tiles), each

representing a domain DF,j with |DF,i| = 2 for 0 ≤ j ≤ 23. As a result, the SCC has

6 domains for which the voltage can be set independently, and 24 domains for which

the frequency can be set independently.

16 CHAPTER 2. MODEL

Example 2.5 (Measurement Domains). A second example for domains are mea-

surement domains. These are domains established by non-functional observables,

which cannot be measured for individual hardware components. A prominent ex-

ample is the domain spanned by the Intel Running Average Power Limit (RAPL)

interface [31]. It is a hardware feature available on some Intel CPUs starting with the

Sandy Bridge generation [31], that offers both the functionality to measure energy

consumption and to set power caps that are not to be exceeded by the processor.

For the Xeon E5-4650 model, this RAPL interface does not offer energy consumption

readings for individual cores but rather all cores, leading to a domain DE holding all

8 cores.

Definition 2.10 (Time and Power of Computation)

Let ufunc ∈ Ufunc be a functional unit for a specific data type d and f the clock

frequency this functional unit operates at. Let furthermore (wi, ai) ∈ R2 be

a tuple where wi denotes the width and ai the average instructions per clock

(CPI) of a specific instruction type i operating on data type d. The width wi

is the number of data type instances instruction i can simultaneously process,

with 0 < wi. The average CPI ai is the number of cycles between two processed

instructions ix and ix+1.

Then the time it takes ufunc to process i on nd instances of type d can be

approximated as nd
wi
· aif . Similarly, every type of instruction i of width wi can

be associated with a specific average power consumption Pufunc,i,wi,v,f of ufunc at

voltage level v and clock frequency f .

Example 2.6 (IBM POWER7 Computation Time). The IBM POWER7 CPU [67]

holds functional units capable of processing a fused multiply-add (FMA) instruction

on integer and floating-point data types in a vectorized and non-vectorized fashion.

Figure 2.3a shows the width and CPI information taken from [111]. The CPU was

clocked at f = 3.0 GHz, and performed FMA instructions on 1011 elements of

integer and double-precision floating point types. The CPU can compute 4 elements

of integer type and 2 elements of double-precision floating point type per FMA,

and requires an average of 0.25 and 0.125 CPI respectively. Setting the variables

of Definition 2.10 to these values allows to compute the respective execution times.

Figure 2.3b illustrates a comparison with measured values for the same workload.

2.1. HARDWARE MODEL 17

integer double

not vectorized (1, 0.125) (1, 0.125)
vectorized (4, 0.125) (2, 0.125)

(a) Width and CPI in the form of (w, a) for fused
multiply-add (FMA) instructions of the IBM POWER7
CPU [111].

int vec int double vec double
0

2,000

4,000

ti
m

e
[m

s]

computed
measured

(b) Computed and measured time for processing 1e11 elements of integer and double
precision floating-point type in both vectorized and non-vectorized FMA instructions at a
clock frequency of f = 3 GHz.

Figure 2.3: Application of Definition 2.10 for the IBM POWER7 processor [51].

Definition 2.11 (Time and Power of Data Transfers)

Let a connected, directed graph M = (U ,L) be a parallel computer. Further-

more, let ω : L → R2 be a weight function assigning each link l ∈ L a tuple

(b, a) ∈ R2 where b denotes bandwidth and a denotes CPI information. ThenM
can be extended to a weighted, connected, directed graph G′ = (U ,L, ω). Given

an amount of data d to be transferred from u1 to u2, u1, u2 ∈ U connected via

lu1,u2 = (u1, u2), then the time of transferring this data from u1 to u2 can be

computed as d
b + a where (b, a) = ω(lu1,u2). Similarly, every link l can be asso-

ciated with a specific average power consumption Pl,v,f when transferring data

at voltage level v and clock frequency f .

Example 2.7 (SCC Memory and Mesh Network Bandwidth). To show the applica-

bility of Definitions 2.8, 2.9 and 2.11, we compute the average memory throughput

of individual cores of the Intel SCC with regard to their physical location as depicted

in Figure 2.2c and, therefore, the number of links involved to reach a memory unit.

Note that first, the mesh network employs a simple x/y routing scheme, meaning

that messages are first routed horizontally and then vertically to reach their destina-

tion. Second, the default mapping of memory units to cores follows a symmetrical,

18 CHAPTER 2. MODEL

horizontal and vertical bisection of the entire computer into 4 chunks, assigning one

memory unit to a set of 12 adjacent cores and ensuring that no node requires more

than 4 links to reach a memory unit.

Combining our topology model of the SCC with documented information [74]

regarding CPI and bandwidth ((b, a) of Definition 2.11), and clock frequencies (F of

Definition 2.8), we can compute the maximum expected memory throughput. The

bandwidth b is 16 bytes, and the CPI a is given as 40 core clock cycles for a core

issuing a read or write request, 4 mesh network link clock cycles to forward a request

or data, and 46 memory unit clock cycles for the memory unit to complete the re-

quest. Therefore, the overall CPI a of a single memory request and the corresponding

answer can be computed as

a =
40

fcore
+

4 · 2 · n
fmesh

+
46

fmemory

where fcore, fmesh, and fmemory denote the clock frequencies of the cores, the mesh

network links and the link to the memory unit to complete the request, and n denotes

the number of mesh network link hops from source to destination. Figure 2.4 shows

the computed and measured memory throughput for 0 < n ≤ 4 links involved for

a set of core, mesh and memory frequencies. The measured data was obtained by

running the stream memory benchmark [84] on an actual Intel SCC sample [50, 73].

Definition 2.12 (Cache Access)

Let ufunc be a functional unit, ucache a cache unit and umem a memory unit con-

nected via links (ufunc, ucache), (ucache, ufunc), (ucache, umem), and (umem, ucache).

Read requests from ufunc referring to memory locations in umem are first checked

by ucache, and if it holds a copy of the required memory location, its contents

are returned immediately — this is called a cache hit. If not, it is a cache miss,

and the contents are transferred from umem to ucache and returned. Cache prop-

erties dictate replacement policies (i.e. which data to evict from the cache when

loading new data) and whether write requests are cached or not.

2.1. HARDWARE MODEL 19

10
0/

80
0/

80
0

10
7/

80
0/

8
00

11
4/

80
0
/
80

0

12
3/

80
0/

80
0

13
3/

80
0
/
80

0

14
5/

80
0
/
80

0

16
0/

80
0
/
80

0

17
8/

80
0
/
80

0

20
0/

80
0
/
80

0

22
9/

80
0
/
80

0

26
7/

80
0
/
80

0

32
0/

80
0
/
80

0

40
0/

80
0
/
80

0

53
3/

80
0
/
80

0

80
0/

80
0
/
80

0

80
0/

1
6
00

/
8
00

80
0/

8
0
0/

1
0
66

80
0/

16
0
0
/1

0
6
6

0
10
20
30
40
50
60
70
80
90

100
110
120

clock freq. settings

th
ro

u
g
h

p
u

t
[M

B
/s

]

0 mesh links
1 mesh links
2 mesh links
3 mesh links

(a) measured data

10
0/

80
0/

80
0

10
7/

80
0/

80
0

11
4/

80
0/

80
0

12
3/

80
0/

80
0

13
3/

80
0/

80
0

14
5/

80
0/

80
0

16
0/

80
0/

80
0

17
8/

80
0/

80
0

20
0/

80
0/

80
0

22
9/

80
0/

80
0

26
7/

80
0/

80
0

32
0/

80
0/

80
0

40
0/

80
0/

80
0

53
3/

80
0/

80
0

80
0/

80
0/

80
0

80
0/

16
00

/8
00

80
0/

80
0/

10
66

80
0/

16
00

/1
06

6

0
10
20
30
40
50
60
70
80
90

100
110
120

clock freq. settings

th
ro

u
gh

p
u

t
[M

B
/s

]

0 mesh links
1 mesh links
2 mesh links
3 mesh links

(b) computed data

Figure 2.4: Measured and computed memory throughput of the SCC for cores with
varying distance from the memory units (0 to 3 mesh network links). The x axis
entries represent clock frequency settings in the form of (fcore/fmesh/fmemory).

20 CHAPTER 2. MODEL

2.2 Software Model

This section defines a software model required for discussing and analyzing non-

functional parameters such as execution time or energy consumption in the context

of parallel programs. First, the structure of software is defined, starting with sequen-

tial programs. They are represented as a graph of statements with control flow edges.

This sequential representation is enriched with parallel control flow edges and com-

munication, resulting in a parallel program model. Second, several properties on this

software model are established, such as definitions of code regions or non-functional

parameters or metrics such as wall time or energy consumption. The definitions of

these metrics are vital due to their frequent use throughout the thesis.

2.2.1 Software Structure

Definition 2.13 (Sequential Program)

Let S be a set of vertices denoting program statements and E ⊆ S2 be a set

of edges between them representing sequential control-flow. Then a sequential

program is a directed graph A = (S, E). A control flow edge (s1, s2) ∈ E with

s1, s2 ∈ S enforces potential execution of s2 after s1, i.e. if there are two control

edges (s1, s2), (s1, s3) ∈ E , either s2 or s3 will be executed after s1.

Example 2.8 (Sequential Program Example). Figure 2.5 shows an example of a

sequential program comprising 6 program statements and a number of control flow

edges connecting them. Note two back edges, (s4, s3) and (s6, s2), representing loops.

s1 s2

s3

s5

s4

s6

Figure 2.5: Software model representation of a sequential program.

2.2. SOFTWARE MODEL 21

Definition 2.14 (Parallel Program)

Let spawn and merge be new types of program statements expressing parallelism

and Sp be a set of vertices of these types.

Furthermore, let Ep ⊆ Sp×S be a set of directed parallel control flow edges. For

any parallel control flow edge (s1, s2) ∈ Ep it is required that either s1 is of type

spawn or s2 is of type merge. Contrary to sequential control flow edges defined

in Definition 2.13, all parallel control flow edges must be followed, i.e. if there

are two parallel control flow edges (s1, s2), (s1, s3) ∈ Ep then both s2 and s3 are

executed concurrently after s1.

Additionally, let Ec ⊆ S2 be a set of directed communication edges. Then Ap =

(S ∪ Sp, E ∪ Ep, Ec) represents a parallel program. Let (s1, s2) ∈ S be a control

flow edge and [s2, s3] ∈ Ec a communication edge, then [s2, s3] represents data

being transferred from s2 to s3, with s3 being executed after s1 and completion

of the data transfer.

Example 2.9 (Parallel Program Example). Figure 2.6 illustrates an example of a

parallel program consisting of 8 statements, including a spawn and a merge vertex.

There are two edges denoting an increase in parallelism, (spawn, s2) and (spawn, s4),

with the semantics of s2 and s4 being executed concurrently after spawn. Similarly,

there are two edges denoting a decrease in parallelism, (s3, spawn) and (s5,merge),

implying that s6 will execute after s3 and s5. In addition, there are two communi-

cation edges shown, [s2, s4] and [s5, s3], denoting the transfer of data from s2 to s4

and s5 to s3 respectively.

s1

s2 s3

s6

s4 s5

spawn merge

Figure 2.6: Software model representation of a parallel program.

22 CHAPTER 2. MODEL

Definition 2.15 (Entry and Exit Points)

Every subgraph A′ = (S ′, E ′) ⊆ A = (S, E) has special sets of vertices

Ee = {(s, s′e) ∈ E|s ∈ S \ S ′ ∧ s′e ∈ S ′},

S ′e = {s′ ∈ S ′|(s, s′) ∈ Ee ∧ s ∈ S},

Ex = {(s′x, s) ∈ E|s ∈ S \ S ′ ∧ s′x ∈ S ′}, and

S ′x = {s′ ∈ S ′|(s′, s) ∈ Ex ∧ s ∈ S}.

Then S ′e is called the set of entry vertices and S ′x is called the set of exit vertices.

In the case of A′ = A, |S ′e| = 1.

Definition 2.16 (Sequential Code Region)

A sequential code region is defined as a subgraph A′ = (S ′, E ′) ⊆ A = (S, E)

with exactly one entry vertex {s′e} = S ′e and exactly one exit vertex, {s′x} = S ′x.

This property is also called single-entry single-exit.

Definition 2.17 (Parallel Code Region)

A parallel code region is defined as a subgraph A′ = (S ′, E ′) ⊆ A = (S ∪ Sp, E ∪
Ep) in which statements can be executed concurrently by different cores (see

Definition 2.5).

2.2.2 Non-functional Software Properties

Definition 2.18 (Execution and Data Transfer Workloads)

Let S be a set of vertices of a program. Furthermore, let ni be the number of

instances of instruction type i processed by a hardware unit ufunc. Then each

s ∈ S can be attributed with ns,i reflecting the workload s exerts on ufunc.

Analogously, let nd be the number of instances of data type d processed by hard-

ware unit ufunc and stored in a memory unit umem connected to ufunc (potentially

cached by several ucache inbetween). Then each s ∈ S can be attributed with

ns,i reflecting the amount of data that needs to be transferred to ufunc.

Definition 2.19 (Degree of Parallelism)

Let ri ∈ R be a parallel code region with i ∈ N+. Then |R| denotes the degree

of parallelism.

2.2. SOFTWARE MODEL 23

Definition 2.20 (Performance Metrics of Code Regions)

Let R be a parallel code region, and let τstart and τend be functions that return

the entry and exit times of each r ∈ R. Then the following definitions of metrics

can be established:

� walltime:

twall = max
r∈R

(τend(r))−min
r∈R

(τstart(r))

� resource usage or cpu time:

tcpu =
∑
r∈R

(τend(r)− τstart(r))

� speedup:

σ =
tseq

twall

where tseq denotes the execution time of a sequential code region counter-

part of R

� efficiency :

ε =
σ

|R|

Definition 2.21 (Power and Energy Metrics of Code Regions)

LetR be a parallel code region and let φx,p be a function that returns the average

power consumption of a hardware unit or link x ∈ U∪L operating at power state

p ∈ Px when processing a statement s ∈ R. Then the following definitions of

metrics can be established:

� average power :

Px,p,avg =
∑
s∈R

(φx,p(s)
|R|

)
Pavg =

∑
x∈U∪L

Px,p,avg

� energy :

E = Pavg · twall

24 CHAPTER 2. MODEL

2.3 Summary

In this chapter a hardware and software model were established in order to discuss

and analyze non-functional parameters such as execution time or energy consumption

in the context of parallel programs. First, the physical relationship between computer

hardware, time, power and energy consumption were described. Then, a hardware

topology model was defined that describes the type of hardware components, their

connections and semantics. Additionally, a list of key properties was established

with respect to the goals of this thesis. Subsequently, a software model was defined,

describing the structure of target programs within the scope of this thesis. Finally,

several vital properties such as code regions and metrics such as wall time and energy

consumption were presented.

Chapter 3

Insieme Measurement

Framework

All work presented in this thesis has been built and integrated in the Insieme compiler

and runtime system framework [65], or represents groundwork for it. Hence, the

purpose of this chapter is to elaborate on the instrumentation and measurement

components of Insieme, developed as part of this thesis for the presented work.

Nevertheless, this chapter also briefly touches on many of Insieme’s other components

and capabilities, developed and maintained by the entire Insieme developer team [92],

and the use cases of compiling, analyzing and optimizing parallel applications.

The source code for the Insieme compiler and runtime system, including the in-

strumentation and measurement components described in this chapter, are available

online [118].

Insieme consists of two tightly integrated main components, namely the Insieme

compiler and the Insieme Runtime System (IRS). While, in theory, both can be uti-

lized independently, most work —also beyond the scope of this thesis— is carried out

by using both in a joint fashion. One main reason for this is their high degree of in-

teroperability by means of transferring information from the compiler to the runtime

system and vice versa. Due to the tight integration of both compiler and runtime

system, the instrumentation and measurement framework is distributed among both

of these components to provide non-functional program information. The compiler

is responsible for instrumenting the program, issuing measurements, and retrieving

results. The runtime system provides an execution environment for the program and

performs the actual low-level measurements, offering non-functional information to

the user or compiler for further use. Both of these aspects are addressed individually,

first the compiler in Section 3.1 and second the runtime system in Section 3.2.

25

26 CHAPTER 3. INSIEME MEASUREMENT FRAMEWORK

3.1 Compiler Component

This section outlines the compiler component of the measurement framework, fo-

cusing on the compiler’s view of program regions, metrics and how the compiler

conducts measurements using executors and retrieves non-functional run-time data.

3.1.1 Overview

The Insieme compiler comprises multiple components as sketched by Figure 3.1.

Source code — be it C or C++, enriched with parallel constructs such as OpenMP

pragmas or MPI communication primitives — is parsed by the frontend and con-

verted into INSPIRE or IR, the unified intermediate representation of Insieme [64].

This intermediate representation of the input program allows analyses and trans-

formations to be applied for a large number of use cases ranging from simple code

region identification to complex loop transformations [53] or task optimizations [122].

The IR is then read by the backend, which again synthesizes C or C++ source code

that is to be compiled by a backend compiler such as GCC [39]. It should be noted

that Insieme offers multiple backends for code generation, however, only the runtime

backend generates code that conforms to the application model of the runtime sys-

tem and using it is mandatory for obtaining measurements with the measurement

framework described in this chapter.

The process described above can be seen as a single invocation of the com-

piler, however all of the aforementioned components are highly modularized and can

be applied in many ways (e.g. multiple invocations of the backend with differently

transformed IR instances). For this reason, the instrumentation and measurement

framework is highly modularized as well, offering a number of individual entities as

follows:

� region specification,

� region identification,

� region instrumentation,

� metric specification,

� facilities for compiling and executing instrumented programs to obtain mea-

surements, and

� parsing result data.

These components are described in detail throughout the remainder of this section.

3.1. COMPILER COMPONENT 27

C
C++
MPI

OpenMP
Frontend INSPIRE

C
C++ Backend INSPIRE

Data

Analysis

Transformations

Figure 3.1: Insieme component interaction.

3.1.2 Region Specification, Identification and Instrumentation

Code regions from the software model point of view have been defined in Defini-

tions 2.16 and 2.17. Within the compiler, they consist of a pair of INSPIRE state-

ment addresses representing se and sx, the entry and exit statements of the code

region, as well as a linear index. A single statement address can also be instru-

mented, in which case se = sx. Starting and ending a region via se and sx is also

referred to as opening and closing a region, and regions are called open if their entry

statement has been executed but not the exit statement. Regions can be arbitrarily

nested as long as an open region is not re-opened, and every exit statement must

close the region that was most recently opened.

Example 3.1 (Compiler Regions). Figure 3.2 illustrates an example of valid code

regions within INSPIRE. Both R1 and R2 are cases where se and sx refer to the same

statement address, in this case a for statement. R3 illustrates the case of se 6= sx.

1 for (x = 0 . .N: 1) {
2 for (y = 0 . .M: 1) {
3 counter += element [y] ;
4 }
5 sum [x] = counter ;
6 counter = 0 ;
7 }

R1
R2

R3

Figure 3.2: Example region identification for 3 regions: two loops (R1 and R2) and
two assignments (R3).

28 CHAPTER 3. INSIEME MEASUREMENT FRAMEWORK

There are three main ways of identifying code regions to be instrumented by the

compiler:

Pragmas The Insieme compiler offers pragmas that direct the compiler to consider

the following statement a code region. The syntax for such pragmas is #pragma

insieme region(id) where id is the index of the region. The user is required

to ensure continuous indices with 0 ≤ id < N where N is the total number of

regions. The same index may appear multiple times for user-defined aggrega-

tion, however the user must also ensure that a region is not nested in another

with the same index. Also, this method is limited to se = sx.

Analysis There are a number of utilities available within the compiler to identify

code regions that match certain properties. These are called region selectors.

Examples are specific statements such as for or pfor loops, function calls with

specific signatures, or more complex regions such as covering non-blocking MPI

communication and corresponding wait calls, or arbitrary region selection that

matches a given size.

Program The Insieme compiler can be instructed to consider the entire program a

code region.

Since the actual measurement of non-functional parameters takes place at run-

time, any regions of interest must be marked for the runtime system. To that

end, the instrumentation framework prepends an Insieme Runtime System direc-

tive ir inst region start(id) to every start address (se) and appends the cor-

responding directive ir inst region end(id) to every end address (sx). These

directives instruct the runtime system to perform measurements, as further detailed

in Section 3.2.

3.1.3 Measurement Framework

The measurement framework is responsible for collecting a list of all metrics re-

quested by the compiler (or the user), compiling the target program, conducting the

actual measurement and parsing the measured data.

Metrics

Metrics are represented by a syntax tree structure, to allow the specification of user-

defined metrics based on low-level metrics. Each user-requested metric, such as

energy consumption, is denoted by the root node of such a tree, with its children

consisting of aggregation operators of low-level metrics that represent the leaves.

3.1. COMPILER COMPONENT 29

Low-level metrics can be defined arbitrarily by the user, however each requires an

implementation in the runtime system to collect data for it. Available aggregation

operators include addition, subtraction, multiplication, division, minimum, maxi-

mum, and average. Additionally, for convenience, there is a none operator for spec-

ifying metrics that do not require any aggregation. Example 3.2 show examples of

metrics using the division operator.

Example 3.2 (Compiler Metric Structure).

total energy = div(average power,wall time) (3.1)

efficiency = div(div(cpu time,wall time),num workers) (3.2)

When specifying composed metrics for measurement, the compiler automatically

resolves their leaves and composes a list of them to be forwarded to the runtime sys-

tem. While doing so, the list of leaves is checked for special external instrumentation

requirements, such as linking external libraries (e.g. the PAPI [88] library for hard-

ware counter information) or ensuring specific system-level register access (e.g. Intel

Running Average Power Limit (RAPL) [136, 54, 31]). This minimizes the software

footprint and number of system privileges required to conduct measurements.

Executors

Once the metric leaves and the external instrumentation requirements have been

identified, the program is compiled with a backend compiler such as GCC [39]. This

binary is then handed to one of Insieme’s executors along with the metric leaves and

external instrumentation requirements. These executors are responsible for man-

aging the program execution, i.e. transfer of the binary if necessary to a remote

target system, executing it in a given environment with given program parameters,

and transferring measurement result files back to the machine running the compiler.

There are several executors available, including

local executor executes the binary on the local system (e.g. the one running the

compiler),

SSH executor executes the binary on a remote system via ssh and ensures proper

moving of files to and from the remote machine, and

MPI executor executes the binary on a remote system with additional mpi-specific

settings such as target hosts, number of ranks, etc. .

30 CHAPTER 3. INSIEME MEASUREMENT FRAMEWORK

When the runtime system executes and measures the program, it creates perfor-

mance files that hold the results of the respective measurements (see Section 3.2).

These performance logs are copied back by the executor if required, and then parsed

by the compiler. The compiler then computes the originally requested, composed

metrics.

3.2 Runtime Component

This section describes the Insieme Runtime System (IRS), with special attention paid

to the region-based measurement component. It will elaborate on the specification of

metrics and metric groups within the IRS and shows their importance in providing

the means for user-defined metrics and metric aggregation.

3.2.1 Overview

The IRS [121] provides a shared memory parallel application model environment

that implements INSPIRE semantics. It can execute INSPIRE programs that were

synthesized by the runtime backend of the Insieme compiler. In order to adhere to

the IRS application model, programs or program parts are encoded into work items

which represent schedulable entities. These work items are executed by workers,

which represent software threads that are user-managed from the perspective of the

operating system. Workers form work groups that allow limiting synchronization in

parallel contexts.

The IRS is implemented in C99 with selected component parts written in low-level

assembler for more direct control and reduction of overhead (e.g. hardware timestamp

retrieval or context switches). The workers are implemented using pthreads [89],

however an abstraction layer allows the usage of alternative threading libraries such

as Windows threads [138]. These abstraction layers also allow providing alternative

implementations with respect to different instruction set architectures such as x86

or PowerPC.

3.2.2 Measurement Framework

There are two independent components in the IRS that provide measurement fea-

tures:

region-based This component is used for measuring code regions that were iden-

tified and marked by the compiler or the user. It is capable of measuring

non-functional data for both sequential and parallel regions identified via the

3.2. RUNTIME COMPONENT 31

directives ir inst region start(id) and ir inst region end(id) as

described in Section 3.1.2.

event-based This component is mostly used for functional and performance de-

bugging of the IRS itself. It can record the time and origin of several types of

events, such as a work item starting execution, a worker going to sleep due to

a lack of work, or a work group completing a barrier.

Since the region-based component is much more often used in non-functional

analysis and optimization than the event-based one, this section will further detail

on the features and characteristics of the former.

The region-based instrumentation and measurement component of the IRS is

designed to provide low-overhead data collection from a wide range of sources such

as external libraries or hardware registers. To that end, the data collection within

the IRS is centered around two main entities: metrics and metric groups. The

former represents individual metrics such as wall time or energy consumption, while

the latter represents a grouping of metrics that share common instrumentation or

measurement code, usually because they are obtained from the same source (e.g.

the same external library). The specifications of metrics and metric groups are

subsequently described, with an illustration of their usage following in Algorithm 3.1.

Metrics

Contrary to the compiler, the IRS does not require the compiler’s tree structure for

representing metrics, since it only measures the metric leaves of this tree structure.

For this reason, the IRS instead holds a list of metrics, all adhering to a common,

generic specification. This generic specification allows new metrics to be implemented

solely by providing their specification, and removes the need for modifications in

components of the IRS other than the measurement component. The specification

for metrics includes the following items:

name The name of the metric.

type The data type of the metric.

group The group of the metric. Each metric is part of exactly one group (e.g.

execution time and wall time are both members of the time group). This

allows the specification of group-specific code that should be executed only

once upon opening or closing a region e.g. for metrics that require a common

start/stop procedure.

32 CHAPTER 3. INSIEME MEASUREMENT FRAMEWORK

scope Denotes the topological hardware scope scope, e.g. hardware thread, core,

CPU, or node.

aggregator Denotes the aggregation method to be used over multiple region exe-

cutions (i.e. average or sum).

work item start action Instrumentation or measurement code to be executed

when starting or resuming a work item that is part of a currently open region.

This allows the specification of metrics that exclude work items which are not

part of the currently open region but might have been scheduled by the IRS.

work item end action Instrumentation or measurement code to be executed

when stopping or suspending a work item that is part of a currently open

region.

region early start action Instrumentation or measurement code to be exe-

cuted for each metric by the first worker entering a region. This allows the

specification of metrics in parallel contexts with first-entry and last-exit char-

acteristics.

region late end action Instrumentation or measurement code to be executed

for each metric by the last worker exiting a region.

output conversion Denotes a conversion factor to be applied when writing pre-

viously measured data. This allows a reduction of measurement overhead for

metrics that differ in their units as seen by the compiler or user, and the

hardware or IRS (e.g. execution time in nanoseconds or clock cycles).

Within the action items, two pre-defined fields per metric are provided for user

access:

last <metric name> The last value of this metric, usually written when starting

a region, or starting or resuming a work item.

aggregated <metric name> The aggregated value of this metric, i.e. the quantity

that has been observed so far, usually written when ending a region or ending

or suspending a work item.

These two fields can be accessed by the user in any fashion, allowing user-defined

aggregation of metrics. Example 3.3 illustrates a possible usage of these fields.

3.2. RUNTIME COMPONENT 33

Example 3.3 (Execution Time). A simple implementation for execution time based

on a sum of values is given by

last = get time() (3.3)

aggregated = aggregated + get time()− last (3.4)

Metric Groups

In addition to metrics, the IRS also holds information about metric groups. They are

required for full metric generality, since there may be multiple metrics that require

a common initialization or measurement routine that may only be called once (e.g.

PAPI [88] per-thread initialization). For this reason, similarly to metrics, also metric

groups follow a specification that includes the following items:

name The name of the group.

global decls Global variable declarations required by the group with the lifetime

of the IRS process (e.g. buffers, state information, ...).

local decls Local variable declarations required by the group with the lifetime of

the current measurement code and value computation (e.g. temporary buffers).

global init Per-process initialization code, executed upon startup of the IRS.

global finalize Per-process finalization code, executed upon shutdown of the IRS.

worker init Per-thread initialization code, executed upon worker creation.

worker finalize Per-thread initialization code, executed upon worker shutdown.

work item start action Measurement code, executed when starting or resum-

ing a work item that is part of a currently open region.

work item end action Measurement code, executed when stopping or suspend-

ing a work item that is part of a currently open region.

region early start action Measurement code, executed for each group by the

first worker entering a region.

region late end action Measurement code, executed for each group by the last

worker exiting a region.

34 CHAPTER 3. INSIEME MEASUREMENT FRAMEWORK

Algorithm 3.1 Order of measurement actions performed by each IRS worker.

1: worker init(group)
2: worker init(metric)
3: . . .
4: if first worker to enter a region then
5: region early start action(group)
6: region early start action(metric)
7: end if
8: wi start action(group)
9: wi start action(metric)

10: . . .
11: . . .
12: . . .
13: wi end action(group)
14: wi end action(metric)
15: if last worker to exit a region then
16: region late end action(group)
17: region late end action(metric)
18: end if
19: . . .
20: worker finalize(group)
21: worker finalize(metric)

Initialization

Entering
a region

Region
content

Exiting
a region

Finalization

Algorithm 3.1 briefly illustrates the order in which each worker uses metric and

group specification items. Once the IRS has completed all measurements and shut-

ting down, the measurements are written to disk. Each worker creates a separate

file containing a list of all regions. Each region entry holds the ID of the region, the

number of times it was executed, and a list of all metrics that were requested to be

measured. If a worker did not execute a region, its number of executions is 0 and

each metric value will hold 0.

Example 3.4 (Measurement File). Table 3.1 shows the structure of a measurement

file written by the IRS that can be parsed by the compiler. It holds two regions,

where the first was executed 4 times and the second was never executed by the

worker that wrote this file.

3.2.3 Platform-specific Features

Beyond the generic framework that allows user-defined metrics, the IRS already

includes implementations for a few selected metrics that occur frequently, as well

3.2. RUNTIME COMPONENT 35

Table 3.1: Example IRS measurement result file.

label ID
no. of ex-
ecutions

total
wall time

total cpu
time

total cpu
energy

total L2
misses

RG 0 4 2000 4000 42 9173
RG 1 0 0 0 0 0

as control features that allow modification of the hardware to some degree. This

section briefly outlines these aspects of the IRS.

Time

The IRS offers a function for fine-grained time measurements with a minimum of

overhead, irt time ticks(). It maps to low-level assembler instructions imple-

mented for two wide-spread hardware instruction set architectures, x86 (which offers

the rdtsc instruction to read a timestamp counter register of the CPU) and Pow-

erPC (which also offers special purpose registers for time keeping, read via mfspr).

Since most x86 CPUs offer one timestamp counter register per core, it is important

to bind IRS workers to CPU cores. The IRS offers affinity policies for this purpose.

Energy

The IRS offers a low-level implementation for reading Running Average Power Limit

(RAPL) [31, 63, 54] data from x86 microarchitectures that support it (Intel Sandy

Bridge and newer HPC architectures). On HPC platforms, it offers energy con-

sumption data for the entire CPU package, the CPU cores only or the CPU memory

controller only. The model-specific registers (MSR) that hold this data act simi-

lar to the timestamp counter register, i.e. the value increases monotonically, with

updates occurring roughly every millisecond. However, since they only use 32 bits

for this information, these registers overflow every few minutes depending on the

energy consumption of the measured hardware units. For this reason, the IRS fea-

tures a maintenance thread, which is capable of executing code asynchronously at

user-specific time intervals. The maintenance thread reads the RAPL registers ap-

proximately every 30 seconds and updates the IRS’ RAPL data. This ensures RAPL

register overflows to be captured correctly, even in the case of multiple overflows be-

tween the start and end of a measured code region.

36 CHAPTER 3. INSIEME MEASUREMENT FRAMEWORK

3.2.4 Control features

In addition to its pure measurement capabilities, the IRS also offers facilities to

control the hardware to some degree. Most notably, this includes a frequency and

voltage scaling (DVFS) feature which maps to Linux’ cpufreq infrastructure. The

IRS allows setting the power state p ∈ P of Section 2.1 on a per-worker basis, i.e.

the ucore a worker is currently executing on. For this reason, IRS workers must be

bound to CPU cores for reliable operation.

3.3 Additional Research

Besides the research presented in this thesis, the Insieme compiler and runtime sys-

tem framework is also connected with a number of additional works. These represent

either fundamental research that was used to build the framework, or research that

was achieved by using the framework. They include

OpenCL kernel splitting converting single-device OpenCL programs into multi-

device OpenCL programs with input-sensitive task partitioning based on a

machine learning model [49, 72, 125];

Automatic data layout optimization automatic conversion of array-of-

structure data layouts to structure-of-array layouts for improved locality [71];

energy modeling and optimization energy analysis and modeling using random

forest modeling, and controlling tunable hardware under timing constraints [3,

16];

Task-optimization optimizing the granularity of recursive tasks coupled with

multi-versioning [120, 123, 124, 126, 127]; and

Intermediate Representation and Transformations research in intermediate

representations for compilers and their transformation frameworks [64, 66].

3.4 Summary

This chapter presented the Insieme compiler and runtime system framework, which

served as the basis for all the work presented in this thesis. Special attention was

paid to the instrumentation and measurement components of Insieme, developed as

part of the work presented. First, the compiler component was described, focusing

on the compiler’s view of program regions, metrics and how the compiler conducts

3.4. SUMMARY 37

measurements using executors and retrieves non-functional run-time data. Second,

the runtime system component was presented. The unified specifications for metrics

and metric groups were defined and their usefulness in establishing user-defined

metrics and user-defined metric aggregation was demonstrated.

Chapter 4

Multi-Objective Auto-Tuning

This chapter presents work on multi-objective, search-based auto-tuning using it-

erative compilation, published under the title Multi-Objective Auto-Tuning with

Insieme: Optimization and Trade-Off Analysis for Time, Energy and Resource Us-

age, see [53]. Using the Insieme framework for iterative compilation auto-tuning, a

differential evolution algorithm optimizes several parallel programs with regard to

three conflicting objectives. My contributions in this work are the development of

the tuning framework, working with Dr. Juan Durillo on the auto-tuning algorithm,

conducting measurements, analyzing the data, and deriving guidelines for efficient

parallel program execution.

4.1 Introduction

The performance of a software application crucially depends on the quality of its

source code. The increasing complexity and multi/many-core nature of hardware

design have transformed code generation, whether done manually or by a compiler,

into a complex, time-consuming, and error-prone task which additionally suffers from

a lack of performance portability. To mitigate these issues, a new research field,

known as auto-tuning [128], has gained increasing attention. Auto-tuners are an

effective approach to generate high-quality portable code. They can produce highly

efficient code versions of libraries or applications by generating many code variants

which are evaluated on the target platform, often delivering high performance code

configurations which are unusual or not intuitive.

Whilst earlier auto-tuning approaches were mainly targeted at execution time

[30, 137], other optimization criteria such as energy consumption [129] or computing

costs [65] are gaining interest nowadays. In this new scenario, a code configuration

39

40 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

that is found to be optimal for low execution time might not be optimal for another

criterion or vice versa. Therefore, there is no single solution to this problem that can

be considered optimal, but a set, namely the Pareto set [24], of solutions (i.e. code

configurations) representing the optimal trade-off among the different optimization

criteria. Solutions within this set are said to be non-dominated: any solution within

is not better than the others for all the considered criteria.

This multi-criteria scenario demands further development of auto-tuners, which

should capture these trade-offs and offer the user either the whole Pareto set or a

solution within it. Although there is a growing amount of related work considering

the optimization of several criteria [80, 129, 58, 103, 33], most of them consider two

criteria simultaneously at most, and many fail in capturing the trade-off among the

objectives and reduce the problem to a mono-objective one.

In this chapter we investigate the auto-tuning of shared-memory parallel codes

using the Insieme compiler to optimize three different criteria: execution time, re-

source usage and energy consumption. For tuning the codes, we consider as opti-

mization knobs: dynamic concurrency throttling (also known as DCT), loop tiling,

and frequency and voltage scaling (also known as DVFS). We examine the obtained

results in detail to analyze and illustrate the complex interactions between optimized

software and hardware. Our main findings of this work demonstrate that:

� RS-GDE3 can be successfully applied to a three-objective optimization prob-

lem, and

� the trade-off between execution time and energy consumption, dependent on

efficient parallelization, can be explained by investigating resource usage.

This chapter is structured as follows: Section 4.3 describes the auto-tuning in-

frastructure used for this work. Relevant related work is listed in Section 4.2. The

experiment design, the objectives of interest, the target codes and hardware plat-

form are outlined in Section 4.4. Section 4.5 presents our results and their detailed

analysis. Finally Section 4.6 concludes.

4.2 Related Work

There is a wide range of related work pertaining to auto-tuning. One possible ap-

proach is Machine learning (ML) [1, 17]. The underlying idea of ML consists in

off-line learning of the relationship among a set of code features and beneficial op-

timizations for a representative set of applications; the inferred knowledge is then

reused to determine optimizations for unseen codes. The success of this approach

4.2. RELATED WORK 41

depends on the quality of the considered training data for learning, selected features,

and representative applications. A wrong decision on any of these phases may im-

ply ML to reproduce non-optimal behavior. In addition, despite some attempts to

apply ML to optimize multiple criteria [43, 101], it has never been used in a truly

multi-objective fashion, computing the whole set of Pareto efficient solutions.

Search-based methods pose an alternative to ML, consisting in iteratively evalu-

ating different code versions of a target application. These methods are often used in

self-tuning libraries such as ATLAS [137], OSKI [135], SPIRAL [100], FFTW [42], or

application-specific approaches including Active Harmony [30], Sequoia [36], Peta-

Bricks [5, 4], Patus [27], or OpenTuner [6]. Both, exact [75] and approximation search

approaches [98], guarantee a local optimum for any application in many cases. Fur-

thermore, they have been successfully applied for computing the whole set of Pareto

efficient solutions in the past while optimizing up to two criteria, such as performance

and efficiency, compilation time, or binary size [65, 58, 44, 82].

The recent concern for power and energy consumption is reflected in the growing

amount of related work applying auto-tuning to optimize them. Whether they con-

sider power or energy consumption, in addition to performance, most of these works

fail to capture the trade-off between these two criteria and only compute a single

solution to the problem. In [80], the authors apply dynamic programming to reduce

the energy consumption while maintaining or improving the performance of message-

passing and shared memory applications; the performed search relies on models for

predicting performance and energy consumption, thus avoiding to evaluate different

configurations of an application. Also a model for power consumption is employed

in [102]. In this case, several combinations of power and performance based on pref-

erences are optimized independently by means of a hierarchical search procedure and

compared afterwards. In [129], however, real power measurements obtained from a

dedicated power device are considered to guide the search using Active Harmony.

As in the previous work, several combinations of energy and performance are also

investigated independently. In [103], the authors apply auto-tuning to optimize in-

dependently for performance and power consumption; as the authors claim, code

versions which are optimal for one of the objectives are not optimal for the other.

Others works try to exploit slack time for example in MPI communication [114, 97]

or OpenMP synchronization [33]. Despite all these efforts on optimizing performance

and energy/power, almost none of these approaches compute the full Pareto set of

solutions. Reducing this trade-off to a predefined number of solutions as frequently

done in related work may limit the freedom of selecting a solution and render detailed

trade-off analyses impossible. To the best of our knowledge, [40] is one of the few

42 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

works investigating that trade-off. More recently, also in [13], the authors point out

the multi-objective nature of this problem, showing a fine-grained trade-off between

performance and energy/power consumption.

Contrary to related work and to the best of our knowledge, this is the first ap-

plication of an auto-tuner to an optimization problem consisting of three objectives:

performance, resource usage and energy. Moreover, we provide a detailed analysis

of the trade-offs identified by using the Insieme auto-tuning compiler. This has been

done in several related works, which do not directly deal with optimization or auto-

tuning of applications. They rather analyze the trade-off between performance and

power or energy for changing hardware or software configurations. Many of them

investigate DVFS or DCT [76, 21, 45, 41], while some evaluate application model

changes [81]. Their main goal is to identify the general trade-off between perfor-

mance and energy/power consumption with manually preselected solution samples,

whereas we analyze automatically obtained results.

4.3 Insieme Compiler

4.3.1 Auto-Tuning Infrastructure

Analyzer

Optimizer

Parallel Target Platform

Input
Code

Runtime System

Multi-
Versioned

Code

Code
Regions Best

Solutions

Search
Points

Measure-
ments

compile time runtime

1

2

3

4

5

Backend

Dynamic
Selection

6

Figure 4.1: Detailed Insieme component interaction for the use case of search-based
optimization, adapted from [65].

While the overall structure of the Insieme framework has already been described

in Chapter 3, Figure 4.1 illustrates key components with regard to the specific use

case of search-based optimization. The labels (1-6) follow the processing of a program

4.3. INSIEME COMPILER 43

for this purpose, and are further described as follows: An input code is loaded by the

frontend (1), analyzed and prepared to be tuned by the optimizer prior to execution.

The analyzer determines a set of transformation skeletons for a given parallel

code region R per code which describe generic sequences of code transformations

using unbound parameters for tunable properties. These encompass

loop tile sizes Controlled by the compiler to increase the effectiveness of cache

units ucache ∈ Ucache. A dependency test based on the polyhedral model [15, 99]

is performed beforehand to ensure the transformation can be applied.

number of cores Controlled by the runtime system via its number of workers pa-

rameter. Limits the degree of parallelism by limiting the set of cores Ucore

involved in the computation.

frequency setting Controlled by the runtime system via its hardware interaction

capabilities, selects a power state pu ∈ Pcore with u ∈ Ucore.

The code, together with its associated transformation skeletons and some (op-

tional) parameter constraints, is passed on to the optimizer (2). At this point, the

optimizer conducts auto-tuning (for this reason we use autotuner as a synonym for

optimizer) by iteratively selecting sets of configurations for each code to be eval-

uated (executed) on the target system (3). Each configuration corresponds to an

instantiation of a transformation skeleton’s parameters.

In the end, the optimizer derives a Pareto set consisting of the best configurations

found so far. These configurations are passed on to the runtime backend (4), which

generates a specialized code version for each of these configurations as part of a

single, multi-versioned executable (5). The runtime system can then execute one of

the configurations of the Pareto set according to the current requirements of e.g. the

system or the user (6).

4.3.2 Optimizers

The main search engine of for this work, described in previous work [65], is called RS-

GDE3 and aims at computing the Pareto set of code configurations. RS-GDE3 com-

bines an approximation technique from the class of Differential Evolution (DE) [116],

a subclass within Metaheuristics [46], and a search space reduction mechanism based

on Rough Sets [95]. The goal of this latter technique is to reduce the search to a small

area where RS-GDE3 assumes the location of the optimal configurations, instead of

dealing with a very large space of potential configurations which would be far too

time-consuming to explore.

44 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

RS-GDE3, depicted in Algorithm 4.1, can be configured via three parameters:

the size of code configurations |C|, with |C| > 3; the differential weight DW , with

0 ≤ DW ≤ 2; and the crossover probability CR, with 0 ≤ CR ≤ 1. These parameters

are usually set in a pre-tuning phase, may affect the performance of the algorithm

and the quality of the results, and many works deal with the issue of good parameter

settings, such as [96]. Our choices for these parameters are shown in Table 4.2.

The main idea of DE methods is to generate new code configurations by consid-

ering transformations of old configurations that proved to be good candidates. In

detail, the algorithm works as follows: A set C of initially randomly generated code

configurations is created. Within this set C, each configuration cx ∈ C is defined by a

vector cx = cx,1, . . . , cN,t of t tunable parameters, and the algorithm iteratively gen-

erates new values for them. For every configuration cx in C, three (as in the original

example presented by Storn and Price [116]) of the best performing configurations

in C are identified, denoted here by c1, c2, and c3, with c1 6= c2 6= c3 6= cx. The

crossover probability CR decides whether a new code configuration c′ is generated.

If so, it is computed using a differential weight DW and the three configurations c1,

c2, and c3 previously chosen. The tunable parameters of the new configuration c′

reside within the search space B and in the vicinity of c1, c2, and c3. This newly

generated configuration c′ then replaces the worst configuration in C. In addition,

if the values of the tunable parameters for this code version are close to the limits

defining the search space B, this search space is updated accordingly (shown as up-

dateSearchSpace(B, c′) in Algorithm 4.1). This method was successfully applied to

an optimization problem with two conflicting objectives in [65], whereas we apply

it for the first time to three objectives in this work. However, RS-GDE3 is a true

multi-objective optimizer that can handle an arbitrary number of objectives within

the scope of Pareto optimality.

Algorithm 4.1 Generating a new configuration in DE.

1: Input: cx, c1, c2, c3 four different configurations, B the current search space
2: Output: c′

3: index← floor(rand() · |cx|) + 1
4: for z = 1 .. |cx| do
5: if rand() < CR or z = index then
6: c′z ← c1,z + DW · (c2,z − c3,z)
7: else
8: c′z ← cx,z
9: end if

10: end for
11: return updateSearchSpace(B, c′)

4.4. EXPERIMENT DESIGN 45

In addition to RS-GDE3, the Insieme compiler includes two other search engines,

which are used for comparison, based on a hierarchical and a random search tech-

nique. The hierarchical search evaluates points on an equidistant grid defined over

each tunable parameter. The random search generates a set of code configurations

by randomly setting the values of each tunable parameter.

4.4 Experiment Design

4.4.1 Objectives

In this work we try to optimize shared-memory parallel programs for three objectives

and investigate the trade-offs between them:

� execution time,

� resource usage, and

� energy consumption.

Execution time is inherently an objective of interest, as providing results within

the shortest possible time is desirable for most programs. In terms of the software

model presented in Section 2.2, it is defined as

t = max
r∈R

(τend(r))−min
r∈R

(τstart(r)). (4.1)

We furthermore include resource usage, denoted by

ru = |Ucore| · tp (4.2)

with Ucore being the set of cores involved in executing the program and tp denoting

the parallel execution time, as an objective to reflect computing costs. Most eco-

nomic cost models that focus on computational resources, such as the ones used by

cloud providers, are based on CPU hours [7]. Similarly, many academic computing

centers base their accounting on CPU hours even if users are not charged. Hence,

we believe that resource usage (reflecting computing costs – economic or otherwise)

is an important optimization goal for parallel applications.

As a third objective of interest we consider energy consumption, defined as

E =
∑

u∈Ucpu

Eu (4.3)

46 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

Table 4.1: Code characteristics.

Code mm dsyrk jacobi-2d 3d-stencil n-body

Problem Size 12002 12002 100002 6003 500000

Computation O(N3) O(N3) O(N2) O(N3) O(N2)

Memory O(N2) O(N2) O(N2) O(N3) O(N)

Tile Sizes (1–600)3 (1–600)3 (1–5000)2 (1–300)2
1–1000,

1–500000

No. of Cores 1–32

CPU Freq. (GHz) 1.2–2.7 + Turbo Boost

Total No. of
Configurations

1.11 ·1011 1.11 ·1011 1.28 · 1010 4.61 · 107 2.56 · 1011

where Ucpu is the set of CPUs that hold cores participating in the computation and Eu

is the measured energy consumption of a single CPU. Reducing energy consumption

is of interest to both HPC center operators and users (as future cost models might

include energy consumption due to its increasing workload dependence). The CPU is

the largest contributor of the overall energy consumption of a non-accelerated HPC

node that can also be influenced the most by the workload executed [112]. Hence,

we focus our energy optimization efforts on this component (see Section 4.4.2 for

details on the method used to obtain measurements).

For brevity, we refer to execution time only as time and to energy consumption

as energy throughout the rest of the paper.

4.4.2 Benchmarks and Target Platform

Our benchmarks consist of a matrix multiplication kernel (mm, using an ijk loop

order), a BLAS-3 linear algebra kernel (dsyrk, computing B = A ∗ AT + B), two

stencil codes (jacobi-2d and a generic 3x3x3 3d-stencil) and an implementation of

an n-body simulation. Except for the mm and dsyrk codes, all of them exhibit

distinct computation and memory complexities as listed in Table 4.1 and hence

considerably different memory reuse and access patterns. Furthermore, although

identically categorized in terms of complexity, the memory access patterns of mm

and dsyrk are very different since the (on-the-fly) transposition of A eliminates the

unaligned matrix access conducted within the mm code. Table 4.1 also lists the

tunable parameters and their ranges for each code.

The target platform is a quad-socket (|UCPU| = 4) shared-memory parallel com-

puter equipped with Intel Xeon E5-4650 Sandy Bridge EP processors [28]. The

platform is the same as presented in Example 2.1, with each CPU offering eight

4.4. EXPERIMENT DESIGN 47

cores (|Ucore| = 8 per CPU). Each core features private L1 and L2 caches of 64 and

256 KB each in addition to the CPU-wide shared L3 cache of 20 MB. The system

provides 128 GB of main memory, uses a Linux operating system with a 3.5.0 kernel

and our backend compiler is GCC 4.6.3. Hyper-Threading was not used in any of

our experiments.

Since frequency scaling is one of the tunable parameters as listed in Section 4.3,

we provide further detail to the target platform’s DVFS capabilities. The hardware

supports DVFS with F = {1.2 GHz, . . . , 2.7 GHz}, additionally operating at up to

3.3 GHz when using Turbo Boost. All of these frequencies are coupled with voltages

well above the threshold voltage (see Section 2.1.1), however since each f ∈ F has

a non-modifiable voltage v assigned, we do not report the full tuple (f, v) ∈ P but

only refer to f for brevity. Also, the DVFS capabilities of the target platform are

limited to one f ∈ F for all cores per CPU. Therefore, from the perspective of the

hardware model defined in Section 2.1, the system holds one DVFS domain per CPU,

or formally DDVFS ∈ Ucpu.

We rely on the Intel RAPL interface for providing energy data. On our target

platform, RAPL offers energy estimations with a resolution of 15.3 microjoules at

a rate of 1 KHz for the entire CPU package, i.e. a per-CPU energy measurement

domain as exemplified in Example 2.4 or DE ∈ Ucpu. Recent related work showed

RAPL to be accurate enough for purposes such as ours [31, 63, 54]. It should be

noted that we use RAPL due to its wide availability, however the Insieme compiler

can use any energy measurement/modeling system that meets the necessary accuracy

and resolution requirements.

4.4.3 Configuration of the Optimizers

We run the three optimizers available within the Insieme framework: RS-GDE3,

hierarchical search, and random search. The parameters for RS-GDE3 and hierar-

chical search are described in the following and summarized in Table 4.2. In the

case of RS-GDE3, we need to set the size of set C of code configurations (processed

by RS-GDE3), the parameters CR and DW required by the differential evolution

method, (see Algorithm 4.1), and the termination condition of the algorithm. These

values have been determined during a preceding tuning phase over a small set of

problems, have an impact on the optimization results and may depend on the target

architecture. As termination condition, RS-GDE3 stops when it does not generate

a better code configuration for a specific number of consecutive iterations chosen by

the user (set to 5 for this work).

For the hierarchical search only the sampling grid needs to be defined. It depends

48 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

Table 4.2: Optimizers’ Parameter Setting.

Algorithm Parameters

RS-GDE3

|C| = 30

CR = 0.5

DW = 0.5

Hierarchical Search

2D Tiling Problems

21 values for each tiling parameter

6 different numbers of cores

6 different frequencies

3D Tiling Problems

8 values for each tiling parameter

6 different numbers of cores

6 different frequencies

Random Search
15000 configurations total

uniform probability distribution

on the number of tunable parameters and defines the total number of configurations

to be evaluated. We have configured the hierarchical search with an equidistant

grid such that at least 15000 different configurations are examined. For generating

the grid we only need to specify how many equidistant values we consider for every

tunable parameter (note that for the number of cores, we only select powers of 2, or

formally |Ucore| = 2x with 0 ≤ x ≤ 5) for the given target platform.

Finally, for the random search, we need to specify the number of configurations

to be examined (also 15000 for this work) and the probability distribution to be used

(uniform probability distribution for this work).

4.4.4 Comparison Criteria

To systematically compare different search-based optimization strategies we use two

different metrics: (1) the efficiency of each strategy, and (2) the quality of the

configuration set obtained.

Efficiency.

Since we deal with iterative compilation, it is worth evaluating the effort required

to obtain a solution. To address this, we count the total number of configurations

evaluated by the auto-tuners for obtaining the solution. We denote this number as

N . Additionally, as our optimization includes time and energy, we also introduce two

4.4. EXPERIMENT DESIGN 49

W

(0,0)

objective 1

ob
je

ct
iv

e
2

Figure 4.2: Two-dimensional example of a hypervolume V (Cfin) of a set Cfin of
trade-off configurations () and a hypothetical worst-case configuration ().

metrics to examine how RS-GDE3 performs with respect to these two objectives; we

call this time-to-solution and energy-to-solution. They denote the amount of time

or energy required by the three search methods to arrive at the final configuration

set Cfin.

Quality.

Assessing the quality of a configuration which optimizes only one objective can be

achieved by simply analyzing its value in that objective, e.g. the lower the value the

better the configuration (assuming a minimization problem). However, comparing

configurations of a multi-objective optimization problem is more complex since it

requires comparing sets –the computed trade-offs– instead of single values. The hy-

pervolume V (Cfin) of a set of non-dominated configurations Cfin is a metric proposed

in [142] that solves this problem. It consists of the normalized volume –an area in

case of a dual-objective problem– containing configurations that are worse than those

contained in Cfin, as illustrated by Figure 4.2 for an arbitrary bi-objective problem.

In other words, for any configuration enclosed by that volume there is a configura-

tion in Cfin with better values for all the considered objectives. Naturally, the larger

the hypervolume the better the quality of the configurations in Cfin. The largest

hypervolume value (V (Cfin) = 1) belongs to the utopia point (unattainable optimal

configuration), i.e. the point consisting of the optimum value for each criterion.

We also propose another metric to evaluate the quality of Cfin: the freedom in

selection. The metric aims at quantifying how many different high quality config-

urations a technique exposes to the user. Simply using |Cfin| to measure this does

not completely address the problem: e.g. a configuration set obtained by strategy A

could contain a lot of points dominated by the single point computed with strategy

50 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

B. For this reason, we also employ |Cfin|′, denoting the relative amount of configura-

tions which are not dominated by the configurations computed by any other of the

auto-tuners used. Hence, the higher the percentage, the higher the quality of the

configurations contained within Cfin.

Since random search and RS-GDE3 are stochastic algorithms, they may produce

different results in different runs. Therefore, the results of a single run are not

sufficient for a meaningful comparison. In our evaluation we use the arithmetic

means N , |Cfin|, |Cfin|′, and V (Cfin), derived over 5 runs, as directly comparable

substitutes.

4.5 Experimental Results

4.5.1 RS-GDE3 Evaluation

Table 4.3 gives an overview of the performance of RS-GDE3 compared to hierarchical

and random search with respect to the three considered metrics. It shows that RS-

GDE3 needs only 5–12% of the number of evaluations compared to the hierarchical

and random search strategies to provide configurations that dominate between 77%

and 100% of the configurations offered by the other two. In addition, the configura-

tion sets offered by RS-GDE3 span larger hypervolumes than the configuration sets

provided by hierarchical and random search.

Table 4.4 illustrates the efficiency of RS-GDE3 compared to hierarchical and ran-

dom search regarding the time and energy required to obtain a final configuration

set. Beyond the already low number of evaluations compared to hierarchical and

random search, RS-GDE3 spends disproportionally less time and energy for finding

the final configuration set since it quickly converges on good configurations. Hence,

only 0.7–7.2% of the time and 1.2–8% of the energy are required by RS-GDE3 com-

pared to hierarchical and random search. It should be noted that the optimization

problem cannot be simplified by sequentially optimizing parameters (e.g. finding an

optimal tile size first and then tuning the number of cores), as the optimal choices

for these settings have been shown to be inter-dependent in related work [65] as well

as in our experiments. The comparison also shows that random search seems to be

more efficient than hierarchical search. This may be caused by comparatively bad

configurations that are found at the edges and corners of our search space – very

specific points that are rarely evaluated by random search using a uniform probabil-

ity distribution. Examples for bad configuration parameters include the minimum

number of threads (causing long execution times) and maximum number of threads

(for codes that do not scale well up to the maximum machine size), large tiling

4.5. EXPERIMENTAL RESULTS 51

Table 4.3: Performance comparison of the different evaluated algorithms.

mm dsyrk jacobi-2d 3d-stencil n-body

H
ie

ra
rc

h
ic

al N 18432 18432 15876 15876 15876

|Cfin| 18 21 31 30 26

|Cfin|′ 2% 5% 78% 22% 0%

V (Cfin) 0.00 0.00 0.69 0.75 0.50

R
a
n

d
om

N 15000 15000 15000 15000 15000

|Cfin| 4.4 2.2 17.2 24.8 30

|Cfin|′ 0% 11% 5% 60% 17%

V (Cfin) 0.33 0.17 0.55 0.61 0.70

R
S

-G
D

E
3 N 956.2 1149.6 1243.6 981.4 1801.4

|Cfin| 23.4 24.8 29.8 28.2 29.6

|Cfin|′ 98% 98% 75% 77% 87%

V (Cfin) 0.48 0.31 0.76 0.76 0.77

Table 4.4: Time-to-solution and energy-to-solution of RS-GDE3 in comparison to
hierarchical and random search.

Hierarchical Search Random Search

Benchmark Time Energy Time Energy

mm 0.71% 1.18% 2.41% 2.30%

dsyrk 1.49% 2.43% 5.08% 4.95%

jacobi-2d 3.85% 4.05% 7.15% 4.59%

3d-stencil 2.78% 4.62% 6.20% 5.98%

n-body 2.58% 5.21% 6.93% 8.03%

parameters that do not improve cache behavior, or the minimum DVFS setting of

f = 1.2 GHz that causes the highest execution time among all DVFS settings.

4.5.2 Energy-Time Trade-off as a Function of Resource Usage

Related work has already shown the existence of a trade-off between time and power

consumption [103]. It is easily explained by different levels of CPU usage: faster con-

figurations commonly use a higher number of cores, naturally demanding a higher

power budget. Additionally, power states as defined in Definition 2.8 usually require

voltage v and frequency f to be changed in unison, and as Equation (2.4) of Sec-

tion 2.1.1 shows, voltage v appears on the function computing power Pdynamic as a

power of two, whereas the clock frequency f affects time at most in a linear fashion.

52 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
1 socket (s) 2 s 3 s 4 s

configurations

time
energy

resource usage

Figure 4.3: RS-GDE3 computed trade-offs among time, energy and resource usage
for mm.

However, trade-offs between time and energy have been less studied in literature

and are more difficult to obtain/explain since energy also depends on time and

hence f . Thus, any optimization promising a trade-off between time and energy

must increase or decrease power consumption disproportionally high compared to the

decrease or increase in time. Our experiments show that the trade-off between time

and energy varies with the resource usage and can expose different behaviors. In the

rest of this section, we analyze these results and describe which parameters/situations

are responsible for such trade-offs.

For the sake of clarity, we summarize our results using a graphical representation

as illustrated by Figure 4.3. It shows the time, energy, and resource usage behavior of

the set of code configurations computed by RS-GDE3 for mm. These configurations,

listed in Table 4.5, are first ranked according to the number of sockets used, and

configurations using the same number of sockets are further sorted by increasing

resource usage. For clarity, configurations that use the same number of sockets are

presented on the same background color and the number of sockets is given on the

top. We will first discuss the mm case and present our findings, with the results of

the remaining codes following thereafter.

Two different parts can be observed in the figure: a part where time and energy

are highly positively correlated, and a second one indicating a trade-off between the

two. The first part corresponds to configurations using a single CPU socket. As a

consequence, we structure our discussion in two blocks: the single-socket and the

4.5. EXPERIMENTAL RESULTS 53

multi-socket case.

The single-socket case.

The results show that the configurations using only one socket can be further divided

into a subset where reducing time also reduces the energy, and a subset where reduc-

ing time increases the energy. Without loss of generality we focus our discussion on

the example of mm (Figure 4.3). When taking resource usage into consideration, we

observe that time and energy are highly correlated when resource usage is low; how-

ever, this only holds until the resource usage reaches a critical point (configuration

no. 5 in Figure 4.3), when both, energy and time, become conflicting objectives.

For instance, energy can be further reduced from that point onwards while time

increases.

A detailed analysis of the computed configurations (listed in Table 4.5) reveals

that they use almost identical tile sizes. These values correspond to an optimal (local

or global) tile size configuration found by the auto-tuner. Thus, once this optimal tile

size configuration has been found, there are only two tunable parameters influencing

the behavior of a code: the number of cores |Ucore| and the clock frequency f .

Due to our sorting, the left-most configuration in Figure 4.3 is the one with

the lowest resource usage (|Ucore| = 1, at the highest frequency). From this point,

increasing the number of used cores reduces the time, and at the same time also the

energy. The reason for this behavior can be explained with the power consumption

breakdown of the CPU: using a single core requires most off-core entities of a socket to

be active, such as the last level cache or the memory controller. Generally, increasing

the number of used cores does not require providing additional power to activate

those shared hardware units. Hence, doubling the number of used cores for example

does not usually require double the power. Thus, as both time and power per used

core decrease, the overall energy is also reduced. In fact, our experiments show that

configurations no. 1–5 in Figure 4.3, where time and energy do not conflict, only

differ in the number of used cores. Note that this holds only for scalable codes such as

the ones used in our experiments. If a code does not scale sufficiently, parallelization

may lead to a disproportionally low decrease in time compared to the increase in

power, and the overall energy will increase as well. Since we target HPC codes, we

assume scalability for the rest of the analysis. Our first observation can then be

stated as follows:

1. Assuming scalable codes, parallelism is a way of reducing both time and en-

ergy when using a single socket computing system if the other parameters are kept

invariable.

54 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

Table 4.5: Details of all mm configurations depicted in Figure 4.3.

Conf.
No

Tile
Size A

Tile
Size B

Tile
Size C

No. of
Cores

CPU Freq.
(GHz)

1 37 248 6 1 2.7

2 30 248 6 2 2.7

3 24 248 6 3 2.7

4 31 248 6 6 2.7

5 30 236 6 8 2.7

6 30 248 6 8 2.7

7 30 248 6 8 2.5

8 30 248 6 8 2.3

9 30 248 6 8 2.2

10 30 248 6 8 2.0

11 30 248 6 8 1.9

12 30 248 6 8 1.6

13 21 248 6 12 2.7

14 18 248 6 16 2.7

15 30 248 6 16 2.6

16 18 248 6 16 2.3

17 30 248 6 16 2.2

18 32 248 6 16 1.7

19 31 248 6 19 2.7

20 25 248 6 20 2.6

21 21 248 6 23 2.7

22 30 248 6 23 2.3

23 15 248 6 24 2.7

24 24 248 6 24 2.3

25 21 248 5 32 2.7

26 24 248 6 32 2.7

4.5. EXPERIMENTAL RESULTS 55

The second way of modifying the behavior with regard to the left-most con-

figuration is via tuning the frequency parameter f . Lowering f —despite possibly

decreasing the energy— increases time. The results of RS-GDE3 show that frequency

tuning leads to dominated configurations if it is applied before fully exploiting par-

allelism. The reason explaining this is very simple. For every other configuration,

the optimizer finds a configuration with increased parallelism reducing the time and

obtaining a higher energy reduction than by using lower frequencies. Our second

observation can be stated then as:

2. In a single-socket scenario, parallelism allows for higher rates of energy re-

duction than frequency tuning and, in addition, reduces time.

Once the maximum number of cores has been reached, the auto-tuner exploits

frequency tuning. These configurations correspond to the second part of the graph,

where energy and time are conflicting objectives. As follows from our previous

discussion, decreasing the time is no longer possible since parallelism has already

been exploited and all cores are working at their maximum frequencies. Decreasing

the frequency will naturally increase the execution time but energy reductions can be

achieved, caused by the cube root rule [38]: the power consumption of a CPU scales

cubically as long as its voltage changes with the frequency in a correlated fashion;

however, the performance of a code usually scales at most linearly with the CPU

clock frequency. Hence, a trade-off between time and energy is formed and continues

up to the energy-optimal frequency setting. This energy-optimal setting is workload-

dependent and was found to be around f = 1.5 GHz on our target platform by our

auto-tuner, as lower frequencies show an increase in energy (because the CPU voltage

v cannot be scaled down accordingly by the hardware). Thus, as lower frequencies

would worsen all three objectives, such configurations are rejected by the optimizer.

Our third observation in this case is:

3. When parallelism has been already exploited, energy can still be further reduced

by the sake of slightly increasing time, via applying frequency tuning.

The multi-socket case.

Again, without loss of generality we focus on the results depicted by Figure 4.3.

According to the results illustrated in that graph, moving to a configuration using

an increased number of sockets has been successfully exploited by the auto-tuner. In

such situations, RS-GDE3 has always found a configuration which reduces the time

compared to configurations using a lower number of cores (see for example the first

configurations using two, three, or four sockets in Figure 4.3). However, this jump

to a higher number of sockets always comes with an increase in energy. Thus, our

56 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

observation (1) in the previous section does not hold in the case of using multiple

sockets due to the required energy to operate additional sockets. This fact allows us

to state our fourth observation:

4. Multiple sockets can be exploited to decrease the execution time of an applica-

tion but not to further reduce its energy.

Our experiments also reveal that, when using more than one socket, the number

of cores leading to optimal trade-off configurations does not gradually increase as

in the single socket case, but almost instantly reaches the maximum number. This

results in our fifth observation:

5. Optimal trade-off configurations using more than one socket span over the

maximum number of available cores.

We also observe that the energy can be reduced by the sake of increasing the

time. This situation corresponds to observation (3), where the auto-tuner reduced

the frequency for energy savings. Therefore, that observation also applies to the case

of configurations involving several sockets at a full utilization level.

Figure 4.4 shows that our observations and findings also hold for the remaining

target problems 3d-stencil, n-body, dsyrk, and jacobi-2d. It should be noted that RS-

GDE3 computed configurations that use up to four sockets for all problems except

for jacobi-2d. This is explained by an average scaling behavior of the jacobi-2d code,

which reaches its minimal execution time by using 10 cores instead of the maximum

of 32. The remaining four codes scale well on our target hardware.

4.5.3 Impact of Turbo Boost

In addition to the results presented thus far, we investigated whether Intel’s Turbo

Boost feature [25] might have any effect on our observations. Turbo Boost (TB) is

a mechanism provided by Intel to increase the performance of applications with a

limited degree of parallelism, by defining the maximum clock frequency fmax to be

inversely proportional to the numbers of cores in use, i.e.

fmax,cpu ∝
1

|Ucore,cpu|
(4.4)

where Ucore,cpu is the set of all cores of a CPU. As its operation depends on run-time

properties that are difficult to predict, such as the current thermal and power budget

of the CPU [107], TB is often disabled in related work. However, we believe that

such hardware characteristics can be exploited by auto-tuning, and therefore, we

enabled it for all our experiments.

To check whether the observations discussed in the previous section depend on

4.5. EXPERIMENTAL RESULTS 57

0

0.2

0.4

0.6

0.8

1

(a) 3d-stencil

0

0.2

0.4

0.6

0.8

1

(b) n-body

0

0.2

0.4

0.6

0.8

1

(c) dsyrk

0

0.2

0.4

0.6

0.8

1

(d) jacobi-2d

Figure 4.4: RS-GDE3 computed trade-offs among time (), energy () and
resource usage () for 3d-stencil, n-body, dsyrk, and jacobi-2d.

58 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

0

1

2

3

4

5

6

7

8

9

configurations

ti
m

e
[s

]

time with TB
time without TB

(a) execution time

0

50

100

150

200

250

300

configurations

en
er

gy
[J

]

energy with TB
energy without TB

(b) energy consumption

Figure 4.5: Sample Pareto sets of single RS-GDE3 runs for the n-body code with
Turbo Boost enabled and disabled.

4.5. EXPERIMENTAL RESULTS 59

the use of TB, we also ran RS-GDE3 with the TB option disabled and found all our

observations to be still valid. Nevertheless, RS-GDE3 generates additional config-

urations with TB, allowing for a larger trade-off between time and energy for low

numbers of cores and hence extending the objective space. Figure 4.5a and Fig-

ure 4.5b illustrate this effect. They show time and energy for the n-body code with

the data sorted in ascending order of resource usage. Due to the sorting, configura-

tions on the left show a relatively large difference between time and energy, as the

effect of TB is stronger with fewer cores in use. As the number of cores increases,

the effect diminishes.

However, it should be noted that TB might lead to dominated trade-off configu-

rations in a multi-socket scenario, due to sockets working at different frequencies if

their numbers of active cores do not match.

4.5.4 Evaluation of RS-GDE3 for Dual-Objective Optimization

Previous sections showed the potential of our RS-GDE3 method for three-objective

auto-tuning. The aim of this section is to empirically evaluate RS-GDE3 for dual-

objective optimization. Although RS-GDE3 has been already applied to optimize

execution time and resource usage in [65], here we extend the analysis comparing

RS-GDE3 with NSGA-II [32], the most popular algorithm for multi-objective opti-

mization. Figures 4.6 and 4.7 illustrate the Pareto fronts computed by RS-GDE3

and NSGA-II when they are applied to optimize execution time and resource us-

age, and execution time and energy for mm; notice that we have always included

execution time in our experiments since minimizing it is still the main objective in

HPC. The figure shows that the Pareto fronts computed by RS-GDE3 cover a wider

range of possible objective values in both cases, therefore offering a larger trade-off.

Additionally, for each solution included in the Pareto fronts computed by NSGA-II,

there is a solution computed by RS-GDE3 which dominates it (i.e. it is faster and

exhibits lower resource usage or it is faster and requires less energy). Thus RS-GDE3

clearly delivers better results than NSGA-II.

4.5.5 Tiling Effects

One of the parameters tuned by RS-GDE3 are loop tile sizes. Examining the results

more closely reveals points that seem to provide small trade-offs between time and

energy caused by tile size changes while keeping the same number of cores and CPU

frequency setting. The first three energy-time pairs of configurations in Figure 4.4b

and Figure 4.4c show this characteristic. Between the two configurations of a pair,

only the tile size was modified. Upon further investigation we found this difference

60 CHAPTER 4. MULTI-OBJECTIVE AUTO-TUNING

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
·108

4

5

6

7

8
·108

execution time [s]

re
so

u
rc

e
u

sa
ge

RS-GDE3
NSGA-II

Figure 4.6: Sample Pareto fronts obtained by RS-GDE3 and NSGA-II for mm when
optimizing for execution time and resource usage.

3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9
·107

5

6

7

8

execution time [s]

en
er

g
y

[J
]

RS-GDE3
NSGA-II

Figure 4.7: Sample Pareto fronts obtained by RS-GDE3 and NSGA-II for mm when
optimizing for execution time and energy.

4.6. SUMMARY 61

to be statistically insignificant and assume causes such as inaccuracies of the energy

measurement system. Another possible reason is external load on the remaining but

usually idle cores of the same socket. While this would show little impact on the

execution time of our codes, it would fully contribute to the energy which is only

measured on a per-socket-basis. For configurations that use all cores on a socket,

there would also be a correlated impact on the execution time, hence not leading to

a presumed trade-off.

4.6 Summary

In this work, we have shown the application of a multi-objective auto-tuner which

optimizes for three conflicting criteria: execution time, resource usage and energy

consumption. We compared RS-GDE3 with a hierarchical and a random search and

showed that RS-GDE3 requires at least 93% less time and 92% less energy to obtain

solutions of equal or higher quality in a benchmark composed of five computationally

intensive codes. We identified the complex relationships between the three objectives

and the effect of our tunable parameters on them. Our results have been outlined

with clear observations that can be used to guide the development of auto-tuners

and code optimization.

Possible future extensions of this work include investigating more sophisticated

ways of dealing with hardware characteristics such as Turbo Boost or considering

additional objectives. In addition, the search space could be extended by adding

more tunable knobs such as scheduling strategies and topology-aware thread/core

affinity mappings.

Chapter 5

Significance-driven Optimization

of Code Execution

This chapter presents work on significance-driven code execution and near-threshold

voltage computation, published under the title On the Potential of Significance-

Driven Execution for Energy-Aware HPC, see [52]. It investigates attributing parts

of iterative solvers (statements or data) with varying susceptibility to faults, justi-

fying executing parts of the solver on unreliable hardware at reduced energy con-

sumption. My contribution for this work was implementing the fault simulation and

experimental framework, conducting measurements, data analysis, and investigating

a partial fault protection method.

5.1 Introduction

While high performance is still the main objective in HPC, many considerations

have been raised recently that require including power and energy consumption of

hardware and software in the evaluation of innovative methods and technologies.

The motivational reasons are diverse, ranging from infrastructural limits such as

the 20 MW power limit proposed by the US Department of Energy to financial or

environmental concerns [131].

As a result, hardware industry has shifted its focus to include power and energy

minimization into their designs. The results of these efforts are evident by features

such as DVFS or power and clock gating.

DVFS has been an efficient tool to reduce power consumption. In cases when a

CPU core is not fully utilized, frequency and subsequently voltage are reduced to save

power with limited impact on performance. However, the increased voltage margins,

63

64 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

that are required with the shrinking of transistors, put a limit on how much we can

scale voltage. These constraints do not allow to operate hardware at the minimum

energy consumption point, which is in the sub-threshold area below the nominal

transistor threshold voltage (see Section 2.1.1). Operating in the sub-threshold volt-

age area gives rise to increased variation, timing errors and performance degradation

that would be unacceptable for HPC applications. However, operating with supply

voltage slightly above the threshold voltage yields power consumption gains similar

to those with sub-threshold voltage operation, with less performance degradation

due to less aggressive scaling of frequency. This is also referred to as near-threshold

voltage (NTV) operation. On the downside, operation in NTV does not entirely

mitigate timing errors of transistors due to parametric variation, i.e. the deviation

of design parameters due to imperfection of manufacturing methods. Karpuzcu et

al. [69] propose operation at NTV employing multiple frequency domains to cope

with variability and provide reliable hardware in order to cope with parametric vari-

ations. They suggest that operation in NTV will incur 10–50× power reduction with

subsequent frequency reduction by 2–5×. To cope with this frequency-induced per-

formance degradation they use parallelism, fitting hundreds of cores in the available

power budget.

Methods for tolerating errors in hardware have been studied in the past [37, 60].

This resulted in several solutions at different levels of the design stack, in both

hardware and software. However, these solutions often come with non-negligible

performance and energy penalties. As an alternative, the shift to an approximate

computing —also known as significance-based computing— paradigm has been re-

cently proposed [11, 69, 78, 110]. Approximate computing tries to trade reliability

for energy consumption. It allows components to operate in an unreliable state by

aggressive voltage scaling, assuming that software can cope with the timing errors

that will occur in transistors with higher probability. The objective is to reduce

energy consumption by using NTV and avoid the cost of fault-tolerant mechanisms.

In this work, we are trying to utilize the potential for power and energy reduction

that near-theshold voltage computing (NTC) promises combined with significant-

based computing. We investigate the effects of operating hardware outside its stan-

dard reliability specifications on iterative HPC codes, incurring both computational

errors as well as reductions in energy consumption. We show that codes can be

analyzed in terms of their significance, describing their susceptibility to faults with

respect to their convergence behavior. Using the Jacobi method as an example,

we show that there are iterative HPC codes that can naturally deal with many

computational errors, at the cost of increased iterations to reach convergence. We

5.2. RELATED WORK 65

also investigate scenarios where we distinguish between significant and insignificant

parts of Jacobi and execute them selectively on reliable or unreliable hardware, re-

spectively. We consider parts of the algorithm that are more resilient to errors as

insignificant, whereas parts in which errors increase the execution time substantially

are marked as significant. This distinction helps us to minimize the performance

overhead due to errors and utilize NTV optimally.

We show that, on our target platform, we can achieve 65% energy gains for a

parallel version of Jacobi running at NTV compared to a serial version at super-

threshold voltage (i.e. normal, reliable operation) along with time savings of 43%,

when we execute with 20% of the super-threshold frequency.

Section 5.2 discusses related work relevant to our research. The notion of signifi-

cance is introduced in Section 5.3. We will describe our methodology and experiment

setup in Section 5.4 and analyze and illustrate our results in Section 5.5. Finally,

Section 5.6 will conclude and provide an outlook for future research.

5.2 Related Work

Research in NTC has attracted considerable interest. It is a direct effect of industry’s

strive to keep up with Moore’s law while coping with thermal and power limits. Prior

research in NTC [34, 68, 69, 70] investigates both hardware and software solutions

to cope with the entailed proneness to faults and identify energy saving possibilities.

However, this research either does not explore the effect of unreliability on unpro-

tected codes or confines its exploration to probabilistic applications that can afford

direct interventions to their convergence criterion and computation discarding [78].

Similarly, there are many works that explore the influence of errors on individual

hardware units of processors, without further exploration of their implications on

software [109].

Software methods for improving error resilience include checkpointing for failed

tasks [60] or replication to identify silent data corruption [37]. Among others, Hoem-

men and Heroux investigate iterative methods for their fault tolerance [57] and El-

liott et al. quantify the error of single bit flips in progressing iterations of Jacobi [35].

However, these works do not investigate the impact of fault recovery on energy con-

sumption or how fault resilience can be leveraged to reduce it.

Recently, there has been interest in exploiting approximate computing to build

fault resilient systems. Leem et al. [78] build a system of few reliable and many

unreliable cores. The system executes the control-intensive part of the application

—which is highly fault intolerant— on reliable cores and the fault-tolerant compute-

66 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

intensive part of the application on relaxed-reliability cores. This scheme achieves

90% or better accuracy of the output of applications even for 2×104 errors per second

per core. Agarwal et al. [2], Misailovic et al. [87] and Rinard et al. [106] propose a

static analysis-based technique to reduce the number of iterations in a loop without

compromising correctness. In the same context, Baek et al. [11] provide a framework

where the programmer specifies the functions and loops they want to approximate

and the desired loss of Quality of Service (QoS). Then, the program is transformed

to meet the QoS degradation target. Rinard et al. [105] propose to discard some

tasks of the application and produce new computations that execute only a subset

of the tasks of the original computation. Sampson et al. [110] propose a technique to

distinguish the data types that need precise computation from the ones that can be

approximated. They guarantee that the approximate instructions will never crash

the program but only reduce power consumption.

5.3 Significance

We motivate the notion of code significance, that different parts of an application

(i.e. code regions of Section 2.2) show different susceptibility to errors in terms of

the change in the end result. This applies to a code region’s statements as well as its

data and gives rise to considering partial protection methods, employed only where

and when necessary. This distinction, coupled with the prospect of NTC, creates

the opportunity for saving significant amounts of power by running non-significant

parts of the computation on unreliable hardware (i.e. hardware units of Section 2.1)

in a near-threshold operating mode.

We want to illustrate the applicability of significance classification on iterative

solvers and their resilience in the presence of faults. Iterative solvers operate on

repeatedly updating the solution of a system of equations until it reaches a desired

level of accuracy. Errors occurring in these algorithms can be gracefully mitigated

at the cost of an increased number of iterations to reach convergence. As a result,

these applications are suitable candidates for trading time-to-convergence for lower

energy consumption.

In correspondence with Section 2.2, we want to attribute significance to program

statements and the data they operate on. We select the weighted Jacobi method

as a representative use case in order to study the resilience to errors in the broader

class of iterative numerical applications. Jacobi solves the system A×X = B for a

5.3. SIGNIFICANCE 67

0 8 16 24 32 40 48 56 63

0.2

0.4

0.6

0.8

bit position

re
la

ti
ve

fa
u
lt

ti
m

e

1

1.25

1.5

Figure 5.1: Relative time overhead of Jacobi for faults in A at various iterations,
averaged over all matrix positions, for all bit positions, with a problem size of N =
1000. The hatched bar denotes divergence.

diagonally dominant matrix A, i.e.

|Ax,x| ≥
∑
y 6=x

|Ax,y|. (5.1)

It starts with an initial approximation of the solution, X0, and in each step updates

the estimation for the solution, according to

X(z+1)
x = ω

 1

Ax,x
Bx −

∑
y 6=x

(Ax,y ·Xz
y)

+ (1− ω) ·Xz
x. (5.2)

The algorithm iterates until the convergence condition ‖A × X − B‖ ≤ limit is

satisfied, and is guaranteed to converge if A is strictly diagonally dominant, i.e.

|Ax,x| >
∑
y 6=x

|Ax,y|. (5.3)

To demonstrate the applicability of significance to Jacobi, Figure 5.1 presents

the effect of a single bit flip fault happening in matrix A at various iterations of

Equation (5.2) of an otherwise fault-free Jacobi run. It shows the relative overhead

of Jacobi (i.e. the number of additional iterations) required to reach the convergence

68 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

limit compared to a fault-free run. Generally, Jacobi exhibits a logarithmic conver-

gence rate and later iterations are more significant due to the overhead required to

recover from a fault. Furthermore, because the achieved residual for later iterations

is lower than for earlier iterations (due to the better X that has been computed),

later iterations also show higher sensitivity to faults. Both these factors render

program statements in late Jacobi iterations more significant than in early itera-

tions [35]. This motivates the potential application of partial protection or recovery

mechanisms, for later Jacobi iterations only.

In addition, Figure 5.1 illustrates that Jacobi is able to cope well with flips

happening in lower bit positions, as they cause little to no overhead. This can be

attributed to the high precision of double-precision floating point numbers. Flips

happening in the high bits of the exponent for elements of A however can have two

possible outcomes, depending on their position and the error they introduce. If the

flip causes a positive error in the floating point number and happens aside the di-

agonal, i.e. in any Ax,y with x 6= y, there is a risk of violating Jacobi’s convergence

condition of strict diagonal dominance for A, Equation (5.3) (analogously for neg-

ative errors on the diagonal, or Ax,y with x = y). These cases manifest themselves

as the solid bar shape in Figure 5.1 for bits 57–62. For the majority of cases that

violate this condition Jacobi does not converge and ends up with an residual of ei-

ther infinity (Inf) or not a number (NaN), depending on the operations involved.

Overall, Figure 5.1 shows that for most bit positions there is no protection or re-

covery necessary, except for a few high bits of the exponent that justify mitigation

techniques.

In addition to Jacobi’s varying significance depending on the progress of the algo-

rithm, significance can also vary depending on the data that is exposed to a fault (A,

B or X), as well as the position within that data. As an example, Figure 5.2 presents

the relative overhead of injecting a fault on the diagonal and offside the diagonal of

iteration matrix A (for illustrative clarity, we choose the problem size to be 10×10).

The fact that elements on the diagonal show lower impact (and hence lower signif-

icance) can be attributed to the combination of two reasons. First, these elements

are used in a division operation whereas the others are used in a multiplication (see

Equation (5.2)). Second, we use a uniform distribution to randomly initialize the el-

ements of A and B, that leads to the majority of numbers being positive and greater

than 1. Hence, a multiplication operation tends to increase any effect a fault might

have, whereas a division generally reduces it. For this reason, our experiment results

presented in Section 5.5 involving matrix A are based on sampling positions both

on and aside the diagonal and computing a weighted average for the entire matrix.

5.3. SIGNIFICANCE 69

0 1 2 3 4 5 6 7 8 9

0

1

2

3

4

5

6

7

8

9

i position

j
p

os
it

io
n

1.4

1.65

1.9

Figure 5.2: Relative time overhead of Jacobi for faults in A at all matrix positions,
averaged over all bit positions, with a problem size of N = 10.

It should be noted that the weighting between diagonal vs. aside elements naturally

changes with the matrix dimensions. As a consequence, the overall significance of A

is also partially dependent on the input data size.

Detecting significance can be difficult for large applications. It is an attribute

specific to the algorithm and input data, and hence input from programmers can be

indispensable for a system that provides support for significance-based computing.

Such a system would rely on the programmer’s knowledge about the algorithm, who

would denote e.g. which parts can be executed unreliably. Large pieces of software

often compose from smaller mathematical kernels whose tolerance in faults has been

extensively studied. Such studies could be used by programmers to mark code re-

gions as significant or non-significant, without having to perform extensive profiling.

However, there is ongoing research for algorithmic detection of the significance of

code based on profiling (e.g. automatic differentiation [134]). This approach studies

the sensitivity of code blocks, monitoring the range of the output of a code block

after perturbation applied to the input. A code block is then considered to be more

sensitive to errors, the larger the range of possible output values is. Nevertheless,

automatically and efficiently detecting code significance is still an open research area.

Additionally, the design of a system for significance-based computing should pro-

vide fallbacks for applications that cannot afford unreliability in their execution. In

order for these applications to be able to benefit from NTC, the system must employ

70 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

software or hardware fault recovery mechanisms.

The goal of this work is to demonstrate the existence of a trade-off between energy

consumption and convergence time of iterative solvers in the presence of faults, and

to analyze the properties of this trade-off.

5.4 Methodology

This section describes the fault model of our work. Moreover, it elaborates the power

and energy effects that we expect from operating hardware unreliably and provides

details about the hardware and our measurement methods.

5.4.1 Fault Model

Following common practice in related work [109], we categorize faults as follows:

no impact The fault has no effect on the application. This is the case for faults

that happen in unused parts of hardware, such as hardware registers that are

written after the fault occurred before they are read again, or parts of hardware

not used by the application altogether. Analogously, faults can happen in parts

of the application that are not executed or used (e.g. control flow branches that

are not taken).

data corruption

silent The fault is only detectable with knowledge about the application, e.g.

using an application-specific assertive check “this computation must yield

positive numbers”.

non-silent The fault is detectable without knowledge about the application.

Examples are faults that cause infinity (inf) or not a number (NaN) in

computations that are expected to yield ordinary floating point numbers.

looping Faults that cause the application to loop, which might not be de-

tectable (c.f. halting problem [132]).

other The fault represents an immediate, unrecoverable failure in the execution

of the application. This category includes illegal instructions, segmentation

faults, etc. Note that while segmentation faults are caused by accessing invalid

memory addresses, these addresses are not considered data as per category

data corruption.

5.4. METHODOLOGY 71

Of these fault classes we consider silent data corruption (SDC) faults since they

are the most insidious in high performance computing. Signaling errors such as

Inf, or NaN or application crashes due to illegal instructions are comparatively

easily detectable. Also, looping might be identified by detecting fixed points in the

iteration data of an application or constraints on the execution time of code regions.

In contrast, SDCs can cause graceful exits with possibly wrong results, making them

particularly important to be dealt with.

SDCs can be categorized further as persistent or non-persistent. Persistent faults

occur at the source of the data in question, i.e. if the data is read multiple times it

will exhibit the same deviation each time. Non-persistent faults on the other hand

are faults in temporary copies of data that are only used once (e.g. faults happening

directly in execution units or registers).

We consider persistent faults, mappable to faults happening in CPU data caches

that are read multiple times and might also be written back to main memory. We

do not account for errors in machine code in instruction caches, because these can

lead to non-recoverable errors. We assume that instruction caches are employed with

protection mechanisms.

5.4.2 Energy Savings Through Unreliability

We explore execution schemes that deliberately compromise the reliability of proces-

sors, using NTV operation, for achieving power and energy savings in HPC codes [34].

The main issue of today’s CMOS technology is that, while the number of transistors

keeps increasing in accordance with Moore’s law, the power supply and heat dissipa-

tion requirements for a fully loaded system (i.e. all or most transistors switching at

high rates) are not sustainable under normal conditions. The solution to this prob-

lem is to operate the system at NTV. Karpuzcu et al. [69] suggest that power savings

between 10× and 50× are possible with NTV, albeit with a 5× to 10× reduction in

clock frequency (required by the increase in transistor switching time, also circuit

delay [34], at NTV). Under these assumptions, a processor would consume 2× to 5×
less energy per operation with NTV, compared to above-threshold voltage operation.

Given a fixed power budget, a system design could replace few cores operating in

the above-threshold region with many cores operating in the NTV region. A similar

strategy of trading each reliable core with many unreliable NTV cores could be ap-

plied to achieve a fixed performance target. Addressing this performance concern,

via parallelism, is fundamental, since we aim for application of NTV in HPC.

72 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

5.4.3 Experiment Setup

The experimental testbed used for testing our method consists of an HPC node

equipped with four Intel Xeon E5-4650 Sandy Bridge EP processors [28]. Each CPU

offers 8 cores with 32 KB and 256 KB of private caches each, and a processor-wide

shared cache of 20 MB. The system runs a 3.5.0 Linux kernel and we used gcc 4.8.2

for compilation.

Our workload —a C implementation of Jacobi— is parallelized using OpenMP.

The problem size N = 1000 was chosen such that the entire data resides in the

last-level cache to minimize main memory interaction not covered in our energy

measurement scope (described below), while still being large enough to ensure rea-

sonable run times with regard to our measurements. As described in Section 3.2.3,

time measurements were done via x86’s rdtsc instruction and we used RAPL for

obtaining energy consumption information of the entire CPU, resulting in a per-

CPU energy measurement domain as exemplified in Example 2.4 of Section 2.1.3, or

DE ∈ Ucpu. To achieve consistent energy readings, the target hardware was warmed

up for an ample amount of time before taking measurements.

Since our target hardware system only provides fixed tuples of voltage and fre-

quency (v, f) ∈ P (see Definition 2.8) that the user can only select among but not

change arbitrarily (as would be the case with processors such as the one described

in Example 2.3), our target hardware system only allows reliable operation. For

this reason, we have to simulate unreliable operation resulting in power and energy

savings, as well as faults. Using the processor described in Example 2.3, which can

be set to operate at arbitrary combinations of v ∈ V and f ∈ F , is not an option for

this work, as its voltage and frequency domains are too coarse-grained and would

lead to instability in the entire system, preventing us from specifically investigating

silent data corruption faults.

The simulation of power and energy savings can be achieved by correcting the

energy consumption data obtained via RAPL with regard to the observations of

near-threshold computing as discussed in Section 5.4.2. Moreover, to be able to

simulate an arbitrary number of reliable or unreliable cores on non-configurable,

commodity multi-core hardware, we need to take care when processing RAPL data

as it includes off-core entities that might be oversized or not necessarily present in

some cases (i.e. ring bus for a single core). To that end, we profiled the CPUs of the

target platform with regard to their power consumption for all numbers of cores in a

weak scaling experiment with Jacobi. Figure 5.3 shows the results of this endeavor.

It indicates that the power consumption increases linearly with the number of cores

with an offset for off-core entities of 7.1 Watts, which will be removed in subsequent

5.4. METHODOLOGY 73

data analysis to provide a fair comparison between arbitrary numbers of reliable or

unreliable cores. The figure also shows a different maximum power consumption for

the two CPU samples (44.3 vs. 39.6 Watts), that can be explained by differences e.g.

in supply voltage or the temperature.

0 2 4 6 8 10 12 14 16
0

20

40

60

number of cores

p
ow

er
co

n
su

m
p

ti
on

[W
]

RAPL CPU1
RAPL CPU2

fit CPU1
fit CPU2

offcore CPU1
offcore CPU2

Figure 5.3: Power consumption per number of cores on two Intel Xeon E5-4650 for
a weakly scaling Jacobi run as measured by RAPL, and offcore amount as inferred
via linear fitting.

Furthermore, our target hardware platform also forces us to simulate faults in

software. Algorithm 5.1 illustrates the experimental setup of our fault simulation.

We inject persistent faults (modeled via fault function δ) represented by bit flips in

the original data (matrix A, vectors B and X) at a range of bit positions of double

precision floating point numbers prior to the computation of a Jacobi iteration.

This simulates bit flips happening in the data caches of CPUs, that are accessed

frequently during the computation. The implementation of the fault simulation is

based on binary operators applied to the respective element in an inlined function,

causing only negligible performance overhead compared to the overall execution time

of a Jacobi iteration.

We assume a single bit flip per overall execution of Jacobi (i.e. multiple itera-

tions), since related work indicates that the effects of multiple faults will lead to

similar observations [10] and because it reduces simulation complexity. Hence, an

experiment, which can be seen as an entity within a parameter study, is defined by

� the data component in which the fault occurs (in the case of Jacobi matrix A,

or vectors X or B);

74 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

Algorithm 5.1 Simplified illustration of experimental fault simulation.

1: A← rand() . Matrix
2: B ← rand() . Vector
3: X ← 0 . Solution
4: residual← 0 . Solution residual
5: count← 0 . Iteration count
6: n← 0 . Temporal position of fault
7: m← ? . Temporal position of switch to reliable mode
8: for n = 0 to m do
9: do

10: if count = n then
11: A,B,X ← δ(A,B,X)
12: end if
13: X ← jacobi(A,B,X) . OpenMP implementation
14: residual← comp residual(A,B,X)
15: count← count + 1
16: while residual > 105 ∧ count ≤ limit
17: end for

Fault injection

� the bit position j at which a flip occurs;

� the Jacobi iteration m when the switch from unreliable to reliable mode occurs,

with 1 < m < M and M denoting the total number of iterations of a fault-free

Jacobi run; and

� the Jacobi iteration n, before the execution of which the fault occurs, with

1 ≤ n < m.

To minimize simulation time, we do not inject faults at every possible element

of the vectors and matrices of Jacobi with a problem size of N = 1000, but perform

representative sampling (e.g. elements both on and aside the diagonal of a matrix)

with respect to the algorithm. Furthermore we employ a convergence limit of a factor

of 10. This means that we consider a faulty Jacobi run as not converging if it takes

more than 10× the number of iterations of a correct Jacobi run for the same input

data set.

5.4.4 IEEE 754 Double-precision Floating-point Format

The data type in use for storing A, X and B in our Jacobi implementation is the

default double-precision floating-point type of the C programming language, double.

The analysis of our results in Section 5.5 is based on the bit positions within the

5.5. RESULTS 75

63 52 0

bit position

sign

exponent mantissa

Figure 5.4: The IEEE 754 binary64 format

IEEE 754 [62] binary representation of these numbers, the binary64 format. Elliot

at al. already provide a detailed discussion regarding the effects of bit flips in this

representation in [35]. Nevertheless, for clearness, we feel it is necessary to include

a brief description of the binary64 format and elaborate on the magnitude of errors

introduced by bit flips, dependent on the position of the bit.

Figure 5.4 shows the binary layout of the widely-used binary64 format. The first

52 bits (positions 0–51) correspond to the mantissa, the following 11 bits (positions

52–62) are used for the exponent and bit 63 denotes the sign. Furthermore, within

the mantissa and the exponent, their lowest bits are the least significant ones. The

decimal value x of a floating-point number is then computed by the formula

x = (−1)sign ·
(

1 +
51∑
j=0

(
µj · 2j−52

)
· 2e−1023

)
, (5.4)

where sign denotes the sign bit, µj the j-th bit of the mantissa and e − 1023 the

exponent (stored with a bias of 1023). Hence, the altered floating point number

resulting from a single bit flip in position j′ can be expressed as

x′ =


x± 2j

′−52 · 2e−1023 flip in mantissa, (5.5a)

x · 2±2j
′

flip in exponent, (5.5b)

−x flip in sign. (5.5c)

We will evaluate the effect of these perturbations on the energy consumption and

execution time of Jacobi in Section 5.5.

5.5 Results

In this section we compare executing Jacobi in parallel on unreliable hardware at

near-threshold voltage (NTV) to sequential and parallel versions of Jacobi executed

76 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

on reliable hardware at super-threshold voltage. Our results present three cases:

Parallel unreliable vs. sequential reliable First, we execute Jacobi at NTV in

parallel throughout its entire execution (i.e. all iterations) and analyze and

discuss the energy savings that can be gained compared to a sequential run at

super-threshold voltage. Since we are dealing with an HPC code, we will also

investigate the performance impact of operating at NTV.

Parallel unreliable vs. parallel reliable Second, this analysis is repeated when

comparing to a parallel execution of Jacobi.

Significance-dependent reliability switching Third, we explore the possibility

of switching from NTV to super-threshold voltage for later iterations, moti-

vated by our discussion in Section 5.3. We investigate whether later iterations

of Jacobi are significant enough to justify the energy and performance expense

compared to operating at NTV. This could create a potential trade-off, since

executing late iterations at super-threshold voltage also prevents late faults

and thereby saves convergence overhead.

Given the absence of documentation on the clock frequency impairment that

results from near-threshold computing, we consider two extreme cases found in lit-

erature: a frequency reduction by a factor of 5 (i.e. 20% of the nominal frequency,

denoted by f=0.2, best case) and a reduction by a factor of 10 (i.e. 10% of the

nominal frequency, denoted by f=0.1, worst case), as discussed in Section 5.4.2.

The results illustrate the significance of matrix A. It is the biggest component

of Jacobi in terms of memory consumption, O(N2) compared to O(N) for B and

X, and therefore presumably shows higher probability to be affected by faults than

data segments with smaller footprints. Hence, we inject exactly one error in matrix

A of Jacobi under NTV execution using the process outlined in Section 5.4.2. Fur-

thermore, we present the worst case regarding the iteration before which a fault can

happen, i.e. the last unreliably executed one. All results presented are averages over

50 random input data sets for statistical soundness, with an overall variance of 10−5

for the relative overhead of the number of iterations for fault-injected Jacobi runs.

5.5.1 Sequential Reliable Jacobi

First, we investigate replacing a single, reliable core by multiple unreliable cores (16,

in case of our target platform) to execute Jacobi under the same power envelope, as

supported by NTC in literature (per-core power reductions of 10×–50×). Hence, we

assume their maximum power consumption to be equal. Figure 5.5 illustrates the

5.5. RESULTS 77

results of such a series of experiments, where in each experiment a fault happens in a

different bit position. It shows the relative energy and time savings over a sequential,

reliable run of Jacobi for all possible bit positions where faults may happen.

The results show that the effects of bit flip faults on energy and time may be

categorized as follows:

A no observable loss in energy or time,

B observable loss in energy or time,

C divergence.

Moreover, this classification coincides with the bit position that is flipped within an

IEEE 754 double-precision floating-point number. Faults happening in bit positions

0–32 can be categorized as class A since they show no effect on energy savings. This

can be contributed to both the resilience of the Jacobi method to faults with small

magnitudes, as well as the overall high precision of double-precision floating point

numbers. Note that bits 0–32 are part of the mantissa and that a bit flip in these

positions can affect normalized floating-point numbers by at most 2−20 · 2e−1023,

as illustrated by Equation (5.5). As a result, energy savings of 31% and 65% are

possible for a 10× (f=0.1) and 5× (f=0.2) frequency reduction respectively.

Bit positions 33–54 and 63 are classified as class B, with higher bit positions up

to 54 showing a higher impact on energy and time. The maximum possible floating-

point error for this class is ±2−1 for the mantissa (see Equation (5.5), bit 51) and a

factor of 2±254 for the exponent (see Equation (5.5), bit 54). As such, energy savings

are reduced to e.g. 48% for f=0.2 in the worst case. Bit 63 is not part of the exponent

but holds the sign, and as such a flip in this position induces an absolute error of

2x (see Equation (5.5)) for any floating point number x, resulting in average energy

savings of 52%. class B warrants protection mechanisms if the user wishes to control

the performance penalty incurred by NTV execution.

The missing data points at bit positions 55–62 are a member of class C since

they are the highest significant bits of the exponent of a double-precision floating

point number (induced errors between 2±255 and 2±262). For our setup, flips in

any of these positions aside the diagonal of matrix A cause violations in Jacobi’s

convergence criterion, lead to divergence and have Jacobi break eventually with a

non-silent Inf or NaN in most cases (see Section 5.3), which are easily detectable.

Therefore, these bit positions should be protected in any case.

The correlation of time and energy savings in our results is a direct consequence

of both our constant workload (i.e. arguably leading to constant power consumption)

78 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

−60

−40

−20

0

20

40

60

en
er

gy
sa

v
in

gs
[%

]

0 8 16 24 32 40 48 56 63
−60

−40

−20

0

20

40

60

bit position

ti
m

e
sa

v
in

gs
[%

]

energy, f=0.2
energy, f=0.1
time, f=0.2
time, f=0.1

Figure 5.5: Relative energy and time savings of a parallel Jacobi run on 16 unreliable
cores compared running on a single, reliable one. The missing data at bits 55–62
denotes divergence.

and the fact that we assume the same power budget for the unreliable cores and the

reliable one.

5.5.2 Parallel Reliable Jacobi

Our second experiment compares parallel execution of the Jacobi code at NTV

against a parallel run at super-threshold voltage. The results of this comparison,

depicted by Figure 5.6, show an identical classification of bit positions compared to

our previous experiment. Nevertheless, one should note the lower performance com-

pared to the previous scenario, attributed to the frequency reduction of unreliable

hardware operating at NTV by a factor of 5 to 10, as well as Jacobi’s sub-linear paral-

lel scaling behavior. Therefore, for class A faults, performance losses between 413%

and 925% are visible. Second, energy savings increase slightly (up to 35% and 67%

respectively). This is expected due to the more energy-expensive super-threshold

voltage setup, since Jacobi does not scale linearly with increasing numbers of cores.

As a result, the (linear) increase in power consumption is not fully compensated by

a reduction in run time, hence leading to a higher energy consumption. In turn, the

relative energy savings of the NTV execution increase.

5.5. RESULTS 79

10

20

30

40

50

60

70

en
er

g
y

sa
v
in

g
s

[%
]

0 8 16 24 32 40 48 56 63
−1,600

−1,400

−1,200

−1,000

−800

−600

−400

−200

0

bit position

ti
m

e
sa

v
in

gs
[%

]

energy, f=0.2
energy, f=0.1
time, f=0.2
time, f=0.1

Figure 5.6: Relative energy and time savings of a parallel run of Jacobi on 16 unre-
liable cores compared to a parallel run on 16 reliable cores. The missing data at bits
55–62 denotes divergence.

5.5.3 Significance-dependent Reliability Switching

In our third scenario, we investigate whether a fraction of the last iterations of Jacobi

are significant enough to justify running them reliably at super-threshold voltage,

and if so, when a switch from parallel execution at NTV to sequential execution at

super-threshold voltage should occur. On one hand, switching to sequential execution

increases run time and energy consumption. On the other hand, running at super-

threshold voltage prevents faults and guarantees convergence, without necessitating

recovery iterations.

To that end, we run experiments where we switch from NTV execution to exe-

cution with super-threshold voltage at three points during a Jacobi run: 75%, 85%

and 95% through completion. The intuition for this choice of switching points is

Figure 5.1, where we observe that Jacobi experiences a significant slowdown when

faults happen past the upper quartile of iterations. The energy consumption of each

of these adaptive execution schemes is depicted in Figure 5.7. We show results for

f=0.2, representing the best case in terms of performance impact of NTV. Switching

at a late point in time shows the highest savings for class A, as bit flips in this class

have little to no effect on Jacobi and do not justify the energy expense of running

at super-threshold voltage. Hence, while later Jacobi iterations are more significant,

the data shows this increase in significance to be too low to warrant protection.

80 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

However, the switching point coupled with the increased significance of later iter-

ations affects the classification of bit positions. Switching later implies that faults

in lower bit positions will have higher impact, since they happen in iterations with

higher significance for convergence. As a result, switching at the 75% mark results

in bit positions 0–47 to be categorized as class A, while the same class includes only

bits 0–35 when switching at the 95% mark. This naturally changes the lower bit

boundary of class B accordingly. However, it should be noted that it does not affect

class C. If a bit flip in matrix A leads to divergence of Jacobi, it will always do so,

regardless of when it happens. Overall, Figure 5.7 shows that switching at any of

these three points in time does not pay off if the objective is to minimize energy

consumption. The best strategy is to switch as late as possible (in our case at 95%),

however all adaptive executions are outperformed by executing all iterations at NTV

(65% energy savings vs. 43% for switching at 95%), illustrated by Figure 5.5.

Figure 5.8 shows execution time with adaptive execution, leading to similar ob-

servations for the classification of flipped bits and their impact compared to energy

consumption. However, the best strategy from an execution time perspective de-

pends on the position of the bit flip, which affects the impact of late class B faults.

For example, when a flip happens at bit position 48, switching at the 75% mark

yields a relative time loss of 44%, while the time loss is 60% when switching at the

85% mark and 78% when switching at the 95% mark. Furthermore, it is evident

that switching at the 85% mark or earlier already yields performance losses due to

the time spent in sequential execution.

Overall, our results lead us to conclude that while Jacobi does indeed show an

increase in significance for later iterations, this increase is generally too small —

within the boundaries of our experimental setup— to justify switching from parallel

execution at NTV to sequential execution at super-threshold voltage.

5.5. RESULTS 81

0 8 16 24 32 40 48 56 63
−20

0

20

40

60

bit position

en
er

g
y

sa
v
in

gs
[%

]

no switch, f=0.2

switch at 95%, f=0.2

switch at 85%, f=0.2

switch at 75%, f=0.2

Figure 5.7: Relative energy savings of an adaptive reliable/unreliable run of Jacobi
on 16 cores compared to a reliable, sequential one, for switching to reliable hardware
at 75%, 85% and 95% run time. The missing data at bits 55–62 denotes divergence.

0 8 16 24 32 40 48 56 63

−150

−100

−50

0

bit position

ti
m

e
sa

v
in

g
s

[%
]

switch at 95%, f=0.2

switch at 85%, f=0.2

switch at 75%, f=0.2

Figure 5.8: Relative time savings of a hybrid reliable/unreliable run of Jacobi on 16
cores compared to a reliable, sequential one, for switching to reliable hardware at
75%, 85% and 95% run time. The missing data at bits 55–62 denotes divergence.

82 CHAPTER 5. SIGNIFICANCE-DRIVEN CODE EXECUTION

5.6 Summary

In this work we explored the applicability and effect of near-threshold voltage (NTV)

computation to a representative HPC code. We have shown that it can be a

viable means of reducing the energy consumption, and that performance impair-

ments caused by NTV can be mitigated via parallelism. We presented the notion of

significance-driven execution, attributing varying significance to parts of a code or

data and thereby deciding on whether they are a candidate for NTV computation

or not. Our results show potential energy savings between 35% and 67%, depend-

ing on the use case. As such, significance-driven execution and NTV are a viable

method of reducing the energy consumption in HPC environments without compro-

mising correctness or performance. Future research opportunities include a detailed

analysis of the effect of different degrees of parallelism, protection mechanisms for

intolerable faults as identified in Section 5.5, and investigating and comparing the

significance of additional iterative HPC codes. Additionally, ways of automatically

determining the significance of code regions within compiler frameworks such as the

Insieme compiler [65] could be explored.

Chapter 6

Compiler-assisted Execution

Time and Energy Modeling

This chapter presents work on compiler-assisted analytical time and energy modeling

of distributed memory parallel programs, to be submitted under the title Automatic

Compiler-assisted Performance and Energy Modeling for Message-Passing Parallel

Programs to Euro-Par 20171. Using the Insieme compiler for analyzing distributed

memory parallel programs, static information about these programs is derived. This

static information is parametrized with regard to the input problem size and the

machine size. Additionally, a single execution using the Insieme runtime system pro-

vides run-time data regarding execution time and energy consumption. Combining

these static and dynamic data, models predicting execution time and energy con-

sumption for larger problem and machine sizes are generated, and verified against

measurements on two distributed memory parallel computers.

6.1 Introduction

Optimization of message-passing parallel programs is a wide-spread topic of interest

and research, whether done manually by developers or automatically by tools such as

compilers or runtime systems. Many modern optimization approaches are iterative

in nature (e.g. auto-tuners [53]) and require the execution of a possibly large num-

ber of solution candidates to observe their non-functional behavior. Performance

prediction is a useful technology to reduce the effort in the search for effective code

optimizations.

To be automatic in nature, many prediction approaches —whether incorporat-

1http://europar2017.usc.es/

83

84 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

ing static, analytical information or purely observation-based— rely on a series of

program executions to train their models. Related work shows that the number

of training executions generally correlates with the lack of available static informa-

tion. In this chapter, we introduce a novel prediction tool that incorporates com-

piler knowledge about the target application and compiler transformations to reduce

model training overhead to a single program execution. We consider a large class of

iterative message passing parallel programs that follow the bulk synchronous parallel

(BSP) and single program multiple data (SPMD) models.

We use the Insieme compiler and runtime system presented in Chapter 3 to ana-

lyze an input program’s source code. It extracts static information from the source

code such as the structure and boundaries of loops, or message sizes of communi-

cation primitives. Insieme then invokes a single execution of the input program for

a small problem and machine size on a target architecture. The runtime data of

this program execution together with the static analysis information are then used

to generate a parametrized model that can predict the execution time and energy

consumption for larger problem and machine sizes on the given target architecture.

The model can be ported to a new target architecture with a single execution of the

input program. Additionally, only a handful of offline-measurable hardware param-

eters are required that specify cache properties, as well as bandwidths and latencies

for the memory hierarchy and network.

The major contributions of this work are:

� a definition and automatic localization of target code regions that matches a

large number of distributed memory parallel programs,

� a new method for the automatic generation of parametrized performance mod-

els for execution time and energy consumption that is problem and machine

size sensitive based on compiler analysis and a single program execution, and

� evaluation, analysis and validation of this model for several target applica-

tions and a wide set of problem and target machine sizes on two hardware

architectures.

The chapter is structured as follows: Section 6.2 lists related work and compares

it to our method, which is described in Section 6.3. We detail on our evaluation

methodology and experimental setup in Section 6.4 and provide results and model

output analysis in Section 6.5. Finally, Section 6.6 concludes and provides an outlook

for future work.

6.2. RELATED WORK 85

6.2 Related Work

There is a plethora of related works in the field of non-functional parameter pre-

diction. While there are many ways of categorizing them, we focus on key aspects

relevant to our work. First there are a number of automatic approaches that require

little to no user action for obtaining predictions. The COMPASS framework by Lee

et al [77] based on the ASPEN language by Spafford et al [113] is among the most

prominent. Implemented in OpenARC, this tool offers execution time prediction

using a domain-specific language. While ASPEN is capable of modeling message

passing programs, to the best of our knowledge, they have not explored their pre-

diction for energy metrics.

Bhattacharyya and Höfler presented PEMOGEN, an LLVM-based prediction tool

for Fortran parallel programs in [18, 19], which features online modeling with the

aim of reducing storage costs. Using a regression approach, they require a series

of training executions, whereas we only need a single training execution. Also, the

authors only demonstrated execution time prediction. Comparing their storage cost

goal, our approach indeed stores static information and training data persistently,

however this comprises profile information only at a very small storage footprint (a

few hundred kilobytes for all input programs used in this work). Furthermore, the

design of our model does not prohibit online prediction.

Hammer et al developed a semi-automatic tool called Kerncraft [55] which offers

performance bottleneck predictions in shared memory environments. However, to

simplify analysis, their acceptable input programs are limited to simple stencil and

streaming kernels that are written in a subset of C99. In contrast to that, we support

a larger set of message passing programs and pose no restrictions on the C input

accepted by the Insieme compiler.

PALM [117] offers analytically-derived execution time predictions, however it

relies on user annotations for describing the model and important parameters.

Although some of these works may be capable of providing energy predictions, to

the best of our knowledge, none of the above have explored this. A recent work using

ExaSAT [133] includes very limited energy concerns in its considerations, however

lacking actual measured energy consumption data. Contrary to that, there are a

number of models that focus more strongly on energy prediction, whether build

empirically in an analytical fashion [93, 104], using regression models [93] or neural

networks [130]. However, none of these provide execution time and energy predictions

for message passing programs in a fully automatic fashion without any user directives

except for specifying the problem sizes and machine sizes to be explored.

Moreover, there are a number of works that provide predictive models although

86 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

specifically tailored to aid in aspects such as task aggregation [79], or resilience and

reliability [86, 141].

Finally, there are a number of invaluable pen-and-paper model works that do not

aim at predicting the execution time or energy consumption for code regions or full

programs, provide a characterization of hardware behavior under certain conditions.

Examples are Roofline, which has been applied to execution time [140] and energy

consumption [26], or the ECM model [115]. We use their concepts as the foundation

for our proposed method as mentioned throughout this work.

6.3 Model

In order to properly motivate the presented model, we first need to establish several

goals that we aim for. As discussed in Section 6.1, one of the possible applications

of our prediction method are iterative methods such as auto-tuners. To suit this use

case, we need to consider both the overhead of our method and its accuracy. To that

end, our model should fulfill the following goals:

1 low resource consumption (i.e. time, energy, storage) in training,

2 low resource consumption in deployment and evaluation, and

3 automatically applicable to a range of iterative distributed memory parallel

applications without requiring any user interaction.

Goal 1 can be achieved by shifting the requirements of large training data sets to

static analysis performed during compilation. The compiler can inspect the input

program with regard to properties such as the structure of loops and communication

points, loop iteration counts, or message buffer sizes. This allows us to reduce

the number of training runs otherwise needed to e.g. obtain supporting points for

regression models. Also, having a compiler examine the code structure automatically

removes the need for any user directives. We meet Goal 2 by building analytical,

parametrized models that only require a few constants to be filled in for evaluation.

Finally, to satisfy Goal 3 we apply our approach to a range of input applications and

validate all predictions with measurements.

6.3.1 Method

Our approach targets specific code regions of distributed memory parallel programs,

and we rely on static analysis within the compiler for region identification and sub-

sequent modeling. Based on the software model presented in Section 2.2, we define

a code region as

6.3. MODEL 87

s ::= exp

| for(var = exp .. exp : exp) s

| g(exp, exp, . . ., exp)

| { s; s; . . .; s }

exp ::= acc(exp, { exp, . . ., exp}, { exp, . . ., exp })

| var

| num

var ::= char var | char

char ::= a-z | A-Z

num ::= 1-9 num | 0-9

where s is a statement, exp an expression, var a variable, and acc an accessor

function. For completeness, char denotes an identifier and num a numeric literal.

This grammar allows us to form code regions that consist of loops (for) with an

iterator variable and fixed (but not necessarily known) lower and upper bounds and

step expressions, external function calls (g()) and compound statements ({. . . }).
We choose this selection of statements since for loops and external function calls

(the definition of which is unknown to the compiler) are good candidates for high

resource consumption, whereas compound statements are included for composition.

We furthermore include an accessor function acc to be able to model array and

pointer subscript expressions, which takes as arguments first a base expression (i.e.

the pointer or array) and two lists of index expressions, the first for read operations

and the second for write operations. This accessor function aids us in identifying

loops with steady-state cache properties (further detailed in Section 6.3.4). Note

that while the grammar does not prohibit write access to the loop iterator variable

inside the loop body, our approach requires the number of iterations to be immutable

upon execution of the first iteration.

6.3.2 Automatic Region and Parameter Detection

For our approach to be fully automatic, we need to identify code regions of interest

without user interaction. In addition, contrary to other approaches that rely on user

directives to identify significant code properties such as loop boundaries, we want

to automatically obtain the properties described in Section 6.3.1 at compile-time

in parametrized form. Figure 6.1 illustrates the overall architecture and workflow,

based on the Insieme compiler and runtime system already presented in Chapter 3.

We will briefly outline this architecture, with each step elaborated on in detail

in the remainder of this section. An input program is loaded by the compiler and

88 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

static
analysis

data

region
identification
and analysis

prediction

instru-
mented
program

execution

predic-
tions

ref. problem

ref. machine

target problem

target machine

input
program

reference
measure-

ment

training prediction

Figure 6.1: Workflow of our prediction approach.

target regions are automatically identified and static analysis information is derived.

The program is then instrumented to be executed on the target machine using a

small reference problem size and reference machine size. The collected reference

measurement data is handed to the predictor in combination with the static analysis

information and the reference problem and machine sizes, enabling it to predict the

measured metrics for larger problem sizes and machine sizes.

We use a pattern-based approach [66] to search an input program for target code

regions, which are loop nests that meet the following criteria:

� all loops in the nest have fixed (but not necessarily known) lower and upper

bounds and increments, and

� there are communication primitives anywhere within the loop nest.

Communication primitives are external function calls, identified by their signa-

ture (function identifier and parameter types). This allows easy porting of our region

detection to support arbitrary communication libraries. For this work, we explore

MPI blocking and non-blocking communication primitives. For the latter, we capture

both the non-blocking communication operation itself, as well as the corresponding

wait function call (identified by its matching MPI Request* argument) and treat

6.3. MODEL 89

1 for (int n=1; n<nsteps −1; ++n) {
2

3 i f (rank<s i z e −1) {MPI Send (. . .) ; MPI Recv (. . .) ; }
4 i f (rank>0) {MPI Recv (. . .) , MPI Send (. . .) ; }
5

6 for (int x=1; x<g r i d s i z e −1; ++x) {
7 for (int y=1; y<g r i d s i z e −1; ++y) {
8 g r id [n%2][x] [y]=(g r id [(n−1)%2][x−1] [y] +
9 g r id [(n−1)%2][x +1] [y] +

10 g r id [(n−1)%2][x] [y−1] +
11 g r id [(n−1)%2][x] [y + 1]) / 4 . 0 ;
12 }
13 }

1 for (n=1. . ns teps : 1) {
2 MPI Send(rank<s i z e −1, . . .) ;
3 MPI Recv(rank<s i z e −1, . . .) ;
4 MPI Recv(rank>0, . . .) ;
5 MPI Send(rank>0, . . .) ;
6 for (x = 0 . . g r i d s i z e : 1) {
7 for (y = 0 . . g r i d s i z e : 1) {
8 acc (gr id , { ((n−1)%2,x−1,y) , ((n−1)%2,x+1,y) ,
9 ((n−1)%2,x , y−1) ,((n−1)%2,x , y+1)} , {}) ;

10 acc (gr id , {} , {(n%2,x , y)})
11 }
12 }
13 }

Figure 6.2: A simplified version of a jacobi stencil input code shown in C (top) and
in our model representation (bottom).

90 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

them as a single unit. Since communication primitives are frequently nested inside a

conditional statement (e.g. to enforce border limits for neighbor exchange patterns),

we prepend the conditional expression to the list of parameters of g. If it is not

enclosed in a conditional, this first parameter is set to true. We also automatically

extract arithmetic formulas for source or target buffers of communication operations

as well as the type and size of the data transmitted, since all of this information

is encoded in a function’s signature. For loops, we similarly extract the lower and

upper bounds as well as the increment. Figure 6.2 shows a simple code example in

both C and the textual representation of our model.

6.3.3 Automatic Parameter Extraction

We want to offer a prediction tool that does not require the users to alter their work

flow compared to running their input program, or depend on any user directives

beyond providing problem size and machine size program parameters. To achieve

this, the prediction tool is intended to be a wrapper for an input program and re-

quires relating the parameters described in Section 6.3.2 to the user’s input program

parameters. This is done using a compiler integrated analysis framework. This work-

in-progress framework provides various data-flow analyses (DFA) and is based on the

constraint-based analysis approach described in [91]. It is capable of inter-procedural

analyses, which is essential for fulfilling Goal 3.

Identified parameters such as loop boundaries, loop step expressions, and com-

munication buffer sizes can be modeled by the analysis framework as arithmetic

formulas. Such an arithmetic formula is constructed by traversing the input code

from a parameter back to its declaration and keeping track of applied operations and

operands. This is done automatically by the compiler without any user interaction

required, and yields arithmetic expressions that compute e.g. loop boundaries for

given input program parameters.

Note that only basic integer arithmetic is supported at the moment (i.e. addition,

subtraction, multiplication, modulo, and division if the remainder evaluates to zero),

as this is sufficient for our use case of evaluating expressions that compute e.g. grid

slice sizes, the MPI ranks of neighbors, and similar parameters.

6.3.4 Execution Time Prediction

Our method can be extended to a number of metrics, however, without loss of gener-

ality, we present predictors for execution time in this section and energy consumption

in Section 6.3.5.

6.3. MODEL 91

Algorithm 6.1 Statement identification and selection.

1: R ← identify all target code regions (loop nest with communication primitives
inside)

2: I ← ∅ . statements to be instrumented, measured, predicted
3: for r ∈ R do
4: C ← identify all communication primitives in r
5: for c ∈ C do
6: Lc ← all loop nests appearing in the same compound statement as c
7: I ← I ∪ {c} ∪ Lc

8: end for
9: end for

Algorithm 6.2 Prediction algorithm.

1: R← all target code regions as identified by Algorithm 6.1
2: I ← all instrumented statements as identified by Algorithm 6.1
3: predictioni ← 0 for all i ∈ I
4: predictionr ← 0 for all r ∈ R . final output of prediction
5: for i ∈ I do . training phase
6: instrument statement i
7: end for
8: perform single execution of input program for reference problem and machine

size
9: for i ∈ I do . prediction phase

10: Ti,comp ← assume ideal scaling using reference and target loop iteration counts
11: Ti,mem ← replace communication primitives, reduce time loop iteration count,

predict cache misses
12: Ti,comm ← build communication graph, evaluate with hardware model
13: Ti,all ← combine individual predictions using γ and φ
14: end for
15: for r ∈ R do
16: predictionr ← p(r)
17: end for

To predict a metric for a target code region, we predict this metric for selected

individual statements and then aggregate the metric data to obtain values for the

entire code region. Algorithm 6.1 elaborates on the specific selection process of such

individual statements. Once these statements are identified, we predict execution

time as outlined by Algorithm 6.2, whose separate steps will be described subse-

quently. Our execution time prediction follows the idea of the Roofline model [140]

and ECM [55] in the sense that we attribute individual busy times for all hardware

components defined in Section 2.1 and interpret these results as the lower bound of

92 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

the overall execution time:

Tall = γ
(
φ(Tcomp, Tmem), Tcomm

)
Tmem = φ(Tcache0 , Tcache1 , . . . , TRAM)

where γ and φ are aggregation functions with φ = max for execution time prediction

and γ =
∑

in case of blocking communication and γ = max in case of non-blocking

communication. Tcomp represents the time a core is busy with computation, Tmem

is the active time of the memory hierarchy (which, for this use case, includes caches

and RAM) and Tcomm is the amount of time for which messages are exchanged.

Throughout the remainder of this section, we will detail on the prediction each of

these metrics to determine Tall.

Computation time

We start with predicting Tcomp. For this we employ a two-stage approach: First, we

collect a single measurement — so-called reference measurement — for the previously

selected statements in our target code region for a small problem and machine size on

a given machine architecture. This is necessary since our work is based on a source-

to-source compiler, and therefore we lack any knowledge about to-binary compiler

optimizations (e.g. vectorization) or hardware computing speeds. Example 2.6 in

Section 2.1.3 has shown the large impact these aspects can have on the execution

time. Combining this reference measurement with static analysis information from

the compiler, we can extrapolate the behavior of these statements for previously

unseen target problem and machine sizes. Knowing all loop iteration counts for both

the reference and the target problem and machine sizes (obtained via the analysis

described in Section 6.3.3), we can compute Tcomp assuming ideal scaling and hence

equal memory hierarchy or communication contention.

Memory hierarchy time

Only predicting Tcomp is insufficient, as this naturally ignores e.g. increased mem-

ory hierarchy traffic for larger problem sizes or increased per-rank cache sizes for

larger machines. Hence, we require a prediction of Tmem. Since Goal 3 is to cover as

many applications as possible, relying on analytical approaches such as ECM [115]

is impractical since they are confined to subsets of our code regions by either lim-

iting the acceptable input structure (e.g. only perfect loop nests) or syntax (e.g.

basic array subscripts). For this reason, we would like to employ ready-to-use cache

simulators to obtain cache miss data and combine these with measured cache band-

6.3. MODEL 93

width information to arrive at Tmem. Nevertheless, while cache simulators do not

have the aforementioned limitations of analytical models, they are usually orders of

magnitude slower at producing results, which requires us to reduce the overhead for

practical use.

For this reason, we introduce a compiler analysis component. First, let S be the

set of all statements, then

σ : S→ P(S)

is a function that, for a given statement s, returns a set holding all statements

contained within s. Second, let s be a statement, then

isTimeLoop : S→ Bool

isTimeLoop(s)=
true,

if s = for(x = lower..upper : step) s′

and acc(, R,W) /∈ σ(s′), x ∈ R ∪W

false, otherwise

is a function which identifies a for loop as a time loop if the loop iterator does not

appear in any accessor function (i.e. does not occur in any array or pointer subscript)

within the body of the loop. Our hypothesis is that, first, most HPC codes do have

such loops that iteratively compute e.g. physical processes over time. Second, we

further hypothesize these loops to have foreseeable effects on the cache behavior of

target code regions, since the first iteration warms up the CPU caches after which

the system is in a steady state (barring any noise from the OS). Therefore, it should

be possible to simulate only the first couple of iterations and extrapolate to their full

number assuming a simple linear relationship. Hence, for a time loop with n > 1

iterations, the overall misses can be approximated by

n∑
x=0

Mx ≈ (n− 1) ·

n−k∑
x=1

Mx

n− k − 1
+M0

where Mx denotes the number of cache misses induced by loop iteration x, and k

is the number of omitted loop iterations. If our assumptions hold, we can use the

compiler to transform our target code regions to reduce the number of iterations of

previously identified time loops and yet obtain well-approximated cache miss counts.

However, there is a trade-off to be managed between large k (causing less overhead

94 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

n−
1

n−
2

n−
4

n−
8

n−
16

n−
32

n−
64

n−
12

8
−1

−0.75

−0.5

−0.25

0

0.25

0.5
·10−2

1.27 · 102

k

re
l.

er
ro

r

10242

20482

Figure 6.3: Relative L3 cache miss prediction error for jacobi for n = 128 and
decreasing k for two selected problem sizes. The cache was set to be 20 MB in size
with a line size of 64 bytes and a 20-way associativity, representative of modern Intel
architectures.

at the price of lower accuracy) and small k (yielding higher accuracy at the expense

of more overhead).

Figure 6.3 shows the results of evaluating this hypothesis with cachegrind [90] for

decreasing k for the jacobi implementation shown in Figure 6.2. We simulated an

L3 cache of 20 MB, a line size of 64 bytes and a 20-way associativity, representative

for modern Intel architectures (e.g. an Intel Xeon E5-4650 processor [28]), and chose

two problem sizes such that the smaller one fits in the cache whereas the larger one

does not. Figure 6.3 confirms our expectations that using only a single iteration of

the time loop (k = n − 1) is not sufficient for problem sizes that fit in the cache

(yielding a relative error of 1.27 · 102), however increasing the number of iterations

beyond 2 (k = n − 2) does not amortize the increase in overhead, with a relative

error of already only −5.47 ·10−3. Since we verified similar behavior for all our input

programs, we always choose k = n − 2 for the work presented here, which allows a

substantial reduction in simulation overhead.

However, there are additional opportunities for decreasing the overhead. Since

our input programs follow the BSP/SPMD models, we can simulate a single MPI

rank and extrapolate to the full size of the target machine, effectively reducing the

CPU time of our simulation by a factor of the target machine size. Because it is

impossible to execute arbitrary MPI programs with a single rank, the communi-

6.3. MODEL 95

2 4 8 16 32 64
0

0.2

0.4

0.6

0.8

1

machine size

ti
m

e
linear

memory
measured
predicted

Figure 6.4: Execution time prediction breakdown of the jacobi input program for
N = 32768 for increasing machine sizes.

cation primitives require special treatment. Ideally, we would like to remove the

communication while keeping the cache behavior of the primitives and therefore of

the surrounding code region (e.g. buffer reuse for computation and communication).

For this reason, we define a transformation function to replace them as follows —

for brevity we only show the semantics of send and receive primitives:

transformCommPrimitive : S→ S

transformCommPrimitive(s)=

for(x = 0..size : 1) acc(buffer , {x}, {}),
if s =

g(, buffer , size, , , ,)

and g = MPI Send

for(x = 0..size : 1) acc(buffer , {}, {x}),
if s =

g(, buffer , size, , , , ,)

and g = MPI Recv
...

s, otherwise

All communication primitives are replaced by transformCommPrimitive with cor-

responding linear reads and writes of buffer as they are expected occur in the actual

library calls.

96 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

Furthermore, since our input programs follow the SPMD model and therefore

are homogeneous in their workload but lack application data sharing (contrary to

e.g. OpenMP programs), we hypothesize that shared cache effects can be emulated

by reducing the available shared cache size per core by the factor of the number of

cores sharing this cache and participating in the computation.

Figure 6.4 confirms this theory, as the predicted memory hierarchy time of the

target code region matches the actual execution time when the code region is mem-

ory bound (machine sizes 8–64). It should be noted that one could also think of

simply executing the transformed application on the target hardware instead of ex-

ecuting it in a cache simulator for performance reasons. However, first this removes

the possibility of simulating the effect of reduced cache sizes. Second, hardware-

specific performance counters would be required to ascertain e.g. the number of cache

misses, whereas we only rely on information that can be obtained automatically via

the cpuid instruction (cache levels, cache sizes, line sizes, associativities). Moreover,

using a cache simulator allows us to evaluate our model for multiple target problem

and machine sizes in parallel without the risk of measurement perturbation, increas-

ing model prediction throughput. The compiler also confines cache simulation to the

target code regions by inserting control statements that start the cache simulation

only prior to execution of the first target regions, and exit the input program after

the last one. The final cache miss data is then combined with cache and memory

bandwidth information from the model defined in Section 2.1 (obtained via offline

measurements, once per target architecture) to compute Tmem.

Communication time

Finally, we require a prediction for Tcomm. Let m be the size of a message sent from

x to y, then (x, y,m) is a tuple denoting this message transfer. We can automatically

derive these parameters as described in Section 6.3.2 from communication primitives

as x, y and m are all encoded in g. Note that we require x, y, and m to depend

only on integer operations as described in Section 6.3.3, program parameters such

as the problem size, and MPI comm rank and MPI comm size. We require our

input programs to match the BSP model with regard to communication adhering to

supersteps (i.e. an iteration of the time loop) and perform the same communication

pattern each iteration. Then, we can evaluate the arithmetic formulas for x, y

and m for each rank x, which are then examined for widely used communication

patterns such as neighbor exchange. Note that collective operations can also be

handled assuming their communication pattern is known for a given message size

and rank size [56]. We use this information in combination with bandwidth and

6.3. MODEL 97

latency information of the hardware model defined in Section 2.1 and a given rank-

core mapping policy to derive the data transfer time Tcomm.

Aggregation

At this point, we predicted Tcomp, Tmem, Tcomm and hence Tall for individual state-

ments. To get predictions for the entire target code region, we require a recursive

aggregation function. Let A be the type of the metric to be predicted (in our case ex-

ecution time or energy consumption) and eval an evaluation function for arithmetic

expressions. Then

get : S→ A, p : S→ A, data ∈ A

get(s)=

data, if data available

p(S), otherwise

p(s)=


get(s′) · eval(upper−lowerstep), if s = for(x = lower ..upper : s) s′

n∑
x=0

get(sx), if s = {s0, s1, . . . , sn}

0 otherwise

are functions retrieving and aggregating data for loops and compound statements,

returning the identity element (0 for this work) for all other cases.

6.3.5 Energy Prediction

Energy prediction can be done in a similar fashion to the one described in Sec-

tion 6.3.4, except that we use energy measurements as the reference for our extrap-

olation, and we always choose φ = γ =
∑

to express each hardware component’s

contribution to the overall energy consumption (contrary to busy times of hard-

ware components, which can overlap). Hence, we assume the following relationships

between energy (E), power (P) and execution time (t):

Eall =
∑(∑

(Ecomputational, Ememory), Ecommunication

)

98 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

while for each hardware component x we consider

Eu = P x,idle · tx,idle + P x,load · tx,load

P
ref
x,load =

Eref
x,load

T ref
x,load

tx,idle =

tall − tx, if tx < tall

0, otherwise

where P x,idle is the average idle power consumption of hardware unit u (to be mea-

sured offline, once per target architecture), Tu,load is obtained via prediction as de-

scribed in Section 6.3.4, and T ref
u,load and Eref

u,load are execution time and energy con-

sumption as measured by our single reference measurement. Note that this implies

that the reference measurement (and hence chosen problem size and machine size) is

representative of larger problem sizes or machine sizes in terms of hardware compo-

nent usage. We then predict P
target
u of a specific target hardware unit u of reference

computer M and a target computer M′ as

P
target
u =

P
ref
u

|{x ∈M|x = u}|
· |{x′ ∈M′|x′ = u}|.

Using the aggregation formula of Section 6.3.4, we are able to predict Eall for a

given target code region.

6.4 Experimental Setup

We implemented a prototype of our described work as part of the Insieme Compiler

and Runtime System presented in Chapter 3. The compiler provides all needed facil-

ities required to analyze an input program’s source code, transform it, and generate

an instrumented version. The runtime system then executes and measures the in-

strumented application and feeds back all measured data to the compiler. Our input

codes are C/MPI distributed memory parallel applications, the model presented in

Section 6.3 — like the compiler — is implemented in C++. To increase prediction

throughput of the model, our reference implementation relies on std::async and

allows the simultaneous prediction of multiple problem and machine sizes.

The experimental testbed used for our experiments consists of two distributed

memory machines named ortlerSandy and ortlerIvy, Table 6.1 lists their characteris-

tics. The CPU clock frequency was fixed as listed in Table 6.1, and Hyperthreading

was disabled on all machines. The nodes are connected via a dedicated Gigabit

6.4. EXPERIMENTAL SETUP 99

Table 6.1: Machine characteristics.

property ortlerSandy ortlerIvy

nodes 4 4

CPUs per node 4x E5-4650 2.7 GHz 2x E5-2690 v2 3.0 GHz

cores per node 32 30

cache sizes
priv.: 32 KB, 256 KB,

shared: 20 MB
priv.: 32 KB, 256 KB,

shared: 25 MB

RAM 256 GB 128 GB

OS CentOS 6.7, 2.6.32-573 CentOS 6.5, 2.6.32-431

compiler gcc 5.1 -O3 gcc 5.1 -O3

MPI Open MPI 1.10.2 Open MPI 1.10.2

Table 6.2: Input programs, and properties.

program description comp. memory.

cg conjugate gradient O(N2) O(N2)
homb laplace solver O(N2) O(N2)
jacobi 2d jacobi solver O(N2) O(N2)

mm ijk matrix multiplication, ijk loop order O(N3) O(N2)
mm ikj matrix multiplication, ikj loop order O(N3) O(N2)

shs simple hyperbolic solver O(N2) O(N2)
stencil3d generic 3x3x3 3d stencil O(N3) O(N3)

Ethernet network. We enforced process binding to cores, with a mapping that uses

at least 2 nodes with one core each (machine size 2), and then increasing first the

number of cores on sockets already in use before employing new sockets. Similarly,

new nodes are only added when all current sockets are fully utilized.

Measurements were obtained via x86’s rdtsc assembler instruction for execution

time and Intel’s RAPL interface for energy consumption. The latter offers a data

resolution of 15.3 microjoules and time resolution of 1 millisecond, and related work

has shown it to be accurate enough for our purpose [54]. However, since it only

captures CPU packages, we present energy prediction results of the CPUs. The

cache simulator in use for cache miss prediction is cachegrind 3.11 [90].

A selection of input programs for our work, their basic properties as well as tested

problem sizes are listed in Tables 6.2 and 6.3. cg is an iterative conjugate gradient

solver, homb [61] the Hybrid OpenMP MPI Benchmark, jacobi a two-dimensional

jacobi solver, shs [8] the Simple Hyperbolic Solver, computing the compressible

Navier-Stokes equation on a two-dimensional domain, and stencil3d a generic 3x3x3

100 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

Table 6.3: Input program problem sizes.

program iter. problem sizes (S: ortlerSandy, I: ortlerIvy)

cg 1000 S: 1024 2048 3072 4096 5120 6144 7168 8192
I: 1040 2080 3120 4160 5200 6240 7280 8320

homb 100 S: 1024 2048 4096 8192 16384 32768
I: 960 1920 3840 7680 15360 30720

jacobi 128 S: 1024 2048 4096 8192 16384 32768
I: 960 1920 3840 7680 15360 30720

mm ijk 50 S: 448 640 960 1280 1600 1920 2240 2560 2880
I: 400 600 800 1000 1200 1400 1600 1800 2000

mm ikj 50 S: 448 640 960 1280 1600 1920 2240 2560 2880
I: 400 600 800 1000 1200 1400 1600 1800 2000

shs 40 S: 128 256 512 1024 2048 4096
I: 80 160 320 640 1280 2560

stencil3d 100 S: 128 256 384 512 640
I: 160 240 320 400 480

3d stencil. To show the wide applicability of our model, we also include two matrix

multiplication kernels, mm ijk and mm ikj, which exhibit substantially different

cache behavior. While both perform a matrix-matrix multiplication, mm ikj uses

an i-k-j loop order that eliminates costly column-wise array traversal. All of these

codes are written in C and rely on MPI for parallelism (homb also offers OpenMP

parallelism, which we disabled for our experiments).

To validate the model, we predict execution time and energy consumption for

a number of target problem and machine size parameter combinations and also

measure the same parameter combinations. To minimize any inaccuracy caused by

external load such as the operating system, all reported measurement data repre-

sents the median over 5 runs. For predicted data however, since our model is fully

deterministic, a single run is sufficient. We furthermore evaluate the accuracy of

the model by computing the normalized root-mean-square error (NRMSE) and the

coefficient of determination (R2).

6.5 Results

To illustrate and analyze the performance of the generated models, we will focus

on the first of our input programs, a simple two-dimensional Jacobi implementation

(jacobi), since it is well-studied and shows all our considered aspects of modeling

distributed memory parallel applications. Subsequently, we will show results for all

other input programs to demonstrate the general applicability of our approach.

Figure 6.5 presents the results of predicting execution time for jacobi with a

reference problem size of 1024 and a reference machine size of 2 (two nodes with

6.5. RESULTS 101

Table 6.4: Overall model errors for ortlerSandy.

time energy
code NRMSE R2 NRMSE R2

cg 0.018 0.978 0.038 0.928
homb 0.035 0.955 0.047 0.929
jacobi 0.020 0.980 0.068 0.905

mm ijk 0.044 0.929 0.080 0.812
mm ikj 0.025 0.980 0.053 0.931

shs 0.082 0.945 0.068 0.947
stencil3d 0.053 0.940 0.092 0.839

mean 0.040 0.950 0.064 0.899

one core each, as per our mapping policy detailed in Section 6.4) on ortlerSandy.

The shading denotes the relative error of predicting Tcomp, max(Tcomp, Tmem), and∑
(max(Tcomp, Tmem), Tcomm) compared to actual measurements, and illustrates the

incremental increase in accuracy for each prediction step added. The shapes indicate

a mainly memory-hierarchy-bound program, with prediction of only Tcomp yielding

a mean relative error of 0.69. The memory contention is evident by the visible

column-like separation of machine sizes 2–4, 8 and 16–64, due to the fact that jacobi

is already memory bound at machine size 8 (as also indicated by Figure 6.4) for

problem sizes larger or equal to 4096 (resulting in a working set of 32 MB for 20 MB

of L3 cache on ortlerSandy). Including the prediction of Tmem already substantially

improves accuracy for these cases, lowering the overall mean error to 0.25. However,

a number of cases with small problem sizes but large machine sizes are naturally

not predicted properly, as communication time contributes a major part of Tall here,

due to the large number of messages exchanged and short Tcomp for small workloads

shared among many cores. Including Tcomm in our prediction also covers these cases,

lowering the overall mean error to 0.06.

Tables 6.4 and 6.5 present the overall results for both time and energy for all

our input programs on both ortlerSandy and ortlerIvy. As the data illustrates, our

prediction generally achieves higher accuracy across all input programs for execution

time (mean R2 of 0.95) compared to energy consumption (mean R2 of 0.90). This

is a result of the mapping of our σ and φ functions, partially described by the

differences between Roofline [140] and ECM [115]. When predicting the execution

time and thus aggregating the maximum over multiple sub-predictions, only the

largest element directly impacts the result, provided the relative order of the sub-

predictions is correct. Contrary to that, energy consumption is aggregated as the

sum over all sub-predictions, requiring high-quality predictions for all of them for

102 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

Table 6.5: Overall model errors for ortlerIvy.

time energy
code NRMSE R2 NRMSE R2

cg 0.025 0.984 0.028 0.979
homb 0.008 0.996 0.045 0.947
jacobi 0.014 0.995 0.091 0.849

mm ijk 0.068 0.856 0.078 0.840
mm ikj 0.031 0.975 0.076 0.893

shs 0.060 0.971 0.058 0.932
stencil3d 0.016 0.995 0.064 0.921

mean 0.032 0.967 0.063 0.909

high overall accuracy.

The highest error case for our method is mm ijk, explained by its expensive

column-wise matrix traversal. The results for mm ikj confirms this, performing bet-

ter without this expensive traversal. While the cache simulator in use, cachegrind,

is likely more precise than many analytical models, it is limited to assuming ideal-

ized caches without noise, only considers two cache levels and a hard-coded LRU

replacement policy, and lacks advanced knowledge about the complex issue of hard-

ware prefetching. Furthermore, the results on ortlerIvy do not always correlate with

the ones obtained on ortlerSandy. Apart from different memory controller speeds

and CPU clock frequencies, the former holds CPUs with 25 MB of L3 cache with a

20-way associativity — a parameter combination that results in set sizes other than

powers of two, which cachegrind cannot simulate. To overcome the aforementioned

limitations, we predict cache misses for the first and last level cache, and as a fallback

switch to 25-way associativity whenever required. Overall, our method achieves a

mean NRMSE of 0.036 for execution time and 0.064 for energy consumption across

all benchmarks and both architectures.

6.5. RESULTS 103

1k

2k

4k

8k

16k

32k
p

ro
b

le
m

si
ze

0

0.2

0.4

0.6

0.8

1

1k

2k

4k

8k

16k

32k

p
ro

b
le

m
si

ze

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 128

1k

2k

4k

8k

16k

32k

machine size

p
ro

b
le

m
si

ze

0

0.2

0.4

0.6

0.8

1

Figure 6.5: Relative error of the execution time prediction of the jacobi appli-
cation for increasing problem and machine sizes on ortlerSandy for Tcomp (top),
max(Tcomp, Tmem) (center), and

∑
(max(Tcomp, Tmem), Tcomm) (bottom).

104 CHAPTER 6. COMPILER-ASSISTED TIME AND ENERGY MODELING

6.6 Summary

In this work we have presented a novel compiler-based prediction tool that auto-

matically generates models for execution time and energy for a large set of message

passing parallel programs. We introduced a code region definition that matches the

structure of these programs, and illustrated the benefits of using compiler analysis

for deriving analytical models and minimizing the overhead of model generation. We

demonstrated that a single reference execution per input program and target archi-

tecture is sufficient for training our models. Our reference implementation showed

the validity of our model, with a mean coefficient of determination of 0.93 over 7 input

programs. Future work includes examining the prediction accuracy with regard to

varying the reference problem and machine sizes, improving cache miss prediction or

using more sophisticated network models that include network contention, extending

the model for derived data types, and exploring additional hardware architectures

and additional input programs.

Chapter 7

Conclusion

7.1 Contributions

In this thesis, non-functional properties of parallel hardware and software were es-

tablished, and discussed. A formal model has been presented, describing the funda-

mentals regarding execution time and energy in HPC environments. This model was

derived from benchmarking, analysis, and modeling of both commodity hardware

(published under the title Modeling CPU Energy Consumption of HPC Applications

on the IBM POWER7 [51]) as well as experimental prototype hardware (published

under the title Performance Analysis and Benchmarking of the Intel SCC [50]), both

of which have shown the applicability of the model. Furthermore, we established non-

functional metrics on top of this model, by defining a common, generic specification

for all metrics that allows the introduction of new, user-specified metrics and custom

aggregation policies.

In addition, we saw how to analyze, model, and optimize these metrics as well as

their trade-offs at the example of execution time and energy consumption, and what

further knowledge and guidelines to gain from all these endeavors. The problems de-

scribed in this thesis are all tackled from a compiler perspective, which distinguishes

this work from most state-of-the-art research that instead deals with non-functional

parameter analysis and optimization purely from the perspective of scheduling and

resource management. The amount of competitive work is further reduced when

considering energy, the main focus of all efforts described in this thesis, as the ma-

jority of literature in high performance computing solely discusses execution time

concerns.

For the purpose of the research described in this thesis and practical use, the for-

mal model was implemented via the instrumentation and measurement framework

105

106 CHAPTER 7. CONCLUSION

for the Insieme Compiler and Runtime System. It enables researchers to automat-

ically identify (parallel) code regions of interest, instrument and measure them for

any number of user-defined metrics on parallel hardware architectures and transfer

the gathered information back to the compiler for further use such as auto-tuning.

This instrumentation and measurement system has been used for the specific con-

tributions detailed in Chapters 4 to 6, and outlined below.

Multi-Objective Auto-Tuning

Although related work regarding multi-objective optimization in HPC has grown

over the past two decades, only few works apply true multi-objective optimization

that captures the trade-off between conflicting objectives, and most of them are run-

time approaches. Moreover, to the best of our knowledge, none of them has been

applied to optimize for more than two objectives.

Contrary to that, we established three metrics of interest to the HPC commu-

nity, execution time, resource usage, and energy consumption. Furthermore, we

described an optimizing algorithm, RS-GDE3, capable of identifying the trade-offs

between these three objectives using the concept of Pareto optimality. It showed the

capabilities of the Insieme compiler and runtime system framework when tackling

the problem of auto-tuning involving three types of tunable parameters: compiler-

side source code transformations (in this case loop tiling); hardware parameters such

as frequency and voltage scaling of CPUs; and runtime system parameters such as

the degree of parallelism. The output of the RS-GDE3 algorithm was used to de-

rive observations that can serve as guidelines when executing parallel programs in

resource-restricted HPC environments. This work was presented in Chapter 4 and

published under the title Multi-Objective Auto-Tuning with Insieme: Optimization

and Trade-Off Analysis for Time, Energy and Resource Usage [53].

Significance-driven Optimization of Code Execution

Near-threshold voltage (NTV) computation targets saving energy by operating hard-

ware closer to the transistor threshold voltage than super-threshold methods such as

ordinary DVFS. Related work has shown this to be a viable means of saving power

and also energy, however the entailed increase in fault probabilities has hindered its

deployment in HPC. While there are works that try to safely apply this technol-

ogy by employing resilience methods to ensure proper code execution, the majority

does not investigate the effect of faults on unprotected codes. Furthermore, the en-

ergy saving potential via unreliable code execution of naturally converging solvers

remained unexplored.

7.1. CONTRIBUTIONS 107

We introduced the concept of code significance of HPC codes at the example

of an iterative solver for linear equations, and showed that code regions and their

data can be attributed with varying significance regarding their sensitivity to faults.

This sensitivity was examined with respect to a widely-used floating point number

representation of IEEE 754, binary64. In addition, we have seen the concept of

operating hardware at NTV with the prospect of large reductions at energy con-

sumption while incurring a non-negligible impact on performance and an increased

probability of faults. Combining the aspects of code significance and NTV, the ef-

fect of executing iterative solvers on unreliable hardware was examined. The results

showed that iterative solvers can compensate for NTV-induced faults via increased

convergence time. Additionally, the results illustrate that parallelism can be a viable

means of mitigating the performance impact of NTV, thus leading to overall energy

savings between 35% and 67% without compromising program correctness. This

work was discussed in Chapter 5 and published under the title On the Potential of

Significance-Driven Execution for Energy-Aware HPC [52].

Compiler-assisted Execution Time and Energy-Modeling

Literature has shown predictive modeling to reduce the overhead of optimization

methods that open large parameter search spaces. Many of them employ stochastic

methods based on run-time parameters, and rely on repeated search space sampling

for generating and training their models. Others rely on the user to describe the

model or point to important program parameters. However, very few works in-

corporate static information obtained automatically in order to reduce this model

generation and training overhead, or to provide parametrized models with respect

to the problem size or machine size.

By contrast, we presented a novel energy prediction approach for distributed

memory parallel programs, incorporating compiler knowledge in order to reduce pre-

diction model generation overhead to a single target program execution. The method

produces analytical models for execution time and energy consumption which are

parametrized regarding the machine configuration and problem size. It automatically

identifies key statements in the target program such as loops and communication

points, and derives a relationship between their parameters, the input parameters

of the program and the machine configuration via data flow analysis. The resulting

model is trained with a single execution and can then extrapolate the execution time

and energy consumption of larger machine sizes and problem sizes. Results showed

that while reducing the number of training executions of the target program to a

single one, the accuracy achieved can match state-of-the-art research that requires

108 CHAPTER 7. CONCLUSION

multiple executions to train stochastic models. This work was discussed in Chap-

ter 6 and submitted to Euro-Par 2017 under the title Automatic Compiler-assisted

Performance and Energy Modeling for Message-Passing Parallel Programs.

7.2 Future Work

Throughout the course of this work, many additional open research issues arose.

These include:

Automatic code significance The work of Chapter 5 could be extended to al-

low the compiler to automatically determine the significance of code regions

and their data, and influence run-time decisions such as scheduling or trading

hardware reliability for energy costs. There is some research in the field of auto-

matic quantification of such metrics, however they lack the power of a compiler

and rely on black-box approaches such as automatic differentiation [134]. A

compiler could inspect the content of code regions, examine operation kinds

and data types, and compute significance automatically to guide the process

of executing code reliably or unreliably in order to save energy.

Additional auto-tuning parameters Chapter 4 is based the tuning parameters

loop tile sizes, DVFS and degree of parallelism. However, there are a great

many possibilities to extend this search space and even further optimize par-

allel programs. Examples are thread-core affinity policies, additional source

code transformations, smaller DVFS domains (e.g. per-core), or scheduling on

heterogeneous architectures.

Topology-aware search space reduction The tuning parameter of thread-core

affinity policies poses a large combinatorial problem space. Hence, if explored,

additional means of search space reduction may be required. Establishing

equivalence classes that hold similar policies with respect to the hardware

topology might prove beneficial. An example is the order in which software

threads are assigned to CPU cores of the same CPU, that share the same caches.

Changing this order is likely to have no measurable effect, but the investigation

of topology equivalence classes is an open problem and might also depend on

the data access pattern and communication pattern of the application to be

tuned.

Auto-tuning with mixed search space dimension types The search space

presented in Chapter 4 consists of several dimensions, all of which form contin-

uous functions with parameters ranging from 0 or 1 to an upper limit. However,

7.2. FUTURE WORK 109

there are parameters, such as thread-core affinity policies, which do not satisfy

this property but instead only form e.g. a partial order. Efficiently navigat-

ing search spaces consisting of continuous and non-continuous search space

dimensions with auto-tuners is an open issue.

Combine auto-tuner with prediction The energy prediction method in Chap-

ter 6 might be used as input for the auto-tuning approach described in Chap-

ter 4 when optimizing distributed memory programs. Given that the degree of

parallelism is a tunable parameter, the model could predict time and energy

for various machine sizes, thereby reducing the number of evaluation of the

iterative compilation search, which poses the vast majority of overhead of this

method.

Appendices

111

List of Symbols

Symbol Description Introduction

(. . . , . . .) Control flow edge Page 20

[. . . , . . .] Communication edge Page 21

a Clocks per instruction Page 16

A Sequential program Page 20

Ap Parallel program Page 21

b Bandwidth Page 17

d Data type Page 16

D Set of domains Page 15

ε Efficiency Page 23

E Energy Page 8

E Set of sequential control flow edges Page 20

Ee Set of entry edges Page 22

Ep Set of parallel control flow edges Page 21

Ec Set of communication edges Page 21

Ex Set of exit edges Page 22

f Frequency setting Page 15

F Set of frequency settings Page 15

i Instruction type Page 16

l Hardware link Page 10

L Set of hardware links Page 10

M Parallel Computer Page 10

N+ Set of natural numbers excluding 0 Page 22

∝ Proportionality relation Page 56

p Power state Page 15

P Set of power states Page 15

P Power Page 8

Pavg Average power Page 8

113

114 LIST OF SYMBOLS

Symbol Description Introduction

φ Function returning the average power Page 23

R Parallel code region Page 22

ru Resource usage Page 45

s Sequential statement Page 20

S Set of sequential statements Page 20

sp Statement expressing parallelism Page 21

Sp Set of statements expressing parallelism Page 21

se Entry statement Page 22

sx Exit statement Page 22

Se Set of entry statements Page 22

Sx Set of exit statements Page 22

σ Speedup Page 23

t Time Page 8

twall Wall time Page 23

tcpu Resource usage or CPU time Page 23

τ Function returning time Page 23

u Hardware unit Page 10

U Set of hardware units Page 10

v Voltage setting Page 15

V Set of voltage settings Page 15

w Instruction width Page 16

x, y, z Temporary variables or iterators as needed

List of Figures

2.1 Hardware model representation for a parallel computer comprising

four nodes each equipped with four Intel Xeon E5-4650 [28] CPUs.

For clarity, not all edges are drawn. 13

2.2 Hardware model representation for a single Intel Single-chip Cloud

Computer (SCC) [59]. 14

2.3 Application of Definition 2.10 for the IBM POWER7 processor [51]. 17

2.4 Measured and computed memory throughput of the SCC for cores

with varying distance from the memory units (0 to 3 mesh network

links). The x axis entries represent clock frequency settings in the

form of (fcore/fmesh/fmemory). 19

2.5 Software model representation of a sequential program. 20

2.6 Software model representation of a parallel program. 21

3.1 Insieme component interaction. 27

3.2 Example region identification for 3 regions: two loops (R1 and R2)

and two assignments (R3). 27

4.1 Detailed Insieme component interaction for the use case of search-

based optimization, adapted from [65]. 42

4.2 Two-dimensional example of a hypervolume V (Cfin) of a set Cfin of

trade-off configurations () and a hypothetical worst-case configura-

tion (). 49

4.3 RS-GDE3 computed trade-offs among time, energy and resource usage

for mm. 52

4.4 RS-GDE3 computed trade-offs among time (), energy () and

resource usage () for 3d-stencil, n-body, dsyrk, and jacobi-2d. . . . 57

4.5 Sample Pareto sets of single RS-GDE3 runs for the n-body code with

Turbo Boost enabled and disabled. 58

115

116 LIST OF FIGURES

4.6 Sample Pareto fronts obtained by RS-GDE3 and NSGA-II for mm

when optimizing for execution time and resource usage. 60

4.7 Sample Pareto fronts obtained by RS-GDE3 and NSGA-II for mm

when optimizing for execution time and energy. 60

5.1 Relative time overhead of Jacobi for faults in A at various iterations,

averaged over all matrix positions, for all bit positions, with a problem

size of N = 1000. The hatched bar denotes divergence. 67

5.2 Relative time overhead of Jacobi for faults in A at all matrix positions,

averaged over all bit positions, with a problem size of N = 10. 69

5.3 Power consumption per number of cores on two Intel Xeon E5-4650

for a weakly scaling Jacobi run as measured by RAPL, and offcore

amount as inferred via linear fitting. 73

5.4 The IEEE 754 binary64 format . 75

5.5 Relative energy and time savings of a parallel Jacobi run on 16 unre-

liable cores compared running on a single, reliable one. The missing

data at bits 55–62 denotes divergence. 78

5.6 Relative energy and time savings of a parallel run of Jacobi on 16

unreliable cores compared to a parallel run on 16 reliable cores. The

missing data at bits 55–62 denotes divergence. 79

5.7 Relative energy savings of an adaptive reliable/unreliable run of Ja-

cobi on 16 cores compared to a reliable, sequential one, for switching

to reliable hardware at 75%, 85% and 95% run time. The missing

data at bits 55–62 denotes divergence. 81

5.8 Relative time savings of a hybrid reliable/unreliable run of Jacobi

on 16 cores compared to a reliable, sequential one, for switching to

reliable hardware at 75%, 85% and 95% run time. The missing data

at bits 55–62 denotes divergence. 81

6.1 Workflow of our prediction approach. 88

6.2 A simplified version of a jacobi stencil input code shown in C (top)

and in our model representation (bottom). 89

6.3 Relative L3 cache miss prediction error for jacobi for n = 128 and

decreasing k for two selected problem sizes. The cache was set to be

20 MB in size with a line size of 64 bytes and a 20-way associativity,

representative of modern Intel architectures. 94

6.4 Execution time prediction breakdown of the jacobi input program for

N = 32768 for increasing machine sizes. 95

LIST OF FIGURES 117

6.5 Relative error of the execution time prediction of the jacobi applica-

tion for increasing problem and machine sizes on ortlerSandy for Tcomp

(top), max(Tcomp, Tmem) (center), and
∑

(max(Tcomp, Tmem), Tcomm)

(bottom). 103

List of Tables

3.1 Example IRS measurement result file. 35

4.1 Code characteristics. 46

4.2 Optimizers’ Parameter Setting. 48

4.3 Performance comparison of the different evaluated algorithms. 51

4.4 Time-to-solution and energy-to-solution of RS-GDE3 in comparison

to hierarchical and random search. 51

4.5 Details of all mm configurations depicted in Figure 4.3. 54

6.1 Machine characteristics. 99

6.2 Input programs, and properties. 99

6.3 Input program problem sizes. 100

6.4 Overall model errors for ortlerSandy. 101

6.5 Overall model errors for ortlerIvy. 102

119

List of Definitions

2.1 Parallel Computer . 10

2.2 Functional Unit . 10

2.3 Memory Unit . 11

2.4 Cache . 11

2.5 Core . 12

2.6 CPU . 12

2.7 Node . 12

2.8 Power Properties . 15

2.9 Domain . 15

2.10 Time and Power of Computation . 16

2.11 Time and Power of Data Transfers 17

2.12 Cache Access . 18

2.13 Sequential Program . 20

2.14 Parallel Program . 21

2.15 Entry and Exit Points . 22

2.16 Sequential Code Region . 22

2.17 Parallel Code Region . 22

2.18 Execution and Data Transfer Workloads 22

2.19 Degree of Parallelism . 22

2.20 Performance Metrics of Code Regions 23

2.21 Power and Energy Metrics of Code Regions 23

121

List of Examples

2.1 Example (Intel Xeon E5-4650) . 12

2.2 Example (Intel SCC) . 12

2.3 Example (Intel SCC) . 15

2.4 Example (DVFS Domains) . 15

2.5 Example (Measurement Domains) 16

2.6 Example (IBM POWER7 Computation Time) 16

2.7 Example (SCC Memory and Mesh Network Bandwidth) 17

2.8 Example (Sequential Program Example) 20

2.9 Example (Parallel Program Example) 21

3.1 Example (Compiler Regions) . 27

3.2 Example (Compiler Metric Structure) 29

3.3 Example (Execution Time) . 33

3.4 Example (Measurement File) . 34

123

List of Algorithms

3.1 Order of measurement actions performed by each IRS worker. 34

4.1 Generating a new configuration in DE. 44

5.1 Simplified illustration of experimental fault simulation. 74

6.1 Statement identification and selection. 91

6.2 Prediction algorithm. 91

125

Bibliography

[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,

J. Thomson, M. Toussaint, and C. K. I. Williams. Using machine learning to

focus iterative optimization. In Proceedings of the International Symposium

on Code Generation and Optimization, CGO ’06, pages 295–305, Washington,

DC, USA, 2006. IEEE Computer Society.

[2] Anant Agarwal, Martin Rinard, Stelios Sidiroglou, Sasa Misailovic, and Henry

Hoffmann. Using code perforation to improve performance, reduce energy con-

sumption, and respond to failures. Technical report, Massachusetts Institute

of Technology, 2009.

[3] Ferdinando Alessi, Peter Thoman, Giorgis Georgakoudis, Thomas Fahringer,

and Dimitrios S. Nikolopoulos. Application-Level Energy Awareness for

OpenMP, pages 219–232. Springer International Publishing, Cham, 2015.

[4] Saman Amarasinghe. Petabricks: A language and compiler based on auto-

tuning. In Proceedings of the 6th International Conference on High Perfor-

mance and Embedded Architectures and Compilers, HiPEAC ’11, pages 3–3,

New York, NY, USA, 2011. ACM.

[5] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan

Edelman, and Saman Amarasinghe. Petabricks: A language and compiler for

algorithmic choice. SIGPLAN Not., 44(6):38–49, June 2009.

[6] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley,

Jeffrey Bosboom, Una-May O’Reilly, and Saman Amarasinghe. Opentuner:

An extensible framework for program autotuning. In Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, PACT

’14, pages 303–316, New York, NY, USA, 2014. ACM.

[7] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy

Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,

127

128 BIBLIOGRAPHY

and Matei Zaharia. Above the clouds: A berkeley view of cloud computing.

Dept. Electrical Eng. and Comput. Sciences, University of California, Berke-

ley, Rep. UCB/EECS, 28, 2009.

[8] Lukas Arnold. IBM BG/P workshop. http://www.training.prace-

ri.eu/uploads/tx%5Fpracetmo/BlueGeneP.pdf, Oct 2009. Accessed: Oct 7,

2016.

[9] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for

computer system modeling. Computer, 35(2):59–67, February 2002.

[10] Fatemeh Ayatolahi, Behrooz Sangchoolie, Roger Johansson, and Johan Karls-

son. A study of the impact of single bit-flip and double bit-flip errors on

program execution. In Proceedings of the 32Nd International Conference on

Computer Safety, Reliability, and Security - Volume 8153, SAFECOMP 2013,

pages 265–276, New York, NY, USA, 2013. Springer-Verlag New York, Inc.

[11] Woongki Baek and Trishul M. Chilimbi. Green: A framework for support-

ing energy-conscious programming using controlled approximation. SIGPLAN

Not., 45(6):198–209, June 2010.

[12] R. Jacob Baker. CMOS Circuit Design, Layout, and Simulation. Wiley-IEEE

Press, 3rd edition, 2010.

[13] Prasanna Balaprakash, Ananta Tiwari, and Stefan M. Wild. Multi Objec-

tive Optimization of HPC Kernels for Performance, Power, and Energy. In

High Performance Computing Systems. Performance Modeling, Benchmark-

ing and Simulation: 4th International Workshop, PMBS 2013, Denver, CO,

USA, November 18, 2013. Revised Selected Papers, pages 239–260, Cham,

2014. Springer International Publishing.

[14] Nikhil Bansal, Ho-Leung Chan, Kirk Pruhs, and Dmitriy Katz. Improved

bounds for speed scaling in devices obeying the cube-root rule. In Proceedings

of the 36th International Colloquium on Automata, Languages and Program-

ming: Part I, ICALP ’09, pages 144–155, Berlin, Heidelberg, 2009. Springer-

Verlag.

[15] Cedric Bastoul. Code generation in the polyhedral model is easier than you

think. In Proceedings of the 13th International Conference on Parallel Archi-

tectures and Compilation Techniques, PACT ’04, pages 7–16, Washington, DC,

USA, 2004. IEEE Computer Society.

BIBLIOGRAPHY 129

[16] S. Benedict, R. S. Rejitha, P. Gschwandtner, R. Prodan, and T. Fahringer.

Energy prediction of openmp applications using random forest modeling ap-

proach. In 2015 IEEE International Parallel and Distributed Processing Sym-

posium Workshop, pages 1251–1260, May 2015.

[17] J. Bergstra, N. Pinto, and D. Cox. Machine learning for predictive auto-tuning

with boosted regression trees. In 2012 Innovative Parallel Computing (InPar),

pages 1–9, May 2012.

[18] Arnamoy Bhattacharyya and Torsten Hoefler. PEMOGEN: Automatic adap-

tive performance modeling during program runtime. In Proceedings of the 23rd

International Conference on Parallel Architectures and Compilation, PACT

’14, pages 393–404, New York, NY, USA, 2014. ACM.

[19] Arnamoy Bhattacharyya, Grzegorz Kwasniewski, and Torsten Hoefler. Using

compiler techniques to improve automatic performance modeling. In Proceed-

ings of the 2015 International Conference on Parallel Architecture and Compi-

lation (PACT), PACT ’15, pages 468–479, Washington, DC, USA, 2015. IEEE

Computer Society.

[20] M. Boersma, M. Kroner, C. Layer, P. Leber, S. M. Muller, and K. Schelm.

The POWER7 binary floating-point unit. In Computer Arithmetic (ARITH),

2011 20th IEEE Symposium on, pages 87–91, July 2011.

[21] Luigi Brochard, Raj Panda, and Sid Vemuganti. Optimizing performance and

energy of HPC applications on POWER7. Computer Science - Research and

Development, 25(3):135–140, 2010.

[22] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Frame-

work for Architectural-level Power Analysis and Optimizations. SIGARCH

Computer Architecture News, 28(2):83–94, May 2000.

[23] Steve Carr and Ken Kennedy. Blocking linear algebra codes for memory hier-

archies. In Proceedings of the Fourth SIAM Conference on Parallel Processing

for Scientific Computing, pages 400–405, Philadelphia, PA, USA, 1990. Society

for Industrial and Applied Mathematics.

[24] Yair Censor. Pareto optimality in multiobjective problems. Applied Mathe-

matics and Optimization, 4(1):41–59, 1977.

[25] James Charles, Preet Jassi, Narayan S. Ananth, Abbas Sadat, and Alexandra

Fedorova. Evaluation of the Intel Core i7 Turbo Boost Feature. In Proceed-

130 BIBLIOGRAPHY

ings of the 2009 IEEE International Symposium on Workload Characteriza-

tion (IISWC), IISWC ’09, pages 188–197, Washington, DC, USA, 2009. IEEE

Computer Society.

[26] Jee Whan Choi, Daniel Bedard, Robert Fowler, and Richard Vuduc. A roofline

model of energy. In Proceedings of the 2013 IEEE 27th International Sympo-

sium on Parallel and Distributed Processing, IPDPS ’13, pages 661–672, Wash-

ington, DC, USA, 2013. IEEE Computer Society.

[27] Matthias Christen, Olaf Schenk, and Helmar Burkhart. Patus: A code gen-

eration and autotuning framework for parallel iterative stencil computations

on modern microarchitectures. In Proceedings of the 2011 IEEE Interna-

tional Parallel & Distributed Processing Symposium, IPDPS ’11, pages 676–

687, Washington, DC, USA, 2011. IEEE Computer Society.

[28] Intel Corporation. Intel Xeon Processor E5-4650 Spec-

ifications. http://ark.intel.com/products/64622/

Intel-Xeon-Processor-E5-4650-20M-Cache-2_70-GHz-8_

00-GTs-Intel-QPI, 2012. Accessed: November 4th, 2016.

[29] Intel Corporation. Intel Xeon Processor E5-1600, E5-2600, and E5-

4600 v3 Product Families, Volume 1 of 2, Electrical Datasheet.

http://www.intel.com/content/dam/www/public/us/en/documents/

datasheets/xeon-e5-v3-datasheet-vol-1.pdf, Jun 2015. Accessed:

November 4th, 2016.

[30] Cristian Ţăpuş, I-Hsin Chung, and Jeffrey K. Hollingsworth. Active har-

mony: Towards automated performance tuning. In Proceedings of the 2002

ACM/IEEE Conference on Supercomputing, SC ’02, pages 1–11, Los Alami-

tos, CA, USA, 2002. IEEE Computer Society Press.

[31] H. David, E. Gorbatov, U. R. Hanebutte, R. Khanna, and C. Le. RAPL:

Memory power estimation and capping. In Low-Power Electronics and De-

sign (ISLPED), 2010 ACM/IEEE International Symposium on, pages 189–

194, Aug 2010.

[32] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan. A fast and elitist multi-

objective genetic algorithm: Nsga-ii. Trans. Evol. Comp, 6(2):182–197, April

2002.

[33] Yong Dong, Juan Chen, Xuejun Yang, Lin Deng, and Xuemeng Zhang. Energy-

oriented openmp parallel loop scheduling. In Proceedings of the 2008 IEEE

http://ark.intel.com/products/64622/Intel-Xeon-Processor-E5-4650-20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64622/Intel-Xeon-Processor-E5-4650-20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI
http://ark.intel.com/products/64622/Intel-Xeon-Processor-E5-4650-20M-Cache-2_70-GHz-8_00-GTs-Intel-QPI
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/datasheets/xeon-e5-v3-datasheet-vol-1.pdf

BIBLIOGRAPHY 131

International Symposium on Parallel and Distributed Processing with Applica-

tions, ISPA ’08, pages 162–169, Washington, DC, USA, 2008. IEEE Computer

Society.

[34] Ronald G Dreslinski, Michael Wieckowski, David Blaauw, Dennis Sylvester,

and Trevor Mudge. Near-threshold computing: Reclaiming moore’s law

through energy efficient integrated circuits. Proceedings of the IEEE,

98(2):253–266, 2010.

[35] J Elliot, F Müller, Miroslav Stoyanov, and Clayton Webster. Quantifying

the Impact of Single Bit Flips on Floating Point Arithmetic. Technical report,

Tech. Rep. ORNL/TM-2013/282, Oak Ridge National Laboratory, One Bethel

Valley Road, Oak Ridge, TN, 2013. 6, 9, 2013.

[36] Kayvon Fatahalian, Daniel Reiter Horn, Timothy J. Knight, Larkhoon Leem,

Mike Houston, Ji Young Park, Mattan Erez, Manman Ren, Alex Aiken,

William J. Dally, and Pat Hanrahan. Sequoia: Programming the memory

hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on Supercom-

puting, SC ’06, New York, NY, USA, 2006. ACM.

[37] David Fiala, Frank Mueller, Christian Engelmann, Rolf Riesen, Kurt Ferreira,

and Ron Brightwell. Detection and correction of silent data corruption for

large-scale high-performance computing. In Proceedings of the International

Conference on High Performance Computing, Networking, Storage and Analy-

sis, SC ’12, pages 78:1–78:12, Los Alamitos, CA, USA, 2012. IEEE Computer

Society Press.

[38] Michael J. Flynn, Patrick Hung, and Kevin W. Rudd. Deep-submicron micro-

processor design issues. IEEE Micro, 19(4):11–22, July 1999.

[39] Inc. Free Software Foundation. Gcc, the gnu compiler collection. https:

//gcc.gnu.org/, 2016.

[40] Vincent W. Freeh and David K. Lowenthal. Using multiple energy gears in

mpi programs on a power-scalable cluster. In Proceedings of the Tenth ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming,

PPoPP ’05, pages 164–173, New York, NY, USA, 2005. ACM.

[41] Vincent W. Freeh, David K. Lowenthal, Feng Pan, Nandini Kappiah, Rob

Springer, Barry L. Rountree, and Mark E. Femal. Analyzing the energy-time

trade-off in high-performance computing applications. IEEE Trans. Parallel

Distrib. Syst., 18(6):835–848, June 2007.

https://gcc.gnu.org/
https://gcc.gnu.org/

132 BIBLIOGRAPHY

[42] Matteo Frigo. A fast fourier transform compiler. SIGPLAN Not., 34(5):169–

180, May 1999.

[43] Grigori Fursin, Yuriy Kashnikov, Abdul Wahid Memon, Zbigniew Chamski,

Olivier Temam, Mircea Namolaru, Elad Yom-Tov, Bilha Mendelson, Ayal

Zaks, Eric Courtois, Francois Bodin, Phil Barnard, Elton Ashton, Edwin

Bonilla, John Thomson, Christopher K. I. Williams, and Michael O’Boyle.

Milepost GCC: Machine Learning Enabled Self-tuning Compiler. International

Journal of Parallel Programming, 39(3):296–327, 2011.

[44] Grigori Fursin, Abdul Wahid Memon, Christophe Guillon, and Anton Lokhmo-

tov. Collective mind, part II: towards performance- and cost-aware software

engineering as a natural science. 18th International Workshop on Compilers

for Parallel Computing (CPC15), 2015.

[45] R. Ge, X. Feng, S. Song, H. C. Chang, D. Li, and K. W. Cameron. Powerpack:

Energy Profiling and Analysis of High-Performance Systems and Applications.

IEEE Transactions on Parallel and Distributed Systems, 21(5):658–671, May

2010.

[46] Fred W Glover and Gary A Kochenberger. Handbook of metaheuristics, vol-

ume 57. Springer Science & Business Media, 2006.

[47] R. Gonzalez, B. M. Gordon, and M. A. Horowitz. Supply and Threshold

Voltage Scaling for Low Power CMOS. IEEE Journal of Solid-State Circuits,

32(8):1210–1216, Aug 1997.

[48] R. Gonzalez and M. Horowitz. Energy dissipation in general purpose micro-

processors. IEEE Journal of Solid-State Circuits, 31(9):1277–1284, Sep 1996.

[49] Ivan Grasso, Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic

problem size sensitive task partitioning on heterogeneous parallel systems. SIG-

PLAN Not., 48(8):281–282, February 2013.

[50] P. Gschwandtner, T. Fahringer, and R. Prodan. Performance Analysis and

Benchmarking of the Intel SCC. In 2011 IEEE International Conference on

Cluster Computing, pages 139–149. IEEE, Sept 2011.

[51] P. Gschwandtner, M. Knobloch, B. Mohr, D. Pleiter, and T. Fahringer. Mod-

eling cpu energy consumption of hpc applications on the ibm power7. In

2014 22nd Euromicro International Conference on Parallel, Distributed, and

Network-Based Processing, pages 536–543, Feb 2014.

BIBLIOGRAPHY 133

[52] Philipp Gschwandtner, Charalampos Chalios, Dimitrios S. Nikolopoulos, Hans

Vandierendonck, and Thomas Fahringer. On the Potential of Significance-

driven execution for energy-aware hpc. Computer Science - Research and De-

velopment, 30(2):197–206, 2015.

[53] Philipp Gschwandtner, Juan J. Durillo, and Thomas Fahringer. Multi-

Objective Auto-Tuning with Insieme: Optimization and Trade-Off Analysis

for Time, Energy and Resource Usage. In Euro-Par 2014 Parallel Process-

ing, volume 8632 of Lecture Notes in Computer Science, pages 87–98. Springer

International Publishing, 2014.

[54] Marcus Hähnel, Björn Döbel, Marcus Völp, and Hermann Härtig. Measur-

ing Energy Consumption for Short Code Paths Using RAPL. SIGMETRICS

Perform. Eval. Rev., 40(3), January 2012.

[55] Julian Hammer, Georg Hager, Jan Eitzinger, and Gerhard Wellein. Automatic

loop kernel analysis and performance modeling with kerncraft. In Proceedings

of the 6th International Workshop on Performance Modeling, Benchmarking,

and Simulation of High Performance Computing Systems, PMBS ’15, pages

4:1–4:11, New York, NY, USA, 2015. ACM.

[56] Torsten Hoefler and Dmitry Moor. Energy, memory, and runtime tradeoffs for

implementing collective communication operations. Supercomputing frontiers

and innovations, 1(2):58–75, 2014.

[57] Mark Hoemmen and Michael Heroux. Fault-tolerant iterative methods via

selective reliability. In Proceedings of the 2011 International Conference for

High Performance Computing, Networking, Storage and Analysis (SC). IEEE

Computer Society, volume 3, page 9, 2011.

[58] Kenneth Hoste and Lieven Eeckhout. Cole: Compiler optimization level explo-

ration. In Proceedings of the 6th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’08, pages 165–174, New York,

NY, USA, 2008. ACM.

[59] J. Howard, S. Dighe, S. R. Vangal, G. Ruhl, N. Borkar, S. Jain, V. Erra-

guntla, M. Konow, M. Riepen, M. Gries, G. Droege, T. Lund-Larsen, S. Steibl,

S. Borkar, V. K. De, and R. Van Der Wijngaart. A 48-core ia-32 processor in

45 nm cmos using on-die message-passing and dvfs for performance and power

scaling. IEEE Journal of Solid-State Circuits, 46(1):173–183, Jan 2011.

134 BIBLIOGRAPHY

[60] J. Hursey, J. M. Squyres, T. I. Mattox, and A. Lumsdaine. The design and

implementation of checkpoint/restart process fault tolerance for open mpi.

In 2007 IEEE International Parallel and Distributed Processing Symposium,

pages 1–8, March 2007.

[61] Maxwell Lipford Hutchinson. Hybrid OpenMP MPI Benchmark.

https://sourceforge.net/projects/homb/, Apr 2013. Accessed: Oct 7, 2016.

[62] IEEE standard for binary floating-point arithmetic. New York, 1985. Note:

Standard 754–1985.

[63] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual Volume

3B Part 2, Jun 2013. Accessed: November 4th, 2016.

[64] Herbert Jordan, Simone Pellegrini, Peter Thoman, Klaus Kofler, and Thomas

Fahringer. INSPIRE: The insieme parallel intermediate representation. In

Proceedings of the 22Nd International Conference on Parallel Architectures

and Compilation Techniques, PACT ’13, pages 7–18, Piscataway, NJ, USA,

2013. IEEE Press.

[65] Herbert Jordan, Peter Thoman, Juan J. Durillo, Simone Pellegrini, Philipp

Gschwandtner, Thomas Fahringer, and Hans Moritsch. A multi-objective auto-

tuning framework for parallel codes. In Proceedings of the International Con-

ference on High Performance Computing, Networking, Storage and Analysis,

SC ’12, pages 10:1–10:12, Los Alamitos, CA, USA, 2012. IEEE Computer So-

ciety Press.

[66] Herbert Jordan, Peter Thoman, and Thomas Fahringer. A High-Level IR

Transformation System, pages 647–656. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2014.

[67] Ron Kalla, Balaram Sinharoy, William J. Starke, and Michael Floyd. Power7:

IBM’s next-generation server processor. IEEE Micro, 30(2):7–15, March 2010.

[68] U. R. Karpuzcu, I. Akturk, and N. S. Kim. Accordion: Toward soft near-

threshold voltage computing. In 2014 IEEE 20th International Symposium on

High Performance Computer Architecture (HPCA), pages 72–83, Feb 2014.

[69] Ulya Karpuzcu, Nam Sung Kim, and Josep Torrellas. Coping with parametric

variation at near-threshold voltages. IEEE Micro, 33(4):6–14, July 2013.

BIBLIOGRAPHY 135

[70] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishna-

murthy, and Shekhar Borkar. Near-threshold voltage (NTV) design: Oppor-

tunities and challenges. In Proceedings of the 49th Annual Design Automation

Conference, DAC ’12, pages 1153–1158, New York, NY, USA, 2012. ACM.

[71] Klaus Kofler, Biagio Cosenza, and Thomas Fahringer. Automatic Data Layout

Optimizations for GPUs, pages 263–274. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2015.

[72] Klaus Kofler, Ivan Grasso, Biagio Cosenza, and Thomas Fahringer. An auto-

matic input-sensitive approach for heterogeneous task partitioning. In Proceed-

ings of the 27th International ACM Conference on International Conference

on Supercomputing, ICS ’13, pages 149–160, New York, NY, USA, 2013. ACM.

[73] A. Kohler, M. Radetzki, P. Gschwandtner, and T. Fahringer. Low-latency

collectives for the intel scc. In 2012 IEEE International Conference on Cluster

Computing, pages 346–354, Sept 2012.

[74] Ted Kubaska. The SCC Programmer’s Guide. Technical report, Intel Labs,

2010.

[75] Prasad A. Kulkarni, David B. Whalley, Gary S. Tyson, and Jack W. David-

son. Practical exhaustive optimization phase order exploration and evaluation.

ACM Trans. Archit. Code Optim., 6(1):1:1–1:36, April 2009.

[76] James H. Laros, III, Kevin T. Pedretti, Suzanne M. Kelly, Wei Shu, and

Courtenay T. Vaughan. Energy based performance tuning for large scale high

performance computing systems. In Proceedings of the 2012 Symposium on

High Performance Computing, HPC ’12, pages 6:1–6:10, San Diego, CA, USA,

2012. Society for Computer Simulation International.

[77] Seyong Lee, Jeremy S. Meredith, and Jeffrey S. Vetter. COMPASS: A frame-

work for automated performance modeling and prediction. In Proceedings of

the 29th ACM on International Conference on Supercomputing, ICS ’15, pages

405–414, New York, NY, USA, 2015. ACM.

[78] Larkhoon Leem, Hyungmin Cho, Jason Bau, Quinn A. Jacobson, and Subha-

sish Mitra. Ersa: Error resilient system architecture for probabilistic applica-

tions. In Proceedings of the Conference on Design, Automation and Test in

Europe, DATE ’10, pages 1560–1565, 3001 Leuven, Belgium, Belgium, 2010.

European Design and Automation Association.

136 BIBLIOGRAPHY

[79] D. Li, D. S. Nikolopoulos, K. Cameron, B. R. de Supinski, and M. Schulz.

Power-aware mpi task aggregation prediction for high-end computing systems.

In 2010 IEEE International Symposium on Parallel Distributed Processing

(IPDPS), pages 1–12, April 2010.

[80] Dong Li, Bronis R. de Supinski, Martin Schulz, Dimitrios S. Nikolopoulos,

and Kirk W. Cameron. Strategies for energy-efficient resource management of

hybrid programming models. IEEE Trans. Parallel Distrib. Syst., 24(1):144–

157, January 2013.

[81] Charles Lively, Xingfu Wu, Valerie Taylor, Shirley Moore, Hung-Ching Chang,

and Kirk Cameron. Energy and performance characteristics of different parallel

implementations of scientific applications on multicore systems. Int. J. High

Perform. Comput. Appl., 25(3):342–350, August 2011.

[82] Lianjie Luo, Yang Chen, Chengyong Wu, Shun Long, and Grigori Fursin. Find-

ing representative sets of optimizations for adaptive multiversioning applica-

tions. 3rd Workshop on Statistical and Machine Learning Approaches Applied

to Architectures and Compilation (SMART09), 2014.

[83] Timothy G. Mattson, Michael Riepen, Thomas Lehnig, Paul Brett, Werner

Haas, Patrick Kennedy, Jason Howard, Sriram Vangal, Nitin Borkar, Greg

Ruhl, and Saurabh Dighe. The 48-core scc processor: The programmer’s view.

In Proceedings of the 2010 ACM/IEEE International Conference for High Per-

formance Computing, Networking, Storage and Analysis, SC ’10, pages 1–11,

Washington, DC, USA, 2010. IEEE Computer Society.

[84] John D McCalpin. A survey of memory bandwidth and machine balance in

current high performance computers. IEEE TCCA Newsletter, pages 19–25,

1995.

[85] S. McFarling. Program optimization for instruction caches. SIGARCH Com-

put. Archit. News, 17(2):183–191, April 1989.

[86] Bryan Mills, Taieb Znati, Rami Melhem, Kurt B. Ferreira, and Ryan E. Grant.

Energy consumption of resilience mechanisms in large scale systems. In Pro-

ceedings of the 2014 22Nd Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, PDP ’14, pages 528–535, Wash-

ington, DC, USA, 2014. IEEE Computer Society.

[87] Sasa Misailovic, Stelios Sidiroglou, Henry Hoffmann, and Martin Rinard. Qual-

ity of service profiling. In Proceedings of the 32Nd ACM/IEEE International

BIBLIOGRAPHY 137

Conference on Software Engineering - Volume 1, ICSE ’10, pages 25–34, New

York, NY, USA, 2010. ACM.

[88] Philip J Mucci, Shirley Browne, Christine Deane, and George Ho. Papi: A

portable interface to hardware performance counters. In Proceedings of the

department of defense HPCMP users group conference, pages 7–10, 1999.

[89] Frank Mueller. Pthreads library interface. Technical report, Florida State

University, 1993.

[90] Nicholas Nethercote. Dynamic binary analysis and instrumentation. PhD

thesis, PhD thesis, University of Cambridge, 2004.

[91] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Principles of Program

Analysis. Springer Publishing Company, Incorporated, 2010.

[92] University of Innsbruck. Insieme compiler project. http://www.

insieme-compiler.org, 2016.

[93] S. Pakin and M. Lang. Energy modeling of supercomputers and large-scale

scientific applications. In 2013 International Green Computing Conference

Proceedings, pages 1–6, June 2013.

[94] Maurizio Palesi and Tony Givargis. Multi-objective design space exploration

using genetic algorithms. In Proceedings of the Tenth International Symposium

on Hardware/Software Codesign, CODES ’02, pages 67–72, New York, NY,

USA, 2002. ACM.

[95] Zdzis law Pawlak. Rough sets. International Journal of Computer & Informa-

tion Sciences, 11(5):341–356, 1982.

[96] Magnus Erik Hvass Pedersen. Tuning & simplifying heuristical optimization.

PhD thesis, University of Southampton, 2010.

[97] Joshua Peraza, Ananta Tiwari, Michael Laurenzano, Laura Carrington, and

Allan Snavely. Pmac’s green queue: A framework for selecting energy optimal

dvfs configurations in large scale mpi applications. Concurr. Comput. : Pract.

Exper., 28(2):211–231, February 2016.

[98] Phitchaya Mangpo Phothilimthana, Jason Ansel, Jonathan Ragan-Kelley, and

Saman Amarasinghe. Portable performance on heterogeneous architectures. In

http://www.insieme-compiler.org
http://www.insieme-compiler.org

138 BIBLIOGRAPHY

Proceedings of the Eighteenth International Conference on Architectural Sup-

port for Programming Languages and Operating Systems, ASPLOS ’13, pages

431–444, New York, NY, USA, 2013. ACM.

[99] Louis-Noel Pouchet, Cedric Bastoul, Albert Cohen, and Nicolas Vasilache. It-

erative optimization in the polyhedral model: Part i, one-dimensional time.

In Proceedings of the International Symposium on Code Generation and Opti-

mization, CGO ’07, pages 144–156, Washington, DC, USA, 2007. IEEE Com-

puter Society.

[100] M. Puschel, J. M. F. Moura, J. R. Johnson, D. Padua, M. M. Veloso, B. W.

Singer, Jianxin Xiong, F. Franchetti, A. Gacic, Y. Voronenko, K. Chen, R. W.

Johnson, and N. Rizzolo. Spiral: Code generation for dsp transforms. Proceed-

ings of the IEEE, 93(2):232–275, Feb 2005.

[101] Mohammed Rahman, Louis-Noël Pouchet, and P. Sadayappan. Neural network

assisted tile size selection. In International Workshop on Automatic Perfor-

mance Tuning (IWAPT2010). Springer, 2010.

[102] Shah Faizur Rahman, Jichi Guo, and Qing Yi. Automated empirical tuning

of scientific codes for performance and power consumption. In Proceedings of

the 6th International Conference on High Performance and Embedded Archi-

tectures and Compilers, HiPEAC ’11, pages 107–116, New York, NY, USA,

2011. ACM.

[103] Shah Mohammad Faizur Rahman, Jichi Guo, Akshatha Bhat, Carlos Garcia,

Majedul Haque Sujon, Qing Yi, Chunhua Liao, and Daniel Quinlan. Studying

the impact of application-level optimizations on the power consumption of

multi-core architectures. In Proceedings of the 9th Conference on Computing

Frontiers, CF ’12, pages 123–132, New York, NY, USA, 2012. ACM.

[104] Thomas Rauber and Gudula Rünger. Modeling the energy consumption for

concurrent executions of parallel tasks. In Proceedings of the 14th Communi-

cations and Networking Symposium, CNS ’11, pages 11–18, San Diego, CA,

USA, 2011. Society for Computer Simulation International.

[105] Martin Rinard. Probabilistic accuracy bounds for fault-tolerant computations

that discard tasks. In Proceedings of the 20th Annual International Conference

on Supercomputing, ICS ’06, pages 324–334, New York, NY, USA, 2006. ACM.

BIBLIOGRAPHY 139

[106] Martin Rinard, Henry Hoffmann, Sasa Misailovic, and Stelios Sidiroglou. Pat-

terns and statistical analysis for understanding reduced resource computing.

SIGPLAN Not., 45(10):806–821, October 2010.

[107] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Eliezer Weissmann,

and Doron Rajwan. Power-Management Architecture of the Intel Microarchi-

tecture Code-Named Sandy Bridge. Micro, IEEE, 32(2), 2012.

[108] J. T. Russell and M. F. Jacome. Software power estimation and optimization

for high performance, 32-bit embedded processors. In Proceedings International

Conference on Computer Design. VLSI in Computers and Processors (Cat.

No.98CB36273), pages 328–333, Oct 1998.

[109] Giacinto P. Saggese, Nicholas J. Wang, Zbigniew T. Kalbarczyk, Sanjay J.

Patel, and Ravishankar K. Iyer. An experimental study of soft errors in mi-

croprocessors. IEEE Micro, 25(6):30–39, November 2005.

[110] Adrian Sampson, Werner Dietl, Emily Fortuna, Danushen Gnanapragasam,

Luis Ceze, and Dan Grossman. Enerj: Approximate data types for safe and

general low-power computation. SIGPLAN Not., 46(6):164–174, June 2011.

[111] B. Sinharoy, R. Kalla, W. J. Starke, H. Q. Le, R. Cargnoni, J. A.

Van Norstrand, B. J. Ronchetti, J. Stuecheli, J. Leenstra, G. L. Guthrie, D. Q.

Nguyen, B. Blaner, C. F. Marino, E. Retter, and P. Williams. Ibm power7

multicore server processor. IBM J. Res. Dev., 55(3):191–219, May 2011.

[112] Shuaiwen Song, Rong Ge, Xizhou Feng, and Kirk W. Cameron. Energy pro-

filing and analysis of the hpc challenge benchmarks. Int. J. High Perform.

Comput. Appl., 23(3):265–276, August 2009.

[113] Kyle L. Spafford and Jeffrey S. Vetter. Aspen: A domain specific language for

performance modeling. In Proceedings of the International Conference on High

Performance Computing, Networking, Storage and Analysis, SC ’12, pages

84:1–84:11, Los Alamitos, CA, USA, 2012. IEEE Computer Society Press.

[114] Robert Springer, David K. Lowenthal, Barry Rountree, and Vincent W. Freeh.

Minimizing execution time in mpi programs on an energy-constrained, power-

scalable cluster. In Proceedings of the Eleventh ACM SIGPLAN Symposium on

Principles and Practice of Parallel Programming, PPoPP ’06, pages 230–238,

New York, NY, USA, 2006. ACM.

140 BIBLIOGRAPHY

[115] Holger Stengel, Jan Treibig, Georg Hager, and Gerhard Wellein. Quantifying

performance bottlenecks of stencil computations using the execution-cache-

memory model. In Proceedings of the 29th ACM on International Conference

on Supercomputing, ICS ’15, pages 207–216, New York, NY, USA, 2015. ACM.

[116] Rainer Storn and Kenneth Price. Differential evolution – a simple and

efficient heuristic for global optimization over continuous spaces. J. of Global

Optimization, 11(4):341–359, December 1997.

[117] Nathan R. Tallent and Adolfy Hoisie. Palm: Easing the burden of analytical

performance modeling. In Proceedings of the 28th ACM International Confer-

ence on Supercomputing, ICS ’14, pages 221–230, New York, NY, USA, 2014.

ACM.

[118] Insieme Developer Team. Insieme source code repository. https://github.

com/insieme/insieme, 2016.

[119] S. Thakkur and T. Huff. Internet Streaming SIMD Extensions. Computer,

32(12):26–34, Dec 1999.

[120] P. Thoman, P. Gschwandtner, and T. Fahringer. On the quality of implemen-

tation of the c++11 thread support library. In 2015 23rd Euromicro Inter-

national Conference on Parallel, Distributed, and Network-Based Processing,

pages 94–98, March 2015.

[121] Peter Thoman. Insieme-RS: A Compiler-supported Parallel Runtime System.

PhD thesis, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria, 2013.

[122] Peter Thoman, Herbert Jordan, and Thomas Fahringer. Adaptive granularity

control in task parallel programs using multiversioning. In Euro-Par 2013

Parallel Processing: 19th International Conference, Aachen, Germany, August

26-30, 2013. Proceedings, pages 164–177, Berlin, Heidelberg, 2013. Springer

Berlin Heidelberg.

[123] Peter Thoman, Herbert Jordan, and Thomas Fahringer. Adaptive Granular-

ity Control in Task Parallel Programs Using Multiversioning, pages 164–177.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.

[124] Peter Thoman, Herbert Jordan, and Thomas Fahringer. Compiler multiver-

sioning for automatic task granularity control. Concurrency and Computation:

Practice and Experience, 26(14):2367–2385, 2014.

https://github.com/insieme/insieme
https://github.com/insieme/insieme

BIBLIOGRAPHY 141

[125] Peter Thoman, Klaus Kofler, Heiko Studt, John Thomson, and Thomas

Fahringer. Automatic OpenCL Device Characterization: Guiding Optimized

Kernel Design, pages 438–452. Springer Berlin Heidelberg, Berlin, Heidelberg,

2011.

[126] Peter Thoman, Stefan Moosbrugger, and Thomas Fahringer. Optimizing

Task Parallelism with Library-Semantics-Aware Compilation, pages 237–249.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[127] Peter Thoman, Hans Moritsch, and Thomas Fahringer. Topology-Aware

OpenMP Process Scheduling, pages 96–108. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[128] Ananta Tiwari, Chun Chen, Jacqueline Chame, Mary Hall, and Jeffrey K.

Hollingsworth. A scalable auto-tuning framework for compiler optimiza-

tion. In Proceedings of the 2009 IEEE International Symposium on Paral-

lel&Distributed Processing, IPDPS ’09, pages 1–12, Washington, DC, USA,

2009. IEEE Computer Society.

[129] Ananta Tiwari, Michael A. Laurenzano, Laura Carrington, and Allan Snavely.

Auto-tuning for Energy Usage in Scientific Applications, pages 178–187.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[130] Ananta Tiwari, Michael A. Laurenzano, Laura Carrington, and Allan Snavely.

Modeling power and energy usage of hpc kernels. In Proceedings of the 2012

IEEE 26th International Parallel and Distributed Processing Symposium Work-

shops & PhD Forum, IPDPSW ’12, pages 990–998, Washington, DC, USA,

2012. IEEE Computer Society.

[131] Matthew Tolentino and Kirk W. Cameron. The optimist, the pessimist, and

the global race to exascale in 20 megawatts. Computer, 45(1):95–97, January

2012.

[132] A. M. Turing. On computable numbers, with an application to the entschei-

dungsproblem. a correction. Proceedings of the London Mathematical Society,

s2-43(1):544–546, 1938.

[133] Didem Unat, Cy Chan, Weiqun Zhang, Samuel Williams, John Bachan, John

Bell, and John Shalf. Exasat: An exascale co-design tool for performance

modeling. Int. J. High Perform. Comput. Appl., 29(2):209–232, May 2015.

142 BIBLIOGRAPHY

[134] Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout,

Patrick Heimbach, Chris Hill, and Carl Wunsch. Openad/f: A modular open-

source tool for automatic differentiation of fortran codes. ACM Trans. Math.

Softw., 34(4):18:1–18:36, July 2008.

[135] Richard Vuduc, James W Demmel, and Katherine A Yelick. OSKI: A library

of automatically tuned sparse matrix kernels. Journal of Physics: Conference

Series, 16(1):521, 2005.

[136] Vincent M. Weaver, Matt Johnson, Kiran Kasichayanula, James Ralph, Piotr

Luszczek, Dan Terpstra, and Shirley Moore. Measuring energy and power with

PAPI. In Proceedings of the 2012 41st International Conference on Parallel

Processing Workshops, ICPPW ’12, pages 262–268, Washington, DC, USA,

2012. IEEE Computer Society.

[137] R. Clint Whaley and Jack J. Dongarra. Automatically tuned linear algebra

software. In Proceedings of the 1998 ACM/IEEE Conference on Supercom-

puting, SC ’98, pages 1–27, Washington, DC, USA, 1998. IEEE Computer

Society.

[138] Stefan Widerin. Insieme Runtime System for Windows. Master’s thesis, Uni-

versity of Innsbruck, Innrain 52, 6020 Innsbruck, Austria, Oct 2013.

[139] Maurice V. Wilkes. The memory gap and the future of high performance

memories. SIGARCH Comput. Archit. News, 29(1):2–7, March 2001.

[140] Samuel Williams, Andrew Waterman, and David Patterson. Roofline: An

insightful visual performance model for multicore architectures. Commun.

ACM, 52(4):65–76, April 2009.

[141] Z. Zheng, L. Yu, and Z. Lan. Reliability-aware speedup models for parallel

applications with coordinated checkpointing/restart. IEEE Transactions on

Computers, 64(5):1402–1415, May 2015.

[142] E. Zitzler and L. Thiele. Multiobjective Evolutionary Algorithms: A Compar-

ative Case Study and the Strength Pareto Approach. IEEE Transactions on

Evolutionary Computation, 3(4), 1999.

	Certificate of Authorship
	Abstract
	Acknowledgements
	Table of Contents
	Introduction
	Motivation
	State of the Art
	Multi-objective Auto-Tuning
	Significance-driven Optimization of Code Execution
	Compiler-assisted Execution Time and Energy Modeling

	Organization

	Model
	Hardware Model
	Physics Background
	Topology
	Non-functional Hardware Properties

	Software Model
	Software Structure
	Non-functional Software Properties

	Summary

	Insieme Measurement Framework
	Compiler Component
	Overview
	Region Specification, Identification and Instrumentation
	Measurement Framework

	Runtime Component
	Overview
	Measurement Framework
	Platform-specific Features
	Control features

	Additional Research
	Summary

	Multi-Objective Auto-Tuning
	Introduction
	Related Work
	Insieme Compiler
	Auto-Tuning Infrastructure
	Optimizers

	Experiment Design
	Objectives
	Benchmarks and Target Platform
	Configuration of the Optimizers
	Comparison Criteria

	Experimental Results
	RS-GDE3 Evaluation
	Energy-Time Trade-off as a Function of Resource Usage
	Impact of Turbo Boost
	Evaluation of RS-GDE3 for Dual-Objective Optimization
	Tiling Effects

	Summary

	Significance-driven Optimization of Code Execution
	Introduction
	Related Work
	Significance
	Methodology
	Fault Model
	Energy Savings Through Unreliability
	Experiment Setup
	IEEE 754 Double-precision Floating-point Format

	Results
	Sequential Reliable Jacobi
	Parallel Reliable Jacobi
	Significance-dependent Reliability Switching

	Summary

	Compiler-assisted Time and Energy Modeling
	Introduction
	Related Work
	Model
	Method
	Automatic Region and Parameter Detection
	Automatic Parameter Extraction
	Execution Time Prediction
	Energy Prediction

	Experimental Setup
	Results
	Summary

	Conclusion
	Contributions
	Future Work

	Appendices
	List of Symbols
	List of Figures
	List of Tables
	List of Definitions
	List of Examples
	List of Algorithms
	Bibliography

