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ABSTRACT
Existing work does not provide a flexible dataset-oriented data flow
mechanism to meet the complex requirements of scientific Grid
workflow applications. In this paper we present a sophisticated
approach to this problem by introducing a data collection concept
and the corresponding collection distribution constructs, which are
inspired by HPF, however applied to Grid workflow applications.
Based on these constructs, more fine-grained data flows can be
specified at an abstract workflow language level, such as mapping
a portion of a dataset to an activity, independently distributing mul-
tiple datasets, not necessarily with the same number of data ele-
ments, onto loop iterations. Our approach reduces data duplica-
tion, optimizes data transfers as well as simplifies the effort to port
workflow applications onto the Grid. We have extended AGWL
with these concepts and implemented the corresponding runtime
support in ASKALON. We apply our approach to some real world
scientific workflow applications and report performance results.

Keywords
Grid Workflow, Data Flow, Data Collection, Data Distribution

1. INTRODUCTION
With the advent of Grid technologies, scientists and engineers

are building more and more complex applications to manage and
process large datasets and to execute scientific experiments on dis-
tributed Grid resources. Grid workflow systems play a paramount
role in this process. It enables scientists to configure available ap-
plication components into a workflow of tasks and submit them
for execution on the Grid. Nowadays, many Grid workflow frame-
works and tools have been developed for supporting scientific work-
flow applications.

A Grid workflow application can be seen as a collection of com-
putational tasks that are processed in a well-defined order to ac-
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Figure 1: Data flow problems

complish a specific goal. Many control flow constructs have been
identified and developed in Grid workflow systems to enable users
to define the exact execution order of tasks. These constructs can
be divided into four categories: sequential, parallel, conditional
and iterative constructs. With each of these constructs, different
data flows can be specified. Data flows in scientific Grid workflow
applications are commonly complex because datasets are involved.
For instance, a scientific application consumes a portion of a dataset
produced by another application, a parallel iterative construct con-
sumes multiple datasets and each of its loop iteration processes a
variable number of elements in the datasets. However, how datasets
and the corresponding data elements can be specified in data flow
links, especially how datasets can be distributed onto the parallel
loop iterations, is a problem not sufficiently addressed by most
Grid workflow languages. Many Grid workflow systems solve the
problem by replicating the entire dataset to activities or loop iter-
ations, or by restricting file names used in datasets which reduces
the workflow reusability. Fig. 1 illustrates the problem through an
example of a parallelFor loop construct which accepts a dataset
consisting of six data elements as input to its four loop iterations.
Each loop iteration produces an output data element. The paral-
lelFor construct has a subsequent task A which requires only the
output data elements produced by iterations 0 and 2. Obviously,
more flexible dataset-oriented data flow mechanisms are needed to
avoid redundant data transfers.

In this paper we present a sophisticated approach as part of the
Abstract Grid Workflow Language (AGWL) [7] to solve the prob-
lem by introducing the concept of data collection and the corre-
sponding collection distribution constructs, which are inspired by



High Performance Fortran (HPF) [9]. The corresponding runtime
support has been implemented in the ASKALON [6] Grid appli-
cation development and computing environment. By using our ap-
proach, more fine-grained data flows can be specified, data transfers
are optimized and thus performances are improved. The effort to
port scientific applications onto Grid can also be simplified.

The remainder of this paper is organized as follows. Section 2
presents important related work. A brief overview of AGWL is
provided in Section 3. Section 4 discusses our approach in detail.
We apply the collection distribution constructs to some real world
Grid workflow applications in Section 5 and report performance
results in Section 6. The paper ends with a short conclusion and an
outline of the future work.

2. RELATED WORK
Many workflow languages and systems are developed for sup-

porting scientific Grid workflow applications. We limit this section
to selected work and compare them against our solution.

The Chimera Virtual Data System (VDS) [8] aims to abstract the
workflow from the details of implementation. Its workflows ex-
pressed in Chimera’s Virtual Data Language (VDL) are converted
into Condor’s DAGMan [4] format for execution. While VDS sup-
ports iterations over datasets, it is limited to operating datasets (or
slices of datasets) one element by one element, through the fore-
ach statement in VDL. Taverna [13] is a data centric workflow de-
velopment environment and has no explicit iterative constructs. Its
workflow language SCUFL (Simple Conceptual Unified Flow Lan-
guage) provides support for processing data collections through an
implicit iteration mechanism, which is limited to the cross or dot
product of lists (collections) being processed. The Kepler project
[2] is based on an actor-oriented modeling paradigm where ac-
tors correspond to re-usable workflow components. The workflow
specification is based on the workflow modeling language MoML
(Modeling Markup Language). Kepler uses a map operator to apply
a function, which operates on singletons, to collections. It is lim-
ited to processing one collection at a time. More recently published
work [11] from the Kepler project focuses on nested, especially het-
erogeneous data collections. It uses read scope to specify portions
of collections and iteration scope to control iterations of actions. Its
collection operations are limited to invoking actions once for each
item, or once for the entire collection. Triana [20] is an integrated
and generic workflow-based graphical problem solving environ-
ment. Triana uses an XML based language similar to Web Services
Description Language (WSDL). The Triana workflow language has
no explicit support for control flow constructs. Loops and execu-
tion branching are handled by specific components. The Karajan
[21] workflow language supports parallel iterations. ICENI [10]
(Imperial College e-Science Network Infrastructure) is a system
for workflow specification and enactment on the Grid. However,
no flexible dataset-oriented data flow is supported in either of these
systems. Parallel Computing Patterns [14] identified a data paral-
lelism pattern and its variants static/dynamic/adaptive data paral-
lelism for Grid workflows. These patterns have a close relationship
to the classical multi-instance workflow pattern [16] and its vari-
ants. However, none of these patterns reflect BLOCK, BLOCK(S),
BLOCK(S,L) and REPLICA(S) collection distribution constructs as
presented in this paper.

In a word, existing work commonly suffers by one or several
of the following drawbacks: no iterative constructs, no support for
processing datasets or portions of datasets, and no flexible dataset-
oriented data flow support for iterative constructs. In contrast, AGWL
supports a rich set of control flow constructs, including iterative
constructs, as well as mapping a portion of a data collection to ac-

tivities or loop iterations. Furthermore, one iterative construct in
AGWL (e.g. the parallelFor or parallelForEach con-
struct, etc.) can also process multiple data collections and each
data collection can be processed in an independent way in terms of
how many data elements are processed in one loop iteration. All of
these features can be specified at the workflow language level by
domain users to control how datasets are processed by activities or
iterative constructs.

3. OVERVIEW OF AGWL
AGWL [7] is an XML-based language for describing Grid work-

flow applications at a high level of abstraction. It is the main inter-
face to the ASKALON [6] Grid application development and com-
puting environment and has been applied to numerous real world
Grid workflow applications. AGWL has been designed such that
users can concentrate on specifying Grid workflow applications
without dealing with either the complexity of the Grid or any spe-
cific implementation technology (e.g. Web or Grid Service, soft-
ware components or Java classes, etc.). AGWL workflows consist
of activities, control flow constructs, data flow links and properties
and constraints.

An AGWL activity can be an atomic activity or a compound ac-
tivity. An atomic activity is represented by an activity type and
input and output data ports. The input and output data ports are
logical representations of the corresponding input and output data.
The number and the types of the input and output data ports are
determined by the activity type. An activity type is an abstract
description of a group of activity deployments (concrete implemen-
tations of computational entities deployed in the Grid) which have
the same functionality, probably different performance behaviors.
Activity types shield the implementation details of activity deploy-
ments from the AGWL programmer. Locating and invoking activ-
ity deployments based on activity types are done by the underlying
runtime system. An invocation of an activity deployment is called
an activity instance. AGWL activities are connected by control
flow constructs and data flow links.

AGWL allows a programmer to define a graph of activities that
refer to computational tasks or user interactions. A rich set of
control flow constructs (compound activities) has been provided
in AGWL to simplify the specification of Grid workflow appli-
cations such as sequence, parallel, if, switch, while,
doWhile, for, forEach, parallelFor and parallel-
ForEachwith semantics similar to comparable constructs in high-
level programming languages. The dag construct is also provided
for describing a directed acyclic graph of activities. AGWL also
supports sub-workflows, which are similar to procedures in high-
level programming languages. Sub-workflows are used to modu-
larize, encapsulate and reuse code regions. In the remaining text,
activities refer to both atomic activities and compound activities if
not explicitly stated.

The data flow in AGWL is expressed by data flow links from
source data ports to sink data ports. A source data port can be
an input data port of the whole workflow, an input data port of a
compound activity (e.g. a parallelFor construct), or an output
data port of an atomic activity. A sink data port can be an output
data port of the whole workflow, an output data port of a compound
activity, or an input data port of an atomic activity.

Properties and constraints can be defined in AGWL to provide
additional information for workflow runtime systems to optimize
and steer the executions of workflow applications. Properties pro-
vide hints about the behavior of activities and constraints should
be complied with by the underlying workflow runtime system. The
user can specify properties and constraints for both activities and



Figure 2: Three AGWL data flow links

data ports.
To enable readers to understand the collection distribution con-

structs presented in this paper, the AGWL data flow model is fur-
ther explained in the following paragraph (refer to [7] for more
detailed information on AGWL).

Data Flow Model Unlike many other workflow languages, e.g.
the SCUFL used in Taverna [13], the workflow language of Tri-
ana [20], the WSBPEL [12] from OASIS, etc., AGWL does not
have an explicit XML tag like <link> or <connection>. In-
stead, data flow links are specified by setting the source attributes
of sink data ports to source data ports, which is easier to use but
provides similar expressive power. The source attribute of a sink
data port can be specified in the form of activity-name/sou-
rce-data-port-name, where the activity-name can be
the name of the workflow, the name of a compound activity or the
name of an atomic activity. Ex. 1 illustrates three data flow links
and one constraint (the corresponding graphical representation is il-
lustrated in Fig. 2 with the dashed lines showing the three data flow
links and the text beside the second data flow link showing the con-
straint): the data flow link (1) flows from the input data port inWf
(line 3), the logical representation of the files gsiftp://host//dir/file1,
..., gsiftp://host//dir/filen, of the workflow sampleWf to the input
data port inPfCol (line 10) of the parallelFor compound ac-
tivity pfor. The source attribute of the sink data port inPfCol is
set to sampleWf/inWf (line 11). In the data flow link (2), the source
data port inPfCol with type of agwl:collection has a con-
straint agwl:distribution=BLOCK(2) (line 13-14), which specifies
that the data elements of the collection (i.e. the files) are mapped
pairwise to the corresponding parallel loop iterations and consumed
by the activity activityA through its input data port inAct (line 23).
The constraint agwl:distribution and its value BLOCK(2) as well
as the data type agwl:collection are explained in Section 4.
The data flow link (3) is similar to (1). The data flow links from/to
sub-workflows, which are similar to the ones from/to a compound
activity like a parallelFor, are omitted here.
Example 1. Three AGWL data flow links

1 <agwl name="sampleWf">
2 <workflowInput>
3 <dataIn name="inWf" type="agwl:collection"
4 source="gsiftp://host//dir/file1,...,
5 gsiftp://host//dir/filen" />
6 </workflowInput>
7 <workflowBody>
8 <parallelFor name="pfor">
9 <dataIns>

10 <dataIn name="inPfCol" type="agwl:collection"
11 source="sampleWf/inWf">
12 <constraints>

13 <constraint name="agwl:distribution"
14 value="BLOCK(2)" />
15 </constraints>
16 </dataIn>
17 </dataIns>
18 <loopCounter name="index" type="xs:integer"
19 from="1" to="10" step="1"/>
20 <loopBody>
21 <activity name="activityA" type="...">
22 <dataIns>
23 <dataIn name="inAct" type="agwl:collection"
24 source="pfor/inPfCol" />
25 </dataIns>
26 <dataOuts>
27 <dataOut name="outAct" type="agwl:file" />
28 </dataOuts>
29 </activity>
30 <activity name="activityB" type="...">
31 <dataIns>
32 <dataIn name="inAct" type="agwl:file"
33 source="activityA/outAct"/>
34 </dataIns>
35 <dataOuts>
36 <dataOut name="outAct" type="agwl:file" />
37 </dataOuts>
38 </activity>
39 </loopBody>
40 <dataOuts .../>
41 </parallelFor>
42 </workflowBody>
43 <workflowOutput .../>
44 </agwl>

4. DATA COLLECTIONS AND COLLECTION
DISTRIBUTION CONSTRUCTS

Scientific workflows usually involve large and complex dataset
processing. For instance, a scientific application consumes a por-
tion of a dataset produced by another application, a parallel itera-
tive construct produces datasets based on their input, or a parallel
iterative construct consumes multiple datasets and each of its loop
iteration processes a variable number of data elements of different
datasets. In this section, we describe AGWL data collections and
explain how data collections can be mapped to activities or dis-
tributed onto loop iterations by using collection distribution con-
structs.

4.1 Data collections
Datasets in scientific workflows may contain static or dynamic

(unknown at composition time) number of data elements. Model-
ing at the Grid workflow language level each element in datasets
with a logical data port can be awkward and often impossible. To
solve this problem, AGWL introduces the concept of data collec-
tion (Fig. 3) to model datasets in scientific Grid workflows at a high
level of abstraction.

0 1 2 3 4 n-1

a

Figure 3: A data collection a with n data elements

AGWL data collection is a logical data representation of phys-
ical data. It is defined as a data type agwl:collection in
AGWL, where agwl is the namespace used in XML representa-
tions of AGWL workflows. A data port with type of agwl:coll-
ection represents an ordered list of data elements provided by
domain users as the initial input of a workflow or produced by
workflow activities as an intermediate result. The number of the
data elements contained in a data collection may be dynamic. The
data elements in a data collection are logical representations of
physical data, which can be files in a file system, data retrieved from



a relational database, or primitive data such as integers or strings
in the memory of the underlying workflow runtime system. Files
will be used in the following sections to demonstrate our approach.
Data elements can be accessed with their indices in the enclosing
data collection.

To port scientific applications, especially the ones producing dy-
namic output datasets, onto the Grid, one of the common approaches
is to write some wrapping code such as to tar a set of output files
into a tar file. This kind of wrapping code is not flexible in the case
where only a portion of the dataset is required. The reusability of
the wrapping code is also limited. In contrast, the AGWL data col-
lection presented here provides a more flexible solution and avoids
this kind of wrapping code. Thus our approach is a valuable con-
tribution to simplify porting workflow applications onto the Grid.

4.2 Collection distribution constructs
AGWL provides two built-in constraints for specifying collec-

tion distribution constructs: agwl:element-index and agwl:distribu-
tion (The namespace agwl is omitted in the following text to avoid
redundancy). The constraint element-index is used to specify por-
tions of data collections and it can be used for data ports of activi-
ties. The constraint distribution is used to partition data collections
into blocks which are then distributed onto loop iterations. While
the constraint distribution can be used for both sequential and par-
allel iterative constructs, we only focus on the parallel iterative con-
structs in the remainder of this paper.

The value of the constraint element-index is a list of coma sep-
arated colon expressions. The syntax is defined by the following
grammar, where e denotes the element index, c a colon expression,
s1 a start index, s2 a stop index, s3 a stride:

e ::= c[, c] ∗

c ::= s1[: s2[: s3] ]

For example, the constraint element-index=1,3,6:10:2 specifies the
data elements associated with index 1,3,6,8,10 in the source data
collection. Note that in the absence of the constraint element-index,
the entire data collection is specified.

To distribute data collections onto parallel loop iterations, we
reused ideas from High Performance Fortran (HPF) [9], where some
directives are used to map a data array into a processors array. In
AGWL, a data collection is an ordered list of data elements, i.e.
a one-dimensional array. Parallel loop iterations can also be con-
sidered as a one-dimensional array, which we denote by iteration
array. Thus the problem can be formulated as how to map a one-
dimensional array of data elements (a data collection) to another
one-dimensional array of iterations (an iteration array). AGWL
supports the following collection distribution constructs: BLOCK,
BLOCK(S), BLOCK(S, L) and REPLICA(S), which are specified
through the constraint distribution of input data ports of parallel
iterative constructs (see Ex. 1). These four collection distribution
constructs are processed at runtime to determine which elements
of a data collection are distributed onto which iteration. We ex-
plain these four collection distribution constructs in detail in the
following sections assuming that all data elements in data collec-
tions are distributed onto at least one iteration. It is possible that
some iterations may not be assigned to any data element. In the
case where not all data elements in a data collection are required to
be distributed onto parallel loop iterations, a subset of the data col-
lection can be obtained through the constraint element-index. The
constraint element-index has higher priority than the constraint dis-
tribution when both of them are specified for the same data port.

In order to express collection distributions, we assume that any
collection C with |C| data elements is associated with an index

C a data collection
|C| the element number of C

J
C the index domain of C

I an iteration array
|I| the iteration number of I

K
I the index domain of I

i an index
[i1 : i2] a set of indices, defined by [i1 : i2] := {i|i1 ≤ i ≤ i2}

δ(i) a function mapping indices of C to indices of I

Table 1: Notations

domain J
C which is defined by a set of integers {i|0 ≤ i < |C|}.

The index domain J
C provides an unambiguous name for the data

elements in the data collection. Let J
C denote an index domain of

a data collection C, KI an index domain of an iteration array I , the
collection distribution problem can be further formulated as how to
map J

C to K
I . The notations used in the explanation of the four

collection distribution constructs are summarized in Table 1.

4.2.1 BLOCK distribution
BLOCK distribution partitions a data collection C into equal

sized, contiguous blocks and distributes each of them onto a dif-
ferent iteration of an iteration array I . The size of each iteration’s
block is determined by the element number |C| and the iteration
number |I|.

Definition 1. BLOCK distribution of a data collection C is a func-
tion δ: J

C → K
I that partitions the data collection C into b =

—

|C|
˚

|C|
|I|

ˇ

�

contiguous blocks of size s =
l

|C|
|I|

m

which are dis-

tributed onto the first b iterations, with 0 ≤ b < |I|, and, if
|C| mod s 6= 0, one additional block with |C| mod s elements
which are distributed onto the last iteration with index b. The func-
tion is given by:

δ(i) =

($

i
l

|C|
|I|

m

%

˛

˛

˛
0 ≤ i < |C|

)

Fig. 4 illustrates the distribution of a data collection with |C| =
12 data elements onto |I| = 4 loop iterations based on the collec-
tion distribution construct BLOCK, where each iteration is assigned
to a block of three data elements.

0 1 2 3 4 5 6 7 8 9 10 11

iteration 0 iteration 1 iteration 2 iteration 3

Figure 4: The BLOCK distribution

4.2.2 BLOCK(S) distribution
While BLOCK distribution partitions a data collection into equal

sized blocks (except that the last one may have a smaller size) based
on the iteration number, it is more common in scientific applica-
tions to partition a data collection into fixed sized blocks. For ex-
ample, three files are produced in each time step of a simulation
process, and the three files of one time step are required by the
subsequent computation which is enclosed in the loop body of a



parallel loop construct. BLOCK(S) is provided for this purpose,
with the integer parameter S specifying the fixed block size.

Definition 2. BLOCK(S) distribution of a data collection C is a
function δ: J

C → K
I that partitions the data collection C into

b =
j

|C|
S

k

contiguous blocks of size S which are distributed onto
the first b iterations, with 0 ≤ b < |I|, and, if |C| mod S 6= 0, one
additional block with |C| mod S elements which are distributed
onto the next iteration with index b. We require S ≥

l

|C|
|I|

m

to
ensure that all data elements in the collection C are distributed
onto at least one iteration. All other iterations (if any) are not
assigned to any data elements. The function is given by:

δ(i) =

—

i

S

�

˛

˛ 0 ≤ i < |C| ∧ S ≥

‰

|C|

|I|

ıff

Fig. 5 illustrates the distribution of a data collection with |C| =
12 elements onto |I| = 3 iterations based on the collection dis-
tribution construct BLOCK(5), where iteration 0 is assigned to a
block of five data elements with index [0 : 4], iteration 1 a block of
five data elements with index [5 : 9], and the last iteration a block
of two data elements with index [10 : 11], respectively.

0 1 2 3 4 5 6 7 8 9 10 11

iteration 0 iteration 1 iteration 2

Figure 5: The BLOCK(5) distribution

4.2.3 BLOCK(S,L) distribution
BLOCK distribution and BLOCK(S) distribution partition a data

collection into equal sized, contiguous blocks (except that the last
one may have a smaller size) which does not involve replication.
For some applications, an overlap between neighboring blocks is
required. For example, an application which processes the files of
a certain time step may also need the files from the previous time
step. For this purpose, BLOCK(S,L) is provided with the integer
parameter S specifying the block size, and the integer parameter
L specifying the size of the overlapped part between neighboring
blocks.

Definition 3. BLOCK(S,L) distribution of a data collection C is
a function δ: J

C → K
I that partitions the data collection C

into b =
j

|C|−L

S−L

k

overlapped blocks of size S (with an overlap
of size L between each two neighboring blocks) which are dis-
tributed onto the first b iterations, with 0 ≤ b < |I|, L < S,
and, if (|C| − L) mod (S − L) 6= 0, one additional block with
|C| − b × (S − L) elements are distributed onto the next iteration
with index b. We require

l

|C|−L

S−L

m

≤ |I| to ensure that all data ele-
ments in the collection C are distributed onto at least one iteration.
All other iterations (if any) are not assigned to any data elements.
The function returning a set of iteration indices is given by:

δ(i) =



[δ(i)min : δ(i)max]
˛

˛ 0 ≤ i < |C|

∧ L < S ∧

‰

|C| − L

S − L

ı

≤ |I|

ff

where

δ(i)min =



max

„

0,

—

i − L

S − L

�«

˛

˛

˛
0 ≤ i < |C|

∧ L < S ∧

‰

|C| − L

S − L

ı

≤ |I|

ff

δ(i)max=



min

„—

i

S − L

�

, |I| − 1

«

˛

˛

˛
0 ≤ i < |C|

∧ L < S ∧

‰

|C| − L

S − L

ı

≤ |I|

ff

Fig. 6 illustrates the distribution of a data collection with |C| =
12 elements onto |I| = 3 iterations based on the collection dis-
tribution construct BLOCK(6,3), where iteration 0 is assigned to a
block of six data elements with index [0 : 5], iteration 1 a block of
six data elements with index [3 : 8], and iteration 2 a block of six
data elements with index [6 : 11], respectively. The data elements
with index 3,4,5 are distributed onto both iteration 0 and iteration
1 and the data elements with index 6,7,8 are distributed onto both
iteration 1 and iteration 2.

0 1 2 3 4 5 6 7 8 9 10 11

iteration 0

iteration 1

iteration 2

overlap between

iteration 0 and 1

overlap between

iteration 1 and 2

Figure 6: The BLOCK(6,3) distribution

4.2.4 REPLICA(S) distribution
BLOCK distribution, BLOCK(S) distribution and BLOCK(S,L)

distribution are normally used when |C| ≥ |I|. However, in some
cases, a smaller number of data elements are needed to be repli-
cated onto a larger number of loop iterations. To support this kind
of data distribution, REPLICA(S) distribution (we consider it as a
special distribution) is provided with the integer parameter S spec-
ifying onto how many iterations each data element in a data collec-
tion should be replicated.

Definition 4. REPLICA(S) distribution of a data collection C is
a function δ: J

C → K
I that replicates each data element in the

data collection C, S times which are distributed onto the first b =

S × |C| iterations, with 0 ≤ b < |I|. We require S ≤
j

|I|
|C|

k

to
ensure that all replicated data elements are distributed onto at least
one iteration. All other iterations (if any) are not assigned to any
data elements. The function returning a set of iteration indices is
given by:

δ(i)=



ˆ

S × i : S × (i + 1) − 1
˜ ˛

˛ 0 ≤ i < |C| ∧ S ≤

—

|I|

|C|

�ff

Fig. 7 illustrates the distribution of a data collection with |C| = 3
elements onto |I| = 12 iterations based on the collection distribu-
tion construct REPLICA(4), where iterations with index [0 : 3] are
assigned to the data element with index 0, iterations with index
[4 : 7] the data element with index 1, iterations with index [8 : 11]
the data element with index 2, respectively.

Note that both the constraint element-index and the constraint
distribution can be specified for an input data port of a parallel iter-
ative construct, and a parallel iterative construct can have as many
input data ports as needed. Thus AGWL supports processing of
multiple collections with one parallel iterative construct and each
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Figure 7: The REPLICA(4) distribution

Figure 8: The WIEN2k workflow

collection, which may have different number of data elements, can
be processed independently based on the associated collection dis-
tribution constructs.

5. CASE STUDY
In this section, we apply the collection distribution constructs

presented in Section 4 to four real world scientific Grid workflow
applications: (1) the material science application WIEN2k [3], (2)
the meteorology application MeteoAG [18], (3) the astrophysics
application AstroGrid [17], and (4) the astrophysics application
GRASIL [19].

5.1 WIEN2k
WIEN2k [3] is a program package for performing electronic

structure calculations of solids using density functional theory. The
programs which compose the WIEN2k package are typically orga-
nized in the workflow illustrated in Fig. 8. The activity LAPW1
and the activity LAPW2 can be executed in parallel, specified by
parallel iterative constructs. The number of parallel loop iterations
of each parallel iterative construct is determined by kpoint, which
is the output of the activity LAPW0. We only focus on the data
ports with type of agwl:collection in the workflow here. A
detailed explanation of the whole workflow can be found in [7].
In this workflow, the parallelFor construct pforLAPW1 pro-
duces three data collections: energyFileCol, vectorFileCol, and
scf1FileCol. The atomic activity LAPW2_FERMI consumes the
data collection energyFileCol and produces another data collection
weighFileCol. The four data flow links (the labeled dashed lines
in Fig. 8) with their associated collection distribution constructs
specify how these data collections are consumed by subsequent

Figure 9: The MeteoAG workflow

activities. The data flow links (1), (2) and (3) each has a con-
straint distribution=BLOCK(1) in its source data port. These con-
straints specify that for each loop iterationof the parallelFor
construct pforLAPW2, only one data element of the corresponding
data collection (energyFileCol, vectorFileCol or weighFileCol) is
required. This example shows how a parallelFor construct
can process multiple data collections. Note that, in this case, it is
not required that all data collections must have the same number of
data elements. The iteration number of the parallelFor con-
struct pforLAPW2 is decided neither by the iteration number of the
parallelFor construct pforLAPW1 nor by the element number
of the data collection weighFileCol. Instead, the parallelFor
construct pforLAPW2 has its own loop counter for this purpose.
We believe this approach is more flexible than those described in re-
lated work. The data flow link (4) has a constraint element-index=0
in its sink data port because the activity Mixer only requires the first
data element in the data collection scf1FileCol.

Note that without the constraint distribution, all data elements
in the collections energyFileCol, vectorFileCol and weighFileCol
would have to be transferred at runtime to the Grid site where
each activity LAPW2 will be executed, which would result in re-
dundant data transfers. The same holds for the data collection
scf1Collection. The AGWL representation of the WIEN2k work-
flow and the performance improvement with these collection dis-
tribution constructs are discussed in Section 6.1.

5.2 MeteoAG
MeteoAG [18] is a meteorology simulation application based on

the numerical model RAMS [5]. The simulations produce pre-
cipitation fields of heavy precipitation cases over the western part
of Austria at a spatial and temporal grid in order to resolve most



Figure 10: The AstroGrid workflow

alpine watersheds and thunderstorms. Fig. 9 illustrates the work-
flow structure with two labeled dashed lines showing the interest-
ing data flow links. Considering the data flow link (1) in this work-
flow, the activity rams_hist produces in each time step two grid files
(based on the input parameter NGRID which is specified in the in-
put file, NGRID=2 in this case) and one head file, which we denote
by two data collections: gridFiles, headFiles. For each run of an
iteration of the parallelForEach construct pfeRevuDump, the
activity revu_dump requires the files of one time step (two grid files
and a head file) produced by the activity rams_hist. The collection
distribution constructs BLOCK(2) and BLOCK(1) are used here to
fulfill the data flow requirements.

The data flow link (2) in this workflow is a good example to
demonstrate BLOCK(S,L) distribution. Similar as the activity rams-
_hist, the activity rams_makevfile produces two grid files and one
tag file in each time step. Again, we denote them by two data
collections: gridFiles, tagFiles. For each run of an iteration of the
parallelForEach construct pfeRamsInit, the activity rams_init
requires not only the files of the current time step but also those of
the previous time step. Therefore, the collection distribution con-
structs BLOCK(4,2) and BLOCK(2,1) can be used respectively for
the distribution of the two data collections gridFiles and tagFiles
onto the parallel loop iterations.

Both examples in the workflow MeteoAG also show that how
multiple data collections can be processed by one parallel iterative
construct independently in terms of how many data elements of
each data collection are processed in one loop iteration. The per-
formance results with these collection distribution constructs are
discussed in Section 6.2.

5.3 AstroGrid
The AstroGrid [17] application is about numerical simulations

of the movements and interactions of galaxy clusters based on N-
Body systems. The computation starts with the state of the universe
at some time in the past and is done to the current time. Galaxy po-
tentials are computed for each time step. Then the hydrodynamic
behavior and processes are calculated. The workflow structure is

Figure 11: The GRASIL workflow

illustrated in Fig. 10. Considering the data flow link illustrated
with the dashed line, the activity nbody produces two data col-
lections: t00Files, consisting of multiple t00 files, and dataFiles,
consisting of multiple data files. One t00 file is produced at each
time step. One data file is produced when every four t00 files are
available. For each run of an iteration of the parallelForEach
construct pfePoten, the activity poten requires one t00 file and the
corresponding data file. While the data collection t00Files is it-
erated over by the parallelForEach construct pfePoten, the
data collection dataFiles is distributed based on the collection dis-
tribution construct REPLICA(4), which specifies that every data
file should be replicated four times then distributed onto the corre-
sponding loop iterations.

5.4 GRASIL
GRASIL [19] is an application to calculate the spectral energy

distribution (SED) of galaxies lying in a certain field of view (light
cone) ranging from now back to shortly after the beginning of the
universe. The workflow structure is very simple and is illustrated
in Fig. 11. The activity init produces a data collection, in which
each data element corresponds to the data about a specific galaxy.
The data collection is then processed by a parallelFor con-
struct pforGalaxy, which uses the constraint distribution=BLOCK
to distribute the input collection onto its loop iterations. The ac-
tivity grasil is designed to accept a data collection with a variable
number of galaxies and calculates each of them, which make the
workflow immune to the changes of the element number of the
data collection produced by the activity init. Thus the workflow
reusability is improved.

6. EXPERIMENTAL RESULTS
We have implemented all collection distribution constructs de-

scribed in this paper and integrated them in the ASKALON Grid
environment, which is the main Grid application development and
computing environment for the Austrian Grid infrastructure [1].
Through our UML based Grid workflow modeling tool [15], the
domain users can develop AGWL based Grid workflow applica-
tions, including the selection of correct collection distribution con-
structs. We have conducted the experiments of the WIEN2k work-
flow and the MeteoAG workflow. The sizes of the files in the data
collections used in our experiments range from several kilobytes
to several megabytes. In both experiments, we measured the num-
ber of file transfers and the execution time and compared them for
two cases: (1) without collection distribution constructs specified
(denoted by without data collection distribution), and (2) with col-
lection distribution constructs specified (denoted by with data col-
lection distribution). The corresponding results are presented in the



Grid Site CPU # GHz JobMgr Location

karwendel
Dual Core

AMD
Opteron

8 2.4 SGE Innsbruck

c703-pc2201 Pentium 4 8 2.8 Torque Innsbruck
c703-pc2509 Pentium 4 8 2.8 Torque Innsbruck

schafberg Itanium 2 8 1.4 PBS Salzburg
altix1 Itanium 2 8 1.4 PBS Innsbruck

c703-pc450 Pentium 4 8 1.8 Torque Innsbruck
hydra AMD Athlon 8 1.67 Torque Linz

Table 2: The Austrian Grid testbed

following sections. A subset of the computational resources which
have been used for the experiments is summarized in Table 2.

6.1 Results of the WIEN2k workflow
The WIEN2k workflow structure is illustrated in Fig. 8 in Sec-

tion 5.1, and the corresponding AGWL representation is depicted in
Ex. 2 (for simplicity, details not related to collections are omitted).
Since the integer data port kpoint produced by the activity LAPW0
determines the iteration number of the parallelFor constructs
pforLAPW1 and pforLAPW2 (line 16 and line 69), which further
determines the size of the data collections mentioned in Section 5.1,
we performed two series of experiments for the WIEN2k applica-
tion, corresponding to two different problem sizes: kpoint = 116
and kpoint = 252. The experiments were conducted on six Grid
sites: karwendel, c703-2201, c703-2509, schafberg, c703-pc450
and hydra. For each problem size, we first executed the work-
flow on the fastest Grid site karwendel. Then, we incrementally
added new Grid sites to investigate whether we can improve the
performance of the workflow application by increasing the avail-
able computational Grid resources.
Example 2. The AGWL representation of the WIEN2k workflow

1 <?xml version="1.0" encoding="UTF-8"?>
2 <agwl name="WIEN2k">
3 <workflowInput .../>
4 <workflowBody>
5 <doWhile name="Conv">
6 <loopBody>
7 <activity name="LAPW0"
8 type="wien:lapw0">
9 <dataIns .../>

10 <dataOuts>
11 <dataOut name="kpoint"
12 type="xs:integer" saveto=""/>
13 </dataOuts>
14 </activity>
15 <parallelFor name="pforLAPW1">
16 <loopCounter name="taskNumber"
17 type="xs:integer"
18 from="1"
19 to="LAPW0/kpoint"
20 step="1"/>
21 <loopBody>
22 <activity name="LAPW1"
23 type="wien:lapw1" .../>
24 </loopBody>
25 <dataOuts>
26 <dataOut name="engergyFileCol"
27 type="agwl:collection"/>
28 <dataOut name="vectorFileCol"
29 type="agwl:collection"/>
30 <dataOut name="scf1FileCol"
31 type="agwl:collection"/>
32 </dataOuts>
33 </parallelFor>
34 <activity name="LAPW2_FERMI"
35 type="wien:lapw2FERMI">
36 <dataIns .../>
37 <dataOuts>
38 <dataOut name="weighFileCol"
39 type="agwl:collection"/>
40 </dataOuts>
41 </activity>

42 <parallelFor name="pforLAPW2">
43 <dataIns>
44 <dataIn name="energyFileCol"
45 type="agwl:collection"
46 source="pforLAPW1/engergyFileCol">
47 <constraints>
48 <constraint name="distribution"
49 value="BLOCK(1)"/>
50 </constraints>
51 </dataIn>
52 <dataIn name="vectorFileCol"
53 type="agwl:collection"
54 source="pforLAPW1/vectorFileCol">
55 <constraints>
56 <constraint name="distribution"
57 value="BLOCK(1)"/>
58 </constraints>
59 </dataIn>
60 <dataIn name="weighFileCol"
61 type="agwl:collection"
62 source="LAPW2_FERMI/weighFileCol">
63 <constraints>
64 <constraint name="distribution"
65 value="BLOCK(1)"/>
66 </constraints>
67 </dataIn>
68 </dataIns>
69 <loopCounter name="taskNumber"
70 type="xs:integer"
71 from="1"
72 to="LAPW0/kpoint"
73 step="1"/>
74 <loopBody>
75 <activity name="LAPW2"
76 type="wien:lapw2TOT" .../>
77 </loopBody>
78 <dataOuts .../>
79 </parallelFor>
80 <activity name="Sumpara"
81 type="wien:sumpara" .../>
82 <activity name="Lcore"
83 type="wien:lcore" .../>
84 <activity name="Mixer"
85 type="wien:mixer">
86 <dataIns>
87 <dataIn name="scf1FileCol"
88 type="agwl:collection"
89 source="pforLAPW1/scf1FileCol">
90 <constraints>
91 <constraint name="element-index"
92 value="1"/>
93 </constraints>
94 </dataIn>
95 </dataIns>
96 <dataOuts .../>
97 </activity>
98 <activity name="testconv"
99 type="wien:testconv" .../>

100 </loopBody>
101 <condition .../>
102 </doWhile>
103 </workflowBody>
104 </agwl>

As shown in Fig. 12, we significantly improved the performances
for both problem sizes by using collection distribution constructs.
Specifically, when executing the workflow with kpoint = 116 on
6 Grid sites, the number of file transfers was reduced by 67% and
the execution time was reduced by 30% compared with the exe-
cution without collection distribution. Accordingly, we achieved
the speedup of 2.60 on 6 Grid sites, compared with the maximum
speedup of 1.96 achieved on 4 Grid sites when no collection dis-
tribution constructs are used. Similarly, in the case where kpoint
is 252, there was a 68% reduction in the number of file transfers
and a 42% reduction in the execution time when executing on 6
Grid sites. And the corresponding speedup was 2.58 on 6 Grid
sites, compared with the maximum speedup of 1.74 achieved on 4
Grid sites without collection distribution. By using the collection
distribution constructs, the scalability of the workflow was also im-
proved: because of redundant file transfers, the workflow did not
scale for more than 4 Grid sites for experiments without collection
distribution. Furthermore, the reduction of the file transfer number
and the execution time increased with the increase of the number
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(b) File transfer (kpoint=252)
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(d) Execution time (kpoint=252)
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Figure 12: Experimental results of the WIEN2k workflow
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Figure 13: Performance analysis of the execution of the parallelFor construct pforLAPW2 on 5 Grid sites (kpoint=252)



of Grid sites involved, especially when kpoint is 252. This is be-
cause when adding one more Grid site, the entire collections must
be transferred to that Grid site for the execution of the loop itera-
tions on that Grid site in case no collection distribution constructs
are used. However, if we use the corresponding collection distri-
bution constructs for the data collections in the workflow, only the
files required by the iterations scheduled on that Grid site need to be
transferred. When increasing the problem size to kpoint = 252,
the number of file transfers and the corresponding execution time
were further reduced due to an increased collection size for increas-
ing problem size.

Fig. 13 illustrates two stacked bar charts which show the perfor-
mance analysis of the execution of the parallelFor construct
pforLAPW2 on 5 Grid sites when kpoint = 252. The horizon-
tal axis is the time line and the vertical axis represents activity in-
stances. For each activity instance, the times consumed at different
stages (e.g. Queuing, DataStageIn, Active, etc.) are illustrated in a
horizontal bar. As illustrated in Fig. 13(a), there exists significant
DataStageIn time for the parallelFor construct pforLAPW2,
which results in its total execution time 713.61 seconds. The total
execution time of pforLAPW2 is only 231.70 seconds when using
collection distribution constructs (see Fig. 13(b)). The bottom-left
blue parts in the two charts represent the time consumed by the ac-
tivity instances of the activity LAPW2 for waiting in the job queue
of the workflow enactment engine due to the lack of CPU resources.

6.2 Results of the MeteoAG workflow
The MeteoAG workflow structure is illustrated in Fig. 9. The

corresponding AGWL representation is omitted here to avoid re-
dundancy. In this experiment, we ran the parallelForEach
construct pforEachCase with two parallel loop iterations (corre-
sponding to two simulation cases), each of which has two parall-
elFor constructs with 48 parallel loop iterations (corresponding
to 48 simulation time steps). The experiments were conducted
on six Grid sites: karwendel, altix1, schafberg, c703-2201, c703-
pc450 and hydra. We conducted the experiments in the same way
as for the WIEN2k workflow: first running the workflow on the
fastest Grid sites, then incrementally adding the slower Grid sites.

As illustrated in Fig. 14, we significantly improved the perfor-
mance of this workflow application when using collection distri-
bution constructs. Compared with the execution on 6 Grid sites
without collection distribution, the number of file transfers was re-
duced by 77% and the execution time was reduced by 53% when
using collection distribution constructs. Accordingly, we achieved
the speedup of 2.31 on 6 Grid sites, compared with the maximum
speedup of 1.70 achieved on 4 Grid sites without collection dis-
tribution. And the workflow scalability was also improved when
using collection distribution constructs.

By using collection distribution constructs, the total number of
file transfers is reduced and thus the performance is improved. We
observed similar behavior for the other two applications, which are
omitted here to avoid redundancy.

7. CONCLUSIONS AND FUTURE WORK
Existing work does not provide a flexible dataset-oriented data

flow mechanism to meet the complex data flow requirements of
scientific Grid workflow applications. In this paper, we presented
an approach as part of AGWL to solve this problem by introduc-
ing the concept of data collection and the sophisticated collec-
tion distribution constructs. A data collection is used to model
a static or dynamic dataset at a high level of abstraction. The
collection distribution constructs are used to map data collections
to activities and to distribute data collections onto loop iterations.
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Figure 14: The MeteoAG experimental results



The collection distribution constructs are specified through AGWL
constraints agwl:element-index and agwl:distribution. Five col-
lection distribution constructs, i.e. coma separated colon expres-
sions, BLOCK, BLOCK(S), BLOCK(S,L) and REPLICA(S), are dis-
cussed. With this approach, AGWL enables the specification of
fine-grained dataset-oriented data flows in various scientific work-
flow domains, such as mapping portions of data collections to activ-
ities, distribution of data collections onto loop iterations, process-
ing multiple data collections with one parallel iterative construct
independently in terms of how many data elements of each collec-
tion are processed in one loop iteration. Our approach reduces data
duplication, optimizes data transfers between workflow activities,
and thus improves workflow performances. It also simplifies the ef-
fort to port scientific applications onto the Grid. We demonstrated
our approach by applying it to four real world Grid workflow ap-
plications and reported the experimental results.

With collection distribution constructs, more advanced data flow
like data stream can be supported: as soon as the required data
elements (instead of the entire data collection) are produced and
ready to be processed, the corresponding subsequent activity (the
consumer) can start. We are implementing collection-based data
stream support in ASKALON. Future extensions to allow more
elaborate data collection distribution mechanisms such as CYCLIC
and CYCLIC(S) distributions as well as distributions of nested col-
lections are also being investigated.
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