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Abstract. 
 

Currently Grid application developers often 
configure available application components into a 
workflow of tasks that they can submit for executing on 
the Grid. In this paper, we present an Abstract Grid 
Workflow Language (AGWL) for describing Grid 
workflow applications at a high level of abstraction. 
AGWL has been designed such that the user can 
concentrate on specifying Grid applications without 
dealing with either the complexity of the Grid or any 
specific implementation technology (e.g. Web service). 
AGWL is an XML-based language which allows a 
programmer to define a graph of activities that refer 
mostly to computational tasks. Activities are connected 
by control and data flow links. A rich set of constructs 
(compound activities) is provided to simplify the 
specification of Grid workflow applications which 
includes compound activities such as if, forEach 
and while loops as well as advanced compound 
activities including parallel sections, parallel loops 
and collection iterators. Moreover, AGWL supports a 
generic high level access mechanism to data 
repositories. AGWL is the main interface to the 
ASKALON Grid application development environment 
and has been applied to numerous real world 
applications. We describe a material science workflow 
that has been successfully ported to a Grid 
infrastructure based on an AGWL specification. Only a 
dozen AGWL activities are needed to describe a 
workflow with several hundred activity instances. 
 
1. Introduction 

Grid computing [1] enables the virtualization of 
distributed and heterogeneous resources such as CPUs, 
storage systems, sensor networks and scientific 
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instruments thus a unified view of resources, 
authentication, authorization and accounting can be 
represented to applications and end users. With the 
advent of Grid technologies, scientists and engineers 
are building more and more complex applications to 
manage and process large data sets and execute 
scientific experiments on distributed Grid resources. 
Grid workflow applications are emerging as one of the 
most important and challenging Grid application 
classes.  

A Grid workflow application can be seen as a 
collection of activities (computational tasks) that are 
processed in a well-defined order to accomplish a 
specific goal. These activities may be executed on 
heterogeneous resources which are geographically 
distributed. There is no central ownership and control 
in a typical Grid environment. The computational and 
networking capabilities can vary significantly over time. 
These distributed and dynamic characteristics of the 
Grid impose many challenges for a Grid application 
development and computing environment.  

In this paper, we describe AGWL, an XML-based 
high level Abstract Grid Workflow Language, which 
shields the details of the underlying Grid infrastructure 
and allows programmers to compose workflow 
applications in an intuitive way. AGWL has been 
carefully designed to include a set of essential 
constructs to simplify the specification of Grid 
workflow applications. In addition, programmers can 
specify high-level constraints and properties for 
activities and data flow connections which may be 
useful for a runtime system to optimize the workflow 
execution. 

The paper is organized as followed. In the next 
section related work is described and compared against 
AGWL. Section 3 presents an overview of the 
development process of Grid workflow applications. 
Section 4 defines AGWL and its language constructs. 
A material science workflow application based on 
AGWL is discussed in Section 5. Finally, conclusions 
and future work are outlined in the last section. 
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2. Related Work 
Although workflow applications have been 

extensively studied in areas such as business process 
modeling and web services [2], it is relatively new in 
the Grid computing area. Specifically, BPEL [2] is a 
low level and Web service specific language that is 
often referred to as a Grid assembly language. 

Several efforts towards a Grid workflow 
specification language have been made. The Workflow 
Enactment Engine (WFEE) [3] is based on a workflow 
language xWFL. The Grid Service Flow Language 
(GSFL) [4] supports the specification of workflow 
descriptions for Grid services in the OGSA framework. 
However, both WFEE and GSFL miss some important 
control flow constructs such as branches and loops. 
Grid workflows in the GriPhyN [5] project are limited 
to acyclic graphs and no advanced constructs for the 
parallel execution of “components” is supported. 
DAGMan [6] is also limited to acyclic graph 
workflows. 

Existing work commonly suffers by one or several of 
the following drawbacks: control flow limitations (e.g. 
no branches or loops), limited mechanism for 
expressing parallelism (e.g. no parallel sections or 
loops), restricted data flow mechanisms (e.g. limited to 
files), implementation specific (focus on Web services, 
Java classes, software components, etc.), and low level 
constructs (e.g. start/stop tasks, transfer data, queue 
task for execution, etc.) that should be part of the 
workflow enactment engine. 

In contrast, AGWL provides an advanced and user-
oriented Grid workflow language which shields the 
complexity of the underlying Grid infrastructure and 
runtime environment from the application developer. 
AGWL supports a reasonable and important set of 
control and data flow constructs to build Grid 
workflow applications. AGWL is also a modularized 
Grid workflow language which supports the declaration 
of sub-workflows that can be invoked by other 
workflows. Most existing workflow languages are 
based on a simple I/O system (e.g. files) whereas 
AGWL also enables a generic access mechanism to 
data repositories which is important for many 
applications. AGWL includes several constructs 
(properties and constraints) which can be used by an 
application developer to provide additional information 
to optimize the workflow execution by the underlying 
runtime environment. 
 
3. System Overview 

Figure 1 shows an overview of the development 
process of Grid workflow applications in the 
ASKALON Grid application development environment 
[7] from an abstract representation to an actual 

execution on a Grid infrastructure. The development 
process consists of three fundamental procedures: 
Composition, Reification and Execution.  

 
Figure 1 The development process of Grid workflow 

applications in ASKALON 

Composition: The user composes the Grid 
workflow by writing an AGWL program. At this level, 
activities correspond mostly to computational tasks and 
the specification of their input and their output data. 
There is no notion of how the input data is actually 
delivered to activities and how activities are 
implemented, invoked and terminated. AGWL contains 
all the information specified by the user during the 
workflow composition. 

Reification: A transformation system in ASKALON 
compiles AGWL file to a CGWL (Concrete Grid 
Workflow Language) representation through extracting 
more concrete information such as data types from an 
activity registry and inserting them into the workflow 
description. The transformation system also tries to 
optimize the workflow. For example, changing parts of 
a sequence construct (see Section 4.2.1) into a 
parallel construct (see Section 4.2.1) by checking 
the data dependencies. CGWL represents a workflow 
which can be scheduled and executed. In contrast to 
AGWL, CGWL is implementation dependent. 
However, CGWL is not seen by the AGWL 
programmer. 

Execution: CGWL is interpreted by the underlying 
workflow runtime environment of ASKALON to 
construct and execute the Grid workflow application on 
a Grid infrastructure. More details about the execution 
of workflow applications can be found at [7]. 
 
4. AGWL Specification 

An AGWL workflow consists of activities. An 
activity can be either an atomic activity, which refers to 
a single computational task, or a compound activity, 
which encloses some atomic activities or other 
compound activities that are connected by control and 
data flows. A workflow is a compound activity. The 
composition of a workflow application or a compound 



 

activity is done by specifying all its enclosed activities 
as well as their control and data flow connections.  

In addition, properties and constraints can be 
specified for activities and data flow connections to 
optimize the execution of workflow applications.  
 
4.1. Atomic Activities 

The definition of an atomic activity is shown in 
Figure 2. 

 
Figure 2 The atomic activity 

Activity Name: The activity name serves as an 
identifier for the activity. Activities must be organized 
in an AGWL-workflow or a sub-workflow which 
define a scope for them. In the scope, the name of each 
activity is unique. 

Activity Type: In AGWL, activities are described by 
activity types. An activity type is an abstract 
description of a group of activity instances (concrete 
implementations of computational entities) deployed in 
the Grid. For instance, an activity type MatrixMult can 
be used to describe a group of two activity instances 
which are deployed as an executable and a web service 
and both of them implement matrix multiplication. The 
activity type must be defined in an Activity Type 
Definition (ATD, see Section 4.5) file before defining 
AGWL workflows. Activity types shield the 
implementation details of activity instances from the 
AGWL programmer. Locating and invoking activity 
instances are done by an underlying runtime 
environment for AGWL.  

Data-In/Data-Out Ports: The data contained in 
data-in or data-out ports is denoted as a data package. 
The data in activities can be interchanged through the 
exchange of data packages along the specified data 
flows. The number and types of the data-in/data-out 
ports are determined by the chosen activity type. The 
data-in port can be specified by (1) setting its source 
attribute to the name of a data-out port of another 
activity in the same workflow in the form of 
activity-name/data-out-port-name, (2) 
setting its source attribute to the name of an abstract 
data container repository, or (3) specifying an XML 
constant in the value element, if the needed data is an 
XML constant and no source is specified. We will 
address the repository in detail in Section 4.3.6. 
Linking the data-in ports and data-out ports of different 
activities through the source attributes of the data-in 
ports defines the data flows of AGWL workflow 
applications. 

4.2. Compound Activities 
In a compound activity, the specifications for its 

name attribute, its data-in/data-out ports and the source 
attributes of its data-in ports are similar to that for the 
identical attributes in an atomic activity. To avoid 
redundancy, we will not separately explain these 
attributes in the following sections. 

There are two kinds of compound activities in 
AGWL: basic compound activities, which are similar 
to some well known constructs of high-level languages 
such as if, for or while, and advanced compound 
activities, which enable the expression of parallelism at 
a high level, such as parallel loops. 
 
4.2.1. Basic Compound Activities 

 Sequence Activity 
The sequence compound activity (Figure 3) 

imposes a sequential control flow on all of its 
contained activities. If an AGWL programmer specifies 
two activities one after the other, it is supposed to be a 
sequence activity by default. 

 
Figure 3 The sequence activity 

Data-Out Ports: For all compound activities, we 
need the source attributes for data-out ports to 
specify internal data flows from data-out ports of inner 
activities to data-out ports of the compound activities 
themselves.  

 Parallel Activity 
The parallel compound activity (Figure 4) 

indicates that all sections, in which some activities 
are contained, can be executed simultaneously. 

 
Figure 4 The parallel activity 

 Conditional Activities 
There are two conditional activities in AGWL: if 

(Figure 5) and switch (Figure 6). Both of them enable 
the conditional execution of activities which depends 
on the condition expression of these activities.  

Condition: In the if or switch activity, the 
condition is an XSLT [8] expression. The values of the 
data-in ports, which are referred in the condition, must 
be interpretable as XML.  



 

 
Figure 5 The if activity 

 
Figure 6 The switch activity 

Break: The optional break attributes in the case 
elements terminate the enclosing switch activity. 
And the control flow continues with the first activity 
following the switch activity. Without an explicit 
break, the control flow will sequentially pass through 
all subsequent case elements.  

Data-Out Ports: The control flow outcome of the 
if or switch activity is commonly unknown at 
compile time. Therefore, it is not allowed to connect a 
data-out port of an inner activity of a conditional 
activity to a data-in port of an activity outside of this 
conditional activity. Instead, data-out ports are defined 
for the if or switch activity which can be connected 
to data-in ports of other activities outside of the if or 
switch activity. The source attribute specifies the 
possible internal data flow from data-out ports of 
internal activities to data-out ports of the enclosing 
conditional activity. It contains a comma separated list 
of data-out ports of some inner activities. This list must 
contain one entry for each possible branch in the if or 
switch activity. Especially, if the optional else 
branch in the if construct or the optional default 
branch in the switch construct is not specified, the 
name of data-in ports must be given to ensure that the 
data-out ports are set with valid data packages.  

 Loop Activities 
There are three loop activities in AGWL: while 

(Figure 7), for (Figure 8) and forEach. The while 
activity can be used to execute the loop body zero or 
more times. The for activity is provided to execute 
its body multiple times controlled by a counter. The 
forEach activity has been included in AGWL to 
enable the iteration over a data package collection. The 
loop body is executed once for each element in the data 

package collection. The forEach activity (not shown 
due to lack of space) is similar to the for activity 
except that in the forEach activity the first data-in 
port of must refer to a data package collection over 
which this activity iterates and the loopElement 
instead of the loopCounter is used as the loop index.  

 
Figure 7 The while activity 

 
Figure 8 The for activity 

Data-In Ports: In these loop activities, the optional 
loopSource attribute of data-in ports is used to 
express a cyclic data flow which is commonly linked to 
a data-out port of an activity inside the loop body, in 
the form of activity-name/data-out-port-
name. After each execution of the loop body, the data-
in ports of the loop activity receive the new values 
specified by the loopSource attributes. Such data-in 
ports receive the final results of the loop body after the 
loop terminates.  

Condition: The condition (expressed as an XSLT 
expression) of the while construct controls how often 
the loop body is executed. This condition is evaluated 
before the loop body is executed. The loop is executed 
until this condition is evaluated to false.  

Loop Counter: The loopCounter in the for 
activity controls how often the loop body is executed. It 
provides an implicit data-in port for the activities in the 
loop body and can be accessed by its name. The value 
of the loopCounter is initially assigned to the value 
specified by the variable from and is increased by the 
value of step until it reaches the value of to or larger.  
The values of from, to, step can be expressed as 
constants or as an XPATH [9] expression where the 
values of data-in ports, which must be interpretable as 
XML, can be used. The values of from, to and 
step are only evaluated once at the beginning of an 
invocation of the for activity.  

Data-Out Ports: In these loop activities, the 
source attributes of the data-out ports are set to the 
names of the data-in ports with the loopSource 



 

attribute. Such data-in ports are set to the final results 
after the execution of the loop activity. Activities 
outside of a loop activity can access the final results 
through the data-out ports of the loop activity after the 
loop terminates. 

 Directed Acyclic Graph (DAG) activity 
For specifying more complex control flow, AGWL 

includes the dag compound activity (Figure 9). The 
control flow of a dag activity is described as a directed 
acyclic graph. In order to specify the execution order of 
activities, a special wrapper element dagNode is 
introduced. An activity in a dag can be executed as 
soon as all of its predecessors terminated. Thus a dag 
activity has a potential for parallel execution of its 
contained activities. 

Dag Node Name: Each dagNode must have a 
unique name in the scope defined by the dag. Each 
dagNode element contains an activity. 

Dag Node Predecessor: The predecessor 
attribute of a specific dagNode dn is a comma 
separated list of names of some other dagNode 
elements which must be executed before dn can be 
executed. Those dagNode elements without 
predecessors are root elements of the dag activity. 
AGWL allows multiple roots in a dag activity. The 
root elements, as well as those dagNode elements 
whose predecessors have finished, can be executed 
immediately possibly in parallel with other dagNode 
elements.  

 
Figure 9 The dag activity 

 
4.2.2. Advanced Compound Activities 

Advanced compound activities are supported by 
AGWL to express that multiple activities can be 
executed in parallel which include: parallelFor 
(Figure 10) and parallelForEach. 

 
Figure 10  The parallelFor activity 

The parallelFor/parallelForEach 
activity is similar to the for/forEach activity with 
the difference that in parallelFor/ 
parallelForEach all loop iterations can be 

executed simultaneously. It is assumed that the data 
input of any iteration is independent of data produced 
by other iterations of the same activity. The semantics 
of the attributes in parallel loop activities is identical to 
those in the sequential loop activities.  
 
4.3. Data Flows in AGWL 

The data flow describes that the data flows from 
data-out ports to data-in ports. To fully understand the 
AGWL data flow model, some aspects are examined in 
more detail in the following. 
 
4.3.1. Well-defined Data-in and Data-out Ports 

For each activity in AGWL it must be guaranteed 
that whenever the control flow reaches the activity, all 
the data-in ports of the activity have been assigned to 
well-defined values (valid data packages). When the 
control flow leaves, all its data-out ports must be well-
defined as well. For activities with a trivial control flow 
(one predecessor and one successor), the definition of 
this constraint is straightforward. For all other activities 
with a more complex control flow (e.g. conditional 
activities, sequential loop activities, parallel loop 
activities) the corresponding data flow can become less 
trivial which will be explored in the following sections.  
 
4.3.2. Data Flows in Conditional Activities 

then elsethen else
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A2 A3
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A2 A3
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(a) illegal data flow (b) legal data flow
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construct

Control flow

Data flow

Data-in port

Data-out port

 
Figure 11  The data flow in conditional activities 

Data flow is more complex for conditional activities. 
In the following we discuss the if activity to explain 
data flow issues for conditional activities. Figure 11(a) 
and Figure 11(b) illustrate two possible data flows of the 
if activity. Figure 11(a) shows an illegal data flow that 
is not allowed in AGWL. If the then branch is 
executed, then the data-in port of activity A4 would be 
undefined. Therefore, the then branch must define the 
data-out ports of the if activity as shown in Figure 
11(b). Activity A4 is not allowed to be linked to a data-
out port of an inner activity of the if activity. Instead, 
it must be linked to a data-out port of the if activity. 
In this case, it is ensured that each data-out port is well-



 

defined with a valid data package for each possible 
execution path. 

4.3.3. Data Flows in Sequential Loop Activities 

The data flow in sequential loop activities occurs in 
while, for and forEach activities. We explain the 
data flow model for the while activity which is 
similar for all other sequential loop activities. For the 
while activity, we have to describe the flow of data 
from one iteration to the next one, i.e. the output of one 
iteration serves as the input of the subsequent iteration. 
To model the data flow for the while activity, we 
have to consider two cases:  

(1) The loop body is never executed if the loop 
condition is never evaluated to true. 

(2) The loop body is executed multiple times which 
implies a cyclic data flow.  

Figure 12 illustrates the data flow model for the 
while activity in AGWL. The control flow inside the 
loop body is not shown in order to avoid overloading 
this figure. 

 
Figure 12  The data flow in sequential loop activities 

(1) The data-in ports of the while activity are 
assigned initial values specified by the source 
attribute (e.g. a source activity and its data-in 
ports). 

(2) If the loop condition is evaluated to false, the 
data flow continues at step (4). If true, the inner 
activity A2 is executed. A2 can obtain data from 
either the data-in ports of the while activity or 
from some outside activities such as A0. 

(3) Once A2 has been executed, data packages 
from its data-out ports can be transferred to the 
data-in ports of the surrounding while activity, 
specified by its loopSource attribute. Then 
the loop condition is evaluated again with the 
new data packages arrived at the data-in ports. 

(4) When the loop condition is evaluated to false, 
the current data packages of the data-in ports are 
mapped to the data-out ports of the while 
activity. 

(5) Activities outside the while activity can obtain 
the data packages from the data-out ports of the 
while activity only. 

For each possible execution path inside the while 
activity, it is ensured that the data flow is well-defined 
and valid data packages are available at all data-in and 
data-out ports of all executed activities. In case that A2 
receives data packages from an activity outside of the 
while activity, these data packages remain constant 
and accessible for all loop iterations. Note that the 
number of possible data-out ports of the while 
activity must be smaller than or equal to the number of 
its data-in ports.  
 
4.3.4. Data Flows in Parallel Loop Activities 

In the following we describe the data flow 
mechanism for parallel loop activities exemplified by 
the parallelFor activity (Figure 13). The data flow 
for the parallelForEach activity is similar. In 
contrast to sequential loop activities, there is no need 
for a cyclic data flow. Since in general it cannot be 
decided at compile time how many times the loop body 
will be executed, a data package collection is used to 
hold all result data produced by all the loop iterations 
when the execution of the loop activity is finished.  

 
Figure 13  The data flow in parallel loop activities 

Before any iteration of the parallelFor activity 
is executed, the number of iterations is evaluated. Then 
for each iteration an instance of the loop body (activity 
A2 in the Figure 13) is invoked concurrently. Each 
instance (A2.1, A2.2, A2.3 or A2.4) receives a 
unique iteration index from the loop counter of the 
parallelFor activity. In the case of 
parallelForEach, each instance would receive an 
element of the first data-in port of the 
parallelForEach activity which is a data package 
collection (over which the parallelForEach 
activity iterates). Every loop instance may also receive 
some other input data from either the data-in ports of 
the parallelFor activity or some outside activities 
such as A1. Each instance may also have its own data-



 

in ports. At the end of its execution, each instance of 
the loop body writes its results into the data package 
collection specified by the data-out ports of the 
parallelFor activity. This data package collection 
can be accessed through the data-out ports of the 
parallelFor activity by subsequent activities such 
as A3.  

4.3.5. Data Flows in the DAG Activity 

Figure 14 illustrates a possible data flow in a dag 
activity. The control flow inside the dag activity is not 
shown to avoid overloading the figure. A3, A5 are the 
root elements of the dag activity. In the dag activity, 
the user can define an arbitrary complex acyclic data 
flow. It is assumed that activities associated with the 
data source are executed before those activities related 
to the data destination in accordance with the defined 
control flow.  

 
Figure 14  The data flow in the dag activity 

 
4.3.6. Advanced Data Flows 

In addition to the data flow among activities, 
AGWL supports the data flow between activities and 
special entities called repositories, which are 
abstractions for data containers. They are used to 
model, for instance, saving intermediate results or 
querying data resources without knowing any details 
about how repositories are actually implemented, e.g. 
file servers, databases, etc. A repository has a unique 
name in the context of a workflow application. The 
retrieval/insertion of information is made by specifying 
the source/saveto attribute with the repository 
name in data-in/data-out ports. The following example 
illustrates how an activity can store its data-out port 
(named out) into a repository (named rep).  
 

<dataOut name="out" saveto="rep"> 

4.4. Properties and Constraints 
In AGWL, properties and constraints can be defined 

by the user to provide additional information for a 
workflow runtime environment to optimize and steer 
the execution of workflow applications. Properties 
provide hints about the behaviour of activities, e.g. the 
expected size of the input data, the estimated 
computational complexity, etc. Constraints should be 
complied by the underlying workflow runtime 
environment, e. g. to minimize execution time, to 
provide as much memory as possible, to run on the 
specific host architecture, etc. The user can define 
properties and constraints elements for activities and 
for data-in and data-out ports (Figure 15). 

 
Figure 15  Properties and constraints 

4.5. The Structure of an AGWL file 
The complete structure of an AGWL file (Figure 16) 

consists of importing activity type definitions, 
importing workflows, describing workflows and 
invoking sub-workflows. We address each part in the 
following sections. 

 
Figure 16  An AGWL file 

4.5.1. Importing Activity Type Definitions 

Before using an activity type in AGWL workflows, 
it is required to import the definition of the activity 
type which is always organized in an ATD file. The 
ATD files may be created and published by anyone 
providing implementations of activities which can be 
reused for Grid workflow construction. Line 2-4 in 
Figure 16 illustrates how to import activity types by 
using the importATD element. 

URL: The url attribute specifies the location of the 
ATD file. Due to the dynamic nature of the Grid 
infrastructure, some Grid sites may be unavailable or 
unreachable unexpectedly. For this reason, we provide 
alternative URLs for the ATD files.  



 

ATD Name: The name attribute defines an 
identifier which is used to avoid naming conflicts. It is 
not unlikely that the same activity type name (e.g. 
MatrixMult) occurs in different ATD files. In order 
to distinguish them, we associate different ATD files 
(e.g. d1.atd, d2.atd) with unique identifiers (e.g. 
d1, d2) in different importATD elements. When 
referring to an activity type, it must be specified with 
the unique identifier, followed by a colon and the 
activity type name. 

 
Figure 17  Importing Activity Type Definitions 

In the example shown in Figure 17, the two matrices 
mat1 and mat2 in the repositories rep1 and rep2 
are multiplied based on the activity type defined in 
d1.atd. The result matr is then multiplied with the 
matrix mat3 in the repository rep3 according to the 
activity type defined in d2.atd. 
 
4.5.2. Importing Workflows 

In order to modularize and reuse workflows, we 
provide the importWD element (Line 5-7 in Figure 16) 
to import a workflow in another workflow. A sub-
workflow can be invoked in another workflow only 
after the enclosing workflow is imported in that 
workflow. For efficiency reasons, the import elements 
always refer to compiled AGWL files, that is, CGWL 
representations. The name attribute and the 
alternativeUrl element have the same semantic 
as that of the importATD element described in 
Section 4.5.1. 
 
4.5.3. Invoking Sub-Workflows 

Lines 8-14 in Figure 16 define a sub-workflow. Sub-
workflows are similar to procedures in other high-level 
languages. They are used to modularize, encapsulate 
and reuse a code region.  Each subWorkflow has a 
unique name and well-defined data-in and data-out 
ports in an AGWL source file. Inside a sub-workflow, 
only data flow among inner activities is allowed. Sub-
workflows can be invoked from different locations. To 
invoke a sub-workflow in an imported workflow, the 
name defined in the importWD element, followed by 
a colon and the name of the sub-workflow, must be 
specified. To invoke a sub-workflow which is defined 

in the same AGWL file, only the name of the sub-
workflow must be indicated (Figure 18). 

<agwl-workflow>
  <importWD url=”http://.../wf.cgwl” name=”anotherWF” />
  <subWorkflow name=”innerSubWF”>
    <dataIn name=”in1”...>...</dataIn>
    <dataIn name=”in2”...>...</dataIn>
    <body>
      <activity name=”innerAct” type=”type”>
        <dataIn name=”par1” source=”innerSubWF/in1” />
        <dataIn name=”par2” source=”innerSubWF/in2” />
        <dataOut name=”res” />
      </activity>
    </body>
    <dataOut name=”out” source=”innerAct/res” />
  </subWorkflow>

  <activity name=”a1” type=”innerSubWF”>
    <dataIn name=”in1” source=”inmat1” />
    <dataIn name=”in2” source=”inmat2” />
    <dataOut name=”out” />
  </activity>
  <activity name=”a2” type=”anotherWF:subWF”>
    <dataIn name=”in1” source=”inmat1” />
    <dataIn name=”in2” source=”inmat2” />
    <dataOut name=”out” />
  </activity>

</agwl-workflow>

 
Figure 18  Invoking sub-workflows 

 
5. Modeling a Real World Material Science 
Workflow with AGWL 

 
Figure 19  The WIEN2k workflow 

WIEN2k [10] is a program package for performing 
electronic structure calculations of solids using density 
functional theory. The programs which compose the 
WIEN2k package are typically organized in a 
workflow illustrated in Figure 19. The LAPW1 and 
LAPW2 tasks can be executed in parallel with a number 
of k-points (atoms). A final task applied to several 
output files tests whether the problem convergence 
criterion is fulfilled (i.e. test whether the first number 
of the result of the Mixer task is “1”). The number of 
iterations for the convergence loop is unknown at 
compile time. Note that with only about one dozen 
AGWL activities we can describe a WIEN2k workflow 



 

with several hundred activity instances (one for each k-
point in both parallel loops). 
<agwl>
  <importATD url=".../wien2k/wien2k.atd" name="w2kAtd"/>
  <workflow name="wfWien2k">
    <dataIn name="fileIn0" source="a repository"/>
    <!-- some other "dataIn"s for workflow "wfWien2k" -->
    <body>
      <activity name="Stagein" type="w2kAtd:Stagein">
        <!-- some "dataIn"s for activity "Stagein" -->
        <dataOut name="numOfProc" />
      </activity>

    </body>
    <dataOut name="outVal" source="whileConv/outVal" />
  </workflow>
</agwl>

<while name="whileConv">
  <!-- some "dataIn"s for while loop "whileConv" -->
  <dataIn name="val" loopSource="actConv/outVal">
    <value>true</value>
  </dataIn> 
  <condition>val='true'</condition>
  <loopBody>
    <activity name="actLAPW0" type="w2kAtd:LAPW0">
      <!-- some "dataIn"s/"dataOut"s -->
      <dataOut name=”outFileVsp” />
    </activity>  

    <activity name="actLAPW2_FERMI"> ... </activity>

    <!-- some activities: Sumpara, ..., Mixer -->
    <activity name="Converged" type="w2kAtd:Converged">
      <!-- some other "dataIn"s and "dataOut"s -->
      <dataOut name="outVal"/>
    </activity>
  </loopBody>
  <dataOut name="outVal" source="whileConv/val"/>
</while> 

<parallelFor name="pfLAPW2"> ... </parallelFor>

<parallelFor name="pfLAPW1">
  <dataIn name="fVsp" source="actLAPW0/outFileVsp"/>
  <!-- some "dataIn"s -->
  <loopCounter name="i" from="0" 
               to="Stagein/numOfProc" step="1" />
  <loopBody>
    <activity name="actLAPW1" type="w2kAtd:LAPW1">
      <!-- some "dataIn"s/"dataOut"s -->
    </activity>
  </loopBody>
  <!-- some "dataOut"s for parallelFor "pfLAPW1" -->
</parallelFor>

 
Figure 20  An excerpt of the WIEN2k AGWL representation 

We developed an AGWL representation for the 
workflow and describe a representative excerpt of it in 
Figure 20. Firstly, the ATD file wien2k.atd is 
imported, in which the definition of activities like 
LAPW0, LAPW1, etc. are included. Next, the activity 
StageIn is invoked to prepare for the execution of 
the while loop whileConv. In this while loop, the 
activity actLAPW1, the parallelFor loop 
pfLAPW1, the activity actLAPW2_FERMI, the 
parallelFor loop pfLAPW2 and the activities 
Sumpara, LCore and Mixer are invoked 
sequentially. The value of val to exit the loop can be 
changed after each loop by the data-out port of the 
activity Converged, which is refered by the 
loopSource. In the parallelFor loop pfLAPW1 
and pfLAPW2, the activities are executed in parallel. 
Finally, the outVal of the workflow wfWien2k is 
returned as the result. 

The AGWL representation of WIEN2k is compiled 
into a CGWL representation and executed in the 
ASKALON Grid environment [7], which is currently 
developed by the Distributed and Parallel Systems 
Group at the University of Innsbruck. ASKALON 
supports the performance-oriented execution of 
workflows specified in AGWL by providing a rich set 
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               (a) 100 parallel k-points 
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                 (b) 200 parallel k-points 
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                 (c) 250 parallel k-points 
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Figure 21  Performance results of WIEN2k 



 

of services, which includes resource broker, resource 
monitor, information service, workflow executor, 
(meta-) scheduler, performance prediction, and 
performance analysis services. All of these services are 
developed on top of a low-level Grid infrastructure 
implemented by the Globus toolkit, which provides a 
uniform platform for secure job submission, file 
transfer, discovery, and resource monitoring. 
ASKALON is deployed on the Austrian Grid 
infrastructure that aggregates several Grid sites across 
the country of Austria. We tested the performance of 
the WIEN2k Grid workflow respectively on 1, 2, 3, 4, 
5, 6, 7 and 8 Grid sites. A large problem case (called 
atype) with three different problem sizes identified by 
the number of parallel k-points (100, 200 and 250) has 
been selected. Gescher, a local cluster used by the 
Wien2k scientists for their experiments, is used as the 
reference measurement for the single site execution. 
Figure 21 shows the performance results which 
demonstrate that by migrating from the local Gescher 
cluster to a distributed Grid environment, good 
performance results are achieved. The speedup 
improves with larger problem sizes indicated by the 
parallel k-points (see Figure 21(d)). The improvement 
comes from the parallel execution of k-points on 
multiple Grid sites that significantly decreases the 
computation time. The parallel overhead decreases by 
increasing the number of Grid sites with constant 
number of k-points because fewer tasks are scheduled 
to a single Grid site. The sequential overhead remains 
relatively constant, but its ratio to the overall execution 
time is smaller for large problem sizes. The 
communication overhead of this application is 
negligible since we schedule LAPW1 and LAPW2 to 
Grid sites with a single NFS file system. The 
communication overhead becomes more significant 
with increasing number of Grid sites hosting different 
file systems. Typically for a scalability study, the 
workflow performance deteriorates beyond a certain 
machine size (e.g., 6 for 100 or 200 k-points, and 8 for 
250 k-points). This is due to sites containing slower 
processors that are part of the Grid infrastructure, 
which causes load imbalance of the workflow 
application. 
 
6. Conclusions and Future Work 
 

In this paper, we presented our work on the Abstract 
Grid Workflow Language (AGWL), which is a novel 
XML-based language for the specification of Grid 
workflow applications at a high level of abstraction. 
AGWL allows the user to concentrate on describing 
Grid workflows without dealing with implementation 
specific or low level details of the underlying Grid 
infrastructure. It is a powerful and user-oriented 

workflow language that has been tailored for 
performance-oriented Grid workflow applications. 
AGWL provides advanced workflow constructs to 
facilitate the parallel execution of workflows, to 
retrieve and store data from and to data repositories, 
and to modularize and reuse workflows. Properties and 
constraints can be specified to optimize and steer 
workflow execution by the underlying Grid middleware. 

We have integrated AGWL in the ASKALON Grid 
application development and computing environment. 
AGWL has been extensively used for the specification 
of Grid workflow applications in the field of material 
science, river modeling, astrophysics, and finance 
modeling. We have also developed a UML-based 
graphical interface [11] for AGWL which supports the 
visual composition of workflows. 
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