
A Novel Domain Oriented Approach for Scientific
Grid Workflow Composition

Jun Qin and Thomas Fahringer
Institute of Computer Science, University of Innsbruck

Technikerstr. 21a, A-6020 Innsbruck, Austria

Email: {jerry, tf}@dps.uibk.ac.at

Abstract—Existing knowledge based Grid workflow languages
and composition tools require sophisticated expertise of domain
scientists in order to automate the process of managing work-
flows and its components (activities). So far semantic workflow
specification and management has not been addressed from a
general and integrated perspective. This paper presents a novel
domain oriented approach which features separations of concerns
between data meaning and data representation and between
activity function (semantic description of workflow activities)
and activity type (syntactic description of workflow activities).
These separations are implemented as part of Abstract Grid
Workflow Language (AGWL) which supports the development
of Grid workflows at a high level (semantic) of abstraction.
The corresponding workflow composition tool simplifies Grid
workflow composition by (i) enabling users to compose Grid
workflows at the level of data meaning and activity function that
shields the complexity of the Grid, any specific implementation
technology (e.g. Web or Grid service) and any specific data
representation, (ii) semi-automatic data flow composition, and
(iii) automatic data conversions. We have implemented our
approach as part of the ASKALON Grid application development
and computing environment. We demonstrate the effectiveness of
our approach by applying it to a real world meteorology workflow
application and report some preliminary results. Our approach
can also be adapted to other scientific domains by developing the
corresponding ontologies for those domains.

I. INTRODUCTION

With the development of Grid technologies, scientists and

engineers are building more and more complex applications

to execute scientific experiments on distributed Grid resources.

Grid workflows, as a main programming paradigm for address-

ing large scale e-science problems, play a paramount important

role in this process.

A Grid workflow application can be seen as a collection of

computational tasks (activities) that are processed in a well-

defined order to accomplish a specific goal. Numerous Grid

workflow languages and tools [1], [2], [3], [4], [5], [6] are de-

veloped to facilitate Grid workflow composition and execution.

However, Grid workflow composition is still a challenging task

for domain scientists. To simplify Grid workflow composition,

some Grid workflow development environments [1], [5], [7],

[6], [8] enable users to compose Grid workflow applications

at a high level of abstraction through using activity types (an

abstract description of a group of concrete implementations of

computational entities deployed in the Grid, which share the

same functionality and the same input and output data struc-

RAMSHistA

fileinteger

RAMSHistB

collectionstring

OR ?

collection file

(a) two activity types having the same functionality but
different input and output data structures

Activity Type A

Activity Type B

Activity Type C

?

?

Control Flow

Data Flow

A Activity Types

Input and Output
Data Ports

file

file

file

(b) data flow composition among three data ports which have the same
data type file

Fig. 1. Two Grid Workflow Composition Problems

ture). Some Grid workflow development environments [2], [9],

[5], [8], [10] adopted a knowledge based process to help users

build Grid workflows. However, there are still two problems

with existing approaches: (i) users still have to understand the

data type systems used in Grid workflow runtime environments

to select correct activity types for their workflows, and (ii) how

to specify data flow among workflow activities, especially in

a workflow where many data ports have the same data type

(e.g. string, file).

As an illustrating example, let us consider a real world

meteorology Grid workflow, where users are offered two

activity types: RAMSHistA and RAMSHistB (Fig. 1(a)). Both

activity types represent the same functionality, that is, to

evolve the physical representation of the atmosphere from an

earlier RAMS model to the specified final simulation time.

The activity type RAMSHistA requires an input integer in the

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
SC2008 November 2008, Austin, Texas, USA 978-1-4244-2835-9/08 $25.00 ©2008 IEEE

range [1–12] indicating Month and a zipped input file indicat-

ing SeaSurface, and produces RAMSModeledAtmosphere as a

collection of files. The activity type RAMSHistB requires and

produces similar kind of data, except that the input data Month
must be a string with one value from the set {Jan, Feb, ...,

Dec}, the input data SeaSurface must be a collection of files,

and the output data RAMSModeledAtmosphere is a .tar.gz file.

All the other data ports of both activity types are omitted for

the reason of simplicity. In this case, users have to choose

between RAMSHistA and RAMSHistB for their workflow based

on the data types of the data produced by predecessor activity

types in the workflow. Once one of the two activity types is

selected, users also have to make decision on the successor

activity types in the workflow so that the successor activity

types can correctly process the data produced by the previously

selected activity type.

When all activity types are selected and connected with

control flow, data flow composition is another complex tasks

for domain users, as illustrated in Fig. 1(b) which shows part of

a workflow. In this workflow, both activity type A and activity

type B produce a file (indicated by the data type file) and

activity type C requires a file as input. The problem here is

where the input file of activity type C should come from, from

the output of activity type A or from the output of activity type

B (as illustrated by two data flow connections with question

marks in Fig. 1(b)). The data flow composition could be even

worse in a real world Grid workflow application because (i)

there may be ten to hundred data ports having the same data

type and are available for a successor activity type, and (ii) the

closer the successor activity type is positioned to the end of

the workflow, the more data ports are available. The process to

determine which data ports have to be connected by data flow

is error prone and requires solid expertise of domain users.

In this paper, we present a novel domain oriented approach

to solve the two aforementioned problems as part of Abstract

Grid Workflow Language (AGWL) [11] which is a widely

known language for describing Grid workflow at a high

level of abstraction. We developed a generic AGWL ontology

which mainly consists of three top level concepts: Function,

Data and DataRepresentation. The concept Function and Data
can be extended by domain specific ontologies such as the

meteorology ontologies illustrated in this paper. With the help

of these ontologies, we separate between data meaning and

data representation and between activity function and activity

type in AGWL. These separations allow users to compose

workflows at the level of data meaning and activity function

and leave the task of dealing with data representations and

activity types to the Grid workflow composition tool (to

solve the first problem). These separations also enable semi-

automatic data flow composition based on the semantics of

the data in the workflow (to solve the second problem).

We have implemented the prototype of this approach in the

ASKALON Grid environment [6]. Experiments demonstrate

that the overhead of our approach is insignificant and about

90% of the data flows for reasonable complex Grid workflow

applications can be established automatically.

The contributions of this paper are as follows:

• We introduce the concept of data representation in Grid

workflows, and some comprehensive properties associ-

ated with the concept.

• We separate concerns between data meaning and data

representation and between activity function and activity

type, which makes AGWL more abstract and makes the

Grid workflow composition tool easier to use for domain

scientists.

• With the help of the generic AGWL ontology and the

extended domain ontologies, Grid workflows in three

different levels (semantic, syntactic and concrete) of ab-

straction can be described with one single Grid workflow

language.

• We applied our approach to a real world meteorology

Grid workflow application.

The remainder of this paper is organized as follows. A

brief overview of AGWL is provided in Section II. Section III

introduces the structure of the generic AGWL ontology. Sec-

tion IV presents how Grid workflow activities are described

based on the ontology introduced in the previous section

and how an activity function based semantic Grid workflow

representation can be mapped to the corresponding syntactic

representation. We discuss the prototype implementation of

our approach in Section V and report some preliminary results

in Section VI. Section VII compares important related work

against our approach. The paper ends with a short conclusion

and an outline of the future work.

II. OVERVIEW OF AGWL

AGWL [11] is an XML-based language for describing Grid

workflow applications at a high level of abstraction. It is

the main interface to the ASKALON [6] Grid application

development and computing environment and has been applied

to numerous real world Grid workflow applications. AGWL

has been designed such that users can concentrate on specify-

ing Grid workflow applications without dealing with either

the complexity of the Grid or any specific implementation

technology (e.g. Web or Grid Service, software components

or Java classes, etc.). AGWL allows a programmer to define

a graph of activities that refer to computational tasks or user

interactions. AGWL workflows consist of activities, control

flow constructs, data flow links and properties and constraints.

An AGWL activity can be an atomic activity or a compound
activity. An atomic AGWL activity is represented by an

Activity Type (AT) with input and output data ports. An AT

is an abstract description of a group of Activity Deployments
(ADs) (concrete implementations of computational entities

deployed in the Grid) which have the same functionality and

the same input and output data structure, but probably different

performance behaviors, QoS characteristics and costs. Each

input and output data port of an AT is described by a data port

name and a data type such as xsd:string or agwl:file.

The number and the types of the input and output data ports of

an atomic activity are determined by the associated AT. ATs

Function Data

DataRepresentation

hasInput

hasOutput

GenericFunction

MeteorlogyFunction MeteorologyData

GenericData

isRepresentedAs

Property

Subclass

DataConversion

Fig. 2. The Upper Ontology

shield the implementation details of ADs from the AGWL

programmer.

A rich set of control flow constructs (compound

activities) has been provided in AGWL to simplify

the specification of Grid workflow applications such as

sequence, parallel, if, switch, while, doWhile,

for, forEach, parallelFor and parallelForEach
with semantics similar to comparable constructs in high-level

programming languages. The dag construct is also provided

for describing a directed acyclic graph of activities. AGWL

also supports sub-workflows, which are similar to procedures

in high-level programming languages. Sub-workflows are used

to modularize, encapsulate and reuse code regions.

The data flow in AGWL is expressed by data flow links

from source data ports to sink data ports. This is done by set

the values of the property source of sink data ports to the

corresponding source data ports. For sink data ports, source

data ports are called data sources.

Properties and constraints can be defined in AGWL to

provide additional information for workflow runtime systems

to optimize and steer the executions of workflow applica-

tions. Properties provide hints about the behavior of activities

and constraints should be complied with by the underlying

workflow runtime system. The user can specify properties and

constraints for both activities and data ports.

III. ONTOLOGIES

Based on our experiences in collaborating with scientists

from multiple domains, such as meteorology, material science

and astrophysics [12], we have identified some questions

raised by users when they compose Grid workflows. Among

others, the following questions are frequently asked:

• Which activity provides a solution for a requested task,

e.g. to evolve the physical representation of the atmo-

sphere?

• Which activity produces or consumes given data, e.g.

SeaSurface, LandCover?

To answer these questions, we have developed an upper

ontology which is shown in Fig. 2. It is motivated by the

need to ease Grid workflow composition. There are three

main concepts in the upper ontology: Function, Data and

DataRepresentation which are described as follows.

DataRepresentation

StorageType

ContentType

ArchiveType

Cardinality

hasStorageType

hasContentType

hasArchiveType

hasCardinality

Fig. 3. The Ontology of DataRepresentation

Data is a superclass of any kind of workflow data. It

provides a high level description of workflow data, that is,

the meaning of workflow data. Data can be extended by a

GenericData (e.g. Month). Data can also be extended for

domain specific data. For example, MeteorologyData can be

defined as a subclass of Data and a superclass of all kinds

of meteorological data. Data is the input to or the output

of Function. Users can search Functions based on input and

output Data.

Function is a superclass of both generic and domain specific

functions which are implemented by Web or Grid services,

executables, Java classes, etc. Function has properties has-
Input and hasOutput which indicate input and output data of

Function. The values of the properties hasInput and hasOutput
are Data. Beside these two properties, Function also has a

hasDescription property, whose value is a textual description

on what exact functionality it represents. This enables domain

users to search Functions based on free text. For example,

a user may input “atmosphere evolution” to find Functions
which can simulate the evolution of the atmosphere. We

adopted the string-matching algorithm presented by Cardoso

et al. in [13] to match free text against the descriptions of

Functions in our approach. To follow the IOPE (Input, Output,

Precondition and Effect, i.e., four properties to semantically

describe capabilities of Web Services) [14] pattern of the mod-

ern semantic technologies, we also associated the properties

hasPrecondition and hasEffect with Function. However, we

defer the Precondition and Effect related research to future

work since we do not observe much requirement on this from

the scientific domains we are involved. Function can also

be extended by domain specific function concepts such as

MeteorologyFunction. Specific meteorological functions can

then be defined by subclassing MeteorologyFunction. The

subclass DataConversion of the class Function in Fig. 2 will

be explained in Section IV-B.

DataRepresentation describes storage related information

of Data, that is, how data is stored in computer systems.

While Data specifies the meaning (semantic information) of

workflow data that is easy to understand by human beings,

DataRepresentation indicates additional storage related in-

formation (syntactic information) of workflow data that is

required by services or executables to correctly process the

TABLE I
THE PROPERTIES OF DATAREPRESENTATION

Property Description Possible Value

hasStorageType
Where the Data is
stored

Memory, FileSystem,
Database

hasContentType
Which format the Data
is stored in

XML Schema
Datatypes, File Types

hasArchiveType
Whether and how the
Data is archived

zip, gzip, bz2, tar, rar,
none, etc.

hasCardinality
What is the cardinality
of the Data single, multiple

data. We define some comprehensive properties for the concept

DataRepresentation which are shown in Fig. 3. Table I shows

the descriptions and the possible values of these properties.

While the property hasStorageType is easy to understand, the

property hasContentType indicates that the format in which

Data is stored. Its value indicates data types, including sim-

ple or complex data types supported by the XML Schema

Datatype specification, and file types such as BinaryFile,

TextFile, CSVFile (a subclass of TextFile), XMLFile (a sub-

class of TextFile), CDFFile (a scientific data format that can

include scalar, vector, and multi-dimensional data arrays, a

subclass of BinaryFile), etc. The value none of the property

hasArchiveType indicates that Data is not archived. This could

be the case of unarchived files, or data stored in memory

like strings or integers. The property hasCardinality describes

whether Data is a single data element or a collection of data

elements. Obviously, DataRepresentation is a broader concept

than data types and provides richer information required by

scientific applications than the latter. The same exact data can

have alternative DataRepresentations, such as a string stored

in memory, a record in a database table, or a set of file each

structured either as a table, an XML structure, or a labeled list

(Gil [15] has recently proposed similar ideas). Note that users

do not have to specify the data representations of workflow

data while composing a Grid workflow. The DataRepresen-
tation information comes from the deployed ATs. The data

coversions between different data representations of Data are

done automatically by the Grid workflow composition tool

when a semantic Grid workflow representation is mapped to

the corresponding syntactic representation. This is explained

in Section IV.

The main difference between our approach and existing

semantic Grid approaches is that we do not associate data types

(e.g. string, integer, etc.) directly with Data itself. Instead, we

introduce the idea that Data is represented as DataRepresenta-
tions, which include the corresponding data type information,

as well as some other storage related information. The sep-

aration of concerns between data meaning (Data) and data

representation (DataRepresentation) enables domain scientists

to semantically compose Grid workflow applications without

dealing with specific data representations including data types.

By associating data meaning with data ports, semi-automatic

data flow composition is also supported.

1 <activity function="RAMSHist">
2 <dataIns>
3 <dataIn name="m" data="Month"/>
4 <dataIn name="in" data="SeaSurface"/>
5 <!-- other input data -->
6 </dataIns>
7 <dataOuts>
8 <dataOut name="out" data="RAMSModeledAtmosphere"/>
9 <!-- other output data -->

10 </dataOuts>
11 </activity>

Fig. 4. The Activity Function RAMSHist

We will refer to the generic AGWL ontology and the

extended domain specific ontologies as the AGWO ontology

in the remainder of this paper.

IV. ONTOLOGY BASED GRID WORKFLOW

REPRESENTATION

In this section, we explain how the AGWO ontology is used

to describe Grid workflow activities and how a semantic Grid

workflow representation can be mapped to the corresponding

syntactic representation.

A. Activity Function

Activity Function (AF) is an abstract concept to describe

workflow activities at the semantics level. It describes input

and output data with data meaning. An AF is formally defined

as follows:

AF = {F, I, O}
where F indicates the functionality, I is an ordered set of

input data meanings, and O is an ordered set of output

data meanings. The functionality is a subclass of Function
defined in the AGWO ontology. The input and output data

meanings are subclasses of Data in the AGWO ontology. No

data representation is defined in an AF. For example, in the

meteorology domain, an AF RAMSHist, to evolve the physical

representation of the atmosphere from an earlier RAMS model

to the specified final simulation time, is shown in Fig. 4.

The functionality is specified through the attribute function at

line 1. The data meaning of each data port is specified through

the attribute data at line 3, line 4, and line 8, where SeaSurface
indicates water body properties, e.g. temperature, ice cover,

etc. and RAMSModeledAtmosphere is the forecasted atmo-

sphere based on an RAMS model. AFs can be extracted from

the AGWO ontology because the ontology specifies knowledge

about which Function hasInput or hasOutput which Data.

B. Activity Type

We also extend the concept of AT in AGWL. An AT

describes a workflow activity at the syntax level. An AT is

specified as:

AT = {F, T, I, RI , O, RO}
where F , I , and O are same as they are defined in an AF,

T indicates the name of the specific activity type, RI is an

ordered set of data representations of input data I , and RO is

an ordered set of data representations of output data O. An AT

is associated with an AF through the functionality of the AT,

i.e. AT.F . If AT.F = AF.F , then AT.I ∼= AF.I ∧ AT.O ∼=
AF.O, where the relation ∼= indicates semantically compatible.

Given two ordered set S and T each having n elements, S ∼= T
is defined as follows:

S ∼= T =

⎧⎨
⎩

true i ∈ [1, n] : Si = Ti ∨ Si is a subclass

of Ti based on the AGWO ontology

false otherwise

Multiple ATs with semantically compatible input and output

data but different data representations can be associated with

one AF. If one wants to define an AT to be associated with

an AF but with non-semantically compatible input and output

data, then a subclass of the corresponding functionality should

be defined in the AGWO ontology and the AT should be

associated with the AF extracted from the ontology based

on the subclass. Fig. 5 illustrates an AT which is associated

with the AF illustrated in Fig. 4. Besides containing the same

information as the AF, the AT also specifies the name of the

specific activity type (line 1) and the data representation for

each data port (lines 4 – 9, lines 12 – 17 and lines 23 – 28).

ATs are deployed in an AT repository which is a registry

service in the Grid workflow runtime environment. A special

kind of ATs called data conversion ATs are also deployed

in the AT repository. For data conversion ATs, AT.F =
DataConversion (see Fig. 2). A data conversion AT can

convert Data from one representation to another. For example,

there can be a data conversion AT which converts Month from

a string in the set {Jan, Feb, ..., Dec} to an integer in the range

[1–12].

Instead of using ATs, users compose Grid workflows using

AFs with their domain knowledge only. The Grid workflow

composition tool can then help establish data flow among AFs

semi-automatically based on the semantics of data ports, and

convert between different data representations of workflow

data automatically if necessary. Let us refer to AF based

Grid workflow representations as semantic Grid workflow

representations and to AT based Grid workflow representations

as syntactic Grid workflow representations. Semantic Grid

workflow representations are not executable and have to be

mapped to the corresponding syntactic representation before

they are submitted for scheduling and execution. This is

explained in the following section.

C. From Semantics to Syntax

To map a semantic Grid workflow representation to the

corresponding syntactic representation, the Grid workflow

composition tool starts from the initial node of the graphical

representation (e.g. the InitialNode of the UML 2 Activity

Diagram [16], as used in ASKALON [6]) of the Grid workflow

and maps all AFs to ATs while following control flow, until all

AFs are mapped to ATs. The reason that the mapping process

starts from the initial node is that only when the predecessor

AFs are mapped to ATs, are the data representations of data

1 <activity function="RAMSHist" type="rams_hist_c">
2 <dataIns>
3 <dataIn name="m" data="Month">
4 <dataRepresentation>
5 <storageType>Memory</storageType>
6 <contentType>xsd:string</contentType>
7 <archiveType>none</archiveType>
8 <cardinality>one</cardinality>
9 </dataRepresentation>

10 </dataIn>
11 <dataIn name="in" data="SeaSurface">
12 <dataRepresentation>
13 <storageType>FileSystem</storageType>
14 <contentType>agwl:file</contentType>
15 <archiveType>none</archiveType>
16 <cardinality>one</cardinality>
17 </dataRepresentation>
18 </dataIn>
19 <!-- other input data -->
20 </dataIns>
21 <dataOuts>
22 <dataOut name="out" data="RAMSModeledAtmosphere">
23 <dataRepresentation>
24 <storageType>FileSystem</storageType>
25 <contentType>agwl:file</contentType>
26 <archiveType>zip</archiveType>
27 <cardinality>multiple</cardinality>
28 </dataRepresentation>
29 </dataOut>
30 <!-- other output data -->
31 </dataOuts>
32 </activity>

Fig. 5. The Activity Type rams hist c

sources of input data ports of successor AFs determined.

Those data representations can then be used to map AF to

ATs. Let us refer to the data representations of data sources
of the input data ports of an AF as the input source data
representations of the AF. When mapping AFs to ATs, only

the input source data representations of AFs is necessary to

be compared with the input data representations of ATs. No

output data representations of ATs need to be considered.

The algorithm of mapping an AF against ATs in the AT

repository is illustrated in Fig. 6. First, a set of ATs (Ωsub)

associated with the AF are retrieved from the AT repository

(line 3). Then for each AT in the set, the set of input data

representations of the AT (AT.RI) are compared with the set

of input source data representations (Rsrc) of the AF (line 4-

9). If AT.RI is semantically compatible with Rsrc, then the

AF is replaced with the AT directly. Let us denote this kind

of match by direct match. If multiple such ATs exist (in case

that duplication is allowed in the AT repository, or the AT

repository is distributed with cache enabled), then any one of

these ATs (the first found AT is returned in the algorithm) can

be selected because they are considered to be the same one.

Note that ATs are abstract descriptions of workflow activities

and no performance or cost criteria can be applied here on the

selection of ATs. If no direct match found, then for each AT

in the set, all data conversion ATs are checked to find a set

of data conversion ATs which can fulfill the data conversion

requirements from Rsrc to AT.RI (line 10-15). If such an AT

and the corresponding data conversion ATs exist, then the AF

1: Input:
AF : the AF to be mapped to ATs;

Rsrc: the ordered set of the input source data
representations of AF ;

Ω: set of ATs in the AT repository

2: Output: None {AF is replaced with the found ATs}
3: Ωsub := {AT |AT ∈ Ω∧AT.F = AF.F} {a set of ATs

associated with the AF}
{find direct match}

4: for all AT ∈ Ωsub do
5: if (AT.RI

∼= Rsrc) then {see Section IV-B}
6: replace AF with AT
7: return
8: end if
9: end for

{no direct match found, find indirect match now}
10: for all AT ∈ Ωsub do
11: if (∃C | canConvert(C, AF.I, Rsrc, AT.RI)) then
12: replace AF with the data conversion ATs ∈ C

followed by the AT .

13: return
14: end if
15: end for
16: report an error to users

17: return

Fig. 6. Mapping an AF to ATs

is replaced by the corresponding data conversion ATs followed

by the AT. Let us denote this kind of match by indirect match.

Fig. 7 illustrates two scenarios of indirect match: (i) mapping

from (a) to (b) indicates the case where only one pair of data

representations are not semantically compatible and need to

be converted; and (ii) mapping from (a) to (c) indicates the

case where more than one pair of data representations need

to be converted. DC1, DC2, DC3, and DC4 in the figure are

data conversion ATs. A parallel compound activity (see

Section II) is used in Fig. 7(c) to enable parallel execution of

data conversions. In case that an AF can not be mapped due to

unavailable ATs, an error is reported to users (line 16). Then

users can either choose another AF to use in the workflow or

ask for deploying more ATs. The function canConvert used in

the algorithm is defined as follows, where S, T , C and D are

four ordered sets each having n elements.

canConvert(C, D, S, T) =

⎧⎪⎪⎨
⎪⎪⎩

true i ∈ [1, n] : Si = Ti

∨Ci can convert Di

from Si to Ti

false otherwise

Once the semantic Grid workflow representation is con-

verted to the corresponding syntactic representation, the work-

flow can be scheduled and executed. During this process,

based on the scheduling algorithm, the Grid site, the specific

service or executable on that Grid site and some other concrete

information (e.g., working directory, executable usage, input

AF

AT

DC2 DC3 DC4

AT

DC1

(a) (b) (c)

Control Flow

Fork/Join Node

Fig. 7. Mapping from an AF to ATs: indirect match

file name patterns) can be determined for each AT. These

concrete information are saved into the constraints of

activities (see Section II). At this point, an AT becomes an

Activity Deployment (AD). From this point of view, we can

say that we describe Grid workflows at three different levels

(semantic, syntactic, and concrete) of abstraction with a single

Grid workflow language, AGWL.

V. IMPLEMENTATION

We have extended the generic AGWL ontology with the

ontologies for the meteorology simulation domain. The aim

is to ease composition of workflows in the numerical model

based meteorology simulation domain. We designed the on-

tology using the Protege-OWL editor [17] and implement a

prototype of our approach using the Jena APIs [18]. Fig. 8

shows the main Data classes of the meteorology ontologies,

where all meteorological data classes are defined as subclasses

of the class MeteorologyData. Fig. 9 shows the main Function
classes, where all meteorological functionalities are defined

as subclasses of the class MeteorologyFunction. Some classes

are hidden in the two figures (indicated by small triangles)

for the reason of simplicity. The hierarchy of these classes is

visualized by the OWLViz plugin for Protege.

These defined Data and Function classes are used to

guide the composition of the Grid workflow MeteoAG [19].

MeteoAG is a Grid workflow application for meteorology

simulations based on the numerical model RAMS [20]. The

simulations produce precipitation fields of heavy precipitation

cases over the western part of Austria, at a spatial and

temporal grid, in order to resolve most alpine watersheds

and thunderstorms. Fig. 10 illustrates the UML 2 Activity

Diagram representation of the workflow which consists of

8 AFs connected with several control flow constructs, e.g.

parallelForEach, parallelFor and If.

The prototype of our approach is implemented under the

ASKALON Grid environment. The architecture of the proto-

type is shown in Fig. 11. When the ASKALON Grid workflow

composition GUI starts, the ontologies are loaded from a

shared URL and the AFs are extracted and saved in the

memory of the GUI. Then users can search AFs based on free

text or input and output data and construct a Grid workflow.

Fig. 8. The Main Data Classes of the Meteorology Ontologies

Fig. 9. The Main Function Classes of the Meteorology Ontologies

<<Activity>>
InitializeSimulation

<<ParallelForEach>> pForEachCase

<<Activity>>
InitializeSimulationCase

<<ParallelFor>> pForAkmin

<<Activity>>
REVUCompare

<<Activity>>
RAMSInit

<<Activity>>
RAMSMakevfile

<<Activity>>
RAVER

<<Activity>>
RAMSHist

<<Activity>>
REVUDump

else

then

Fig. 10. The MeteoAG Workflow

For each AF put in the workflow, the Workflow Analyzer
analyzes the control flow dependencies and provides a list of

available data sources for this AF. Based on the semantics of

input and output data of AFs, the data flows are established

semi-automatically. For the data ports which have more than

one semantically matching data sources, user interaction is

required. Once the Grid workflow is constructed, the Workflow
Mapper maps the semantic Grid workflow representation to

the corresponding syntactic representation by consulting the

AT repository. When the mapping is done, the syntactic

Grid workflow representation is ready to be submitted to the

ASKALON runtime system for scheduling and execution.

In the prototype, the AT repository runs locally in the same

JVM as the ASKALON Grid workflow composition tool. The

AT repository loads ATs from the local file system and stores

ATs in a hash map by using the functions of ATs as the keys,

in order to quickly find a set of ATs for a given Function. To

share the AT repository among multiple users, we are currently

integrating the AT repository into the ASKALON resource

management service.

Note that the meteorology ontologies represent the knowl-

edge in the meteorology simulation domain, it can also be used

to compose other workflows in the domain. We believe that

our approach can be adapted for other scientific domains by

developing the corresponding ontologies for those domains, as

we demonstrated in the previous sections for the meteorology

simulation domain.

VI. EXPERIMENTAL RESULTS

We conducted three experiments to evaluate our Grid work-

flow composition approach presented in this paper: (i) how

much time it takes to find a requested AF, (ii) how many data

flows in a Grid workflow can be established automatically,

and (iii) how fast a semantic Grid workflow representation

can be mapped to the corresponding syntactic Grid workflow

representation.

The computer used to run the experiments is a normal

desktop computer with 2 GB memory and one 2.4 GHz Intel

Core 2 Duo CPU. The Java runtime environment used is

JRE 1.5.0 13. The Grid workflow application used in the

experiments is MeteoAG (see Section V).

The number of the subclasses of the class Meteorology-
Function defined in the ontologies is 17, which means 17

AFs can be extracted and used for the composition of the Grid

workflow MeteoAG. To evaluate the performance of searching

AFs in the case where there are hundreds AFs available, we

manually duplicate the defined AFs to 200 AFs and check

the performance behavior while the number of AFs increases.

Two curves in Fig. 12 illustrate the execution time of searching

for an AF based on free text and based on input and output

data, respectively. The horizontal axis indicates the number of

available AFs. The vertical axis (in logarithmic scale) shows

the execution time. In case of 200 AFs, searching an AF

based on free text costs a few milliseconds, and searching

AFs based on input or output data costs lightly more than

half a second (673.05 ms). The execution time of searching

AFs based on input and output data is longer because all

given input and output data used for searching have to be

compared with all defined input and output data of AFs. Note

that when the number of the available AFs is 17, the execution

time of searching AFs based on free text and based on input

and output data are 3.32 milliseconds and 45.03 milliseconds,

respectively. We can conclude that the overhead is insignificant

and the workflow composition tool can respond fast enough

to search requests of users.

When AFs are put in a workflow and connected with control

flow, data flow among the AFs can be established based on

the semantics of data ports. Fig. 13 compares the number of

the available data sources for each data port in the workflow

MeteoAG in three cases: the total number of data sources,

denoted by No heuristics, the number of data sources filtered

based on data types of data ports, denoted by Syntax heuristics,

and the number of data sources filtered based on semantics of

data ports, denoted by Semantics heuristics. The horizontal

axis indicates the data ports specified in the workflow, in

the order in which they are available during the workflow

execution. We marked the name of each AF above the plot

point of the first data port of this AF in the figure. Obviously,

if the number of available data sources for a data port is 1,

the data flow of this data port can be established automatically

Internet

Activity Type (AT)
Repository

Semantic Grid Workflow
Representation

Syntactic Grid Workflow
Representation

Activity Functions
(AFs)

Ontologies

3. User interacts with GUI to
construct a Grid workflow

1. Load ontologies

7. Check available ATs

Ontology Loader

Workflow Analyzer

Grid Workflow
Composition GUI

2. Extract AFs

5. find available data sources
for input data ports of AFs

6. Establish data flows

Workflow Mapper

8. Map AFs to ATs

4. Search AFs

Fig. 11. The Architecture of the Prototype

because there is only one option. In case of No heuristics, all

plot points form a specific shape is because the numbers of

data sources for all input data ports of an AF in this case are

always the same since no syntactic or semantic information

of data ports are considered. In case of Syntax heuristics,

most numbers of data sources are larger because many data

ports in the workflow have type agwl:file. In contrast,

the case Semantics heuristics shows that the numbers of data
sources of 40 out of 45 (89%) data ports are 1, i.e. the

corresponding data flow can be established automatically. The

reason that some numbers in case of Semantics heuristics
are still greater than 1 (which are 2 or 3) is as follows.

Both AF InitializeSimulationCase and AF RAMSMakevfile
produce the same kind of output data Soil, thus two data
sources are available for the data ports with data meaning

Soil of the successor AFs (e.g., RAMSInit); AF RAMSInit
produces two RAMSModeledAtmosphere and AF RAMSHist
produces one RAMSModeledAtmosphere, which means three

data sources are available for the data port with data meaning

RAMSModeledAtmosphere of AF REVUDump. See Fig. 10

for these AFs in the MeteoAG workflow. For the data ports

with more than one data sources available, user interaction is

required during the mapping process. This is also the case

where the automatic Grid workflow composition approach

does not work because of the requirement of user interaction.

To map an AF in the workflow to ATs, we compare the

input source data representations of the AF with the input data

 0.1

 1

 10

 100

 1000

 0 50 100 150 200

17

E
xe

cu
tio

n
Ti

m
e

(m
s)

Number of Activity Functions

3.32

45.03

search with free text
search with input and output data

Fig. 12. Execution Time of Searching for AFs Base on Free Text and Base
on Input and Output Data

representations of those ATs in the AT repository associated

with the AF. Fig. 14 illustrates the execution time of mapping

AF RAMSMakevfile (direct match), mapping AF RAMSHist
(indirect match), and mapping the entire workflow MeteoAG.

The vertical axis is shown in logarithmic scale. In case of

direct match, the maximum average execution time is less

than 3 milliseconds. In case of indirect match, the execution

time is 274.50 milliseconds when 200 ATs are associated with

 0

 5

 10

 15

 20

 25

 30

 35

1
2
3

N
um

be
r o

f D
at

a
S

ou
rc

es

Data Ports of Workflow Activities

In
iti

al
iz

eS
im

ul
at

io
n

In
iti

al
iz

eS
im

ul
at

io
nC

as
e

R
A

M
S

M
ak

ev
fil

e

R
A

M
S

In
it

R
E

V
U

C
om

pa
re

R
A

V
E

R R
A

M
S

H
is

t

R
E

V
U

D
um

pNo heuristics
Syntax heuristics

Semantics heuristics

Fig. 13. Comparison of the Numbers of Available Data Sources for Data Ports in the Grid Workflow MeteoAG

the same AF. The execution time of indirect match is longer

because only when all ATs are compared and no direct match

found, do we try to find data conversion ATs. In the case

where 200 ATs are available for each given AF, the execution

time of mapping the entire Grid workflow MeteoAG is 449.70

milliseconds which consist of the execution time of 2 indirect

matches and 6 direct matches. Since MeteoAG consists 8

AFs and two nested level of parallel loops, we can draw the

conclusion that a few seconds are enough to map a moderate

sized Grid workflow application to the corresponding syntactic

representation. Note that the number of AFs specified in the

Grid workflow is not the number of activities to be actually

executed on the Grid which is usually much larger because a

workflow may have parallel loops.

VII. RELATED WORK

Many scientific Grid workflow systems have been developed

in different projects, e.g., Pegasus [1], Taverna [2], Kepler [3],

Triana [4], ICENI [5], etc. However, most of them have

no or very limited domain knowledge support to facilitate

Grid workflow composition. Domain knowledge support is

considered to be an essential part for workflow composition

tools to be easy-to-use for domain users. We limit this section

to selected work with domain knowledge support and compare

them against our approach.

Taverna [2] is a data centric workflow development envi-

ronment in the myGrid project specially developed for the

bioinformatics domain. It supports semantic service discovery

 0.1

 1

 10

 100

 1000

 0 20 40 60 80 100 120 140 160 180 200

E
xe

cu
tio

n
Ti

m
e

(m
s)

Number of Activity Types

Mapping AF RAMSMakevfile (direct match)
Mapping AF RAMSHist (indirect match)

Mapping Workflow MeteoAG

Fig. 14. Execution Time of Mapping AF RAMSMakevfile (direct match),
Mapping AF RAMSHist (indirect match), and Mapping the Entire Grid
Workflow MeteoAG

through the Feta plugin [21]. Feta models the input and output

data of service operations with parameter entities which is

described by the properties semantic type, format, collection-
Type, collectionFormat, etc. Although these properties are sim-

ilar as the properties of DataRepresentation in our approach

(our approach has two additional properties: hasStorageType
and hasArchiveType), we separate data semantic type (or data

meaning) from the rest (which we call DataRepresentation)

so that domain users can compose Grid workflows by only

focusing on semantic types (or data meaning) without deal-

ing with the specific data representations. Furthermore, the

semantic information in our approach is used not only for AF

discovery but also for semi-automatic data flow composition.

Berkley et al. [9] adopted semantic annotations to datasets

and services in Kepler [3] to facilitate workflow authoring.

Compared with our approach, they still present syntax infor-

mation (e.g. data types) to users when composing workflows,

and the semantic annotations are used to verify whether

two connected services (or data sources) are “semantically

compatible” instead of establishing the data flow automat-

ically as we do. Zhang [22] described an ontology-driven

scientific Grid workflow composition approach in Kepler for

hyperspectral image processing applications. He developed a

workflow component ontology and a data type ontology and

plugged them into Kepler. But the mapping from semantic data

types to structural data types [22] is considered inefficient and

unnecessary in his work.

In ICENI [5], Mayer et al. [23] presented a component

description language which features a separation of concerns

between component meaning, behavior and implementation.

While the idea sounds similar to ours, there are big differences

between their approach and our approach. In their approach,

the meaning level, i.e., the highest level of abstraction, con-

cerns data flow, including data types. The behavior level

concerns control flow. No semantic descriptions of data are

used in their approach. In contrast, the three levels in our

approach are semantic, syntactic and concrete levels. And

ontologies are introduced in our approach to enable semantic

Grid workflow composition.

The Workflow Composition Tool (WCT) [8] in the K-

Wf Grid project adopted an automatic workflow composition

based on semantic descriptions of services’ operations. The

algorithm of Input-to-Output comparison is based an concept

Data Template which describes content, format and storage
constraints of data. While data representation in our approach

is inspired by the concept Data Template, unlike WCT, our

approach separates data representation from data meaning in

the workflow language and users focus on data meaning to

compose Grid workflows.

The Model-Based Workflow (MBW) approach [10] gener-

ates abstract workflow representations based on the Workflow-

Driven Ontologies (WDO) [24], which are developed by do-

main scientists and contain knowledge about method consumes

data and produces data and product. While the generated

abstract workflow representations in MBW are same as the

semantic Grid workflow representation presented in this paper,

there is no data representation concept in MBW and it did not

present an approach to map an abstract workflow representa-

tion to the corresponding executable one.

As a part of METEOR-S [25], Cardoso and Sheth [13]

presented a formal description of Web Service Template (ST)

and Web Service Object (SO), and a detailed algorithm to

compute the degree of similarity of ST and SO taking into

account semantic, syntactic and operational information. Their

work is complementary to our approach and their algorithm

can be used to find AFs based on free text or based on input

and output data, and to map AFs to ATs.

The Ontology-driven workflow management system [26]

introduces ontologies into biosequence processing system

to assist workflow composition and optimization. Chen et

al. [27], [28] presented a knowledge-based framework for

semantic service composition. Nadarajan et al. [29] proposed

a semantic-based hybrid workflow composition method within

a three-layered framework. Majithia et al. [30] presented

a framework of automated composition of semantic Grid

services with a dynamic and adaptive mechanism for service

discovery and composition. However, none of them support

separation of data meaning and data representation as we

presented in this paper.

There is also some other work done by the Semantic

Web Service community to semantically describe services

and compose services as workflows. OWL-S [14] is a set

of ontology definitions designed to capture the behavior of

services. The service presents the service profile, a description

of what the service does. The service is described by the

service model, which tell how the service works. Finally,

the service supports the service grounding which specifies

the invocation method for the service. The functionality pro-

vided by the service is specified through hasInput, hasOutput,
hasPrecondition and hasResult of the service profile. OWL-

WS [31] extends OWL-S to support workflow descriptions.

WSDL-S [32] associates semantic annotations with elements

of WSDL documents. However, none of them have the data

representation concept and separate concerns between data

meaning and data representation as we do.

VIII. CONCLUSIONS AND FUTURE WORK

Grid workflow composition is still a complex task for

domain scientists due to a lack of enough domain knowledge

support in existing tools and the diverse structures of scientific

data. This paper presents a novel domain oriented approach

to alleviate this problem by separations of concerns between

data meaning and data representation on the one hand and

between activity function and activity type on the other hand.

With this approach, the effort to manage and compose Grid

workflows is significantly reduced because: (i) users compose

Grid workflows with AFs, which requires domain knowledge

only; (ii) data flows can be established semi-automatically

based on data semantics of data ports; and (iii) data conver-

sions between different data representations of workflow data

are done automatically. We have implemented our approach

as part of the ASKALON Grid application development and

computing environment. Experiments with a real world mete-

orology workflow demonstrate that the overhead of semantic

Grid workflow composition is negligible and about 90% of the

data flows can be established automatically for this application.

For future work, we plan to apply our approach to Grid

workflow applications in other scientific domains to further

improve our approach for Grid workflow composition. We

also plan to enrich our technology with machine learning tech-

niques to optimize data flow composition of Grid workflows.

In addition to data flow composition, automatic control flow

composition of Grid workflows based on semantic descriptions

of activities is also an interesting direction which we are

investigating.

ACKNOWLEDGMENT

We would like to thank our colleagues especially Dr. Max-

imilian Berger and Dr. Stefan Podlipnig for their constructive

discussions and proof readings.

This work is partially funded by the European Union

through the IST-034601 edutain@grid and INFSO-RI-222667

EGEE-III projects.

REFERENCES

[1] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C. Kesselman,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. Katz, “Pegasus: a Framework for Mapping Complex Scientific
Workflows onto Distributed Systems,” Scientific Programming Journal,
vol. 13, no. 2, November 2005.

[2] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood,
T. Carver, K. G. andMatthew R. Pocock, A. Wipat, and P. Li, “Taverna:
A tool for the composition and enactment of bioinformatics workflows,”
Bioinformatics Journal, vol. 20, no. 17, pp. 3045–3054, June 2004.

[3] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock,
“Kepler: An Extensible System for Design and Execution of Scientific
Workflows,” in 16th Intl. Conf. on Scientific and Statistical Database
Management (SSDBM’04). Santorini Island, Greece: IEEE Computer
Society Press, June 21-23, 2004.

[4] I. Taylor, I. Wang, M. Shields, and S. Majithia, “Distributed computing
with Triana on the Grid,” Concurrency and Computation: Practice and
Experience, 2005.

[5] A. Mayer, S. McGough, N. Furmento, J. Cohen, M. Gulamali, L. Young,
A. Afzal, S. Newhouse, J. D. V. Getov, and T. Kielmann, Component
Models and Systems for Grid Applications, ser. CoreGRID series.
Springer, June 2004, vol. 1, ch. ICENI: An Integrated Grid Middleware
to Support e-Science, pp. 109–124.

[6] T. Fahringer, R. Prodan, R. Duan, J. Hofer, F. Nadeem, F. Nerieri,
S. Podlipnig, J. Qin, M. Siddiqui, H.-L. Truong, A. Villazon, and
M. Wieczorek, Workflows for eScience, Scientific Workflows for Grids.
Springer Verlag, 2007, ch. ASKALON: A Development and Grid
Computing Environment for Scientific Workflows.

[7] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao, “Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation,”
in 14th International Conference on Scientific and Statistical Database
Management (SSDBM’02), Edinburgh, Scotland, July 2002.

[8] T. Gubała, D. Harezlak, M. Bubak, and M. Malawski, “Constructing
Abstract Workflows of Applications with Workflow Composition Tool,”
in Proceedings of Cracow Grid Workshop (CGW’06), K-WfGrid - The
Knowledge-based Workflow System for Grid Applications, 2006.

[9] C. Berkley, S. Bowers, M. Jones, B. Ludäscher, M. Schildhauer, and
J. Tao, “Incorporating Semantics in Scientific Workflow Authoring,”
in SSDBM’2005: Proceedings of the 17th international conference on
Scientific and statistical database management. Berkeley, CA, US:
Lawrence Berkeley Laboratory, 2005, pp. 75–78.

[10] L. Salayandia, P. P. da Silva, A. Q. Gates, and A. Rebellon, “A Model-
Based Workflow Approach for Scientific Applications,” in Proceedings
of the 6th OOPSLA Workshop on Domain-Specific Modeling, 2006.

[11] T. Fahringer, J. Qin, and S. Hainzer, “Specification of Grid Workflow
Applications with AGWL: An Abstract Grid Workflow Language,” in
Proceedings of IEEE International Symposium on Cluster Computing
and the Grid 2005 (CCGrid 2005). Cardiff, UK: IEEE Computer
Society Press, May 9-12, 2005.

[12] J. Qin and T. Fahringer, “Advanced Data Flow Support for Scien-
tific Grid Workflow Applications,” in Proceedings of the International
Conference on High Performance Computing, Networking, Storage and
Analysis (SC07). Reno, NV, USA: IEEE Computer Society Press,
November 10-16 2007.

[13] J. Cardoso and A. Sheth, “Semantic E-Workflow Composition,” in
Journal Of Intelligent Information Systems, vol. 21. Hingham, MA,
USA: Kluwer Academic Publishers, 2003, pp. 191–225.

[14] The World Wide Web Consortium (W3C), “OWL-S: Semantic Markup
for Web Services.” [Online]. Available: http://www.w3.org/Submission/
OWL-S/

[15] Y. Gil, Workflows for e-Science – Scientific Workflows for Grids.
Springer Verlag, 2007, ch. Workflow Composition: Semantic Represen-
tations for Flexible Automation.

[16] The Object Management Group (OMG), “UML 2 Activity
Diagram.” [Online]. Available: http://www.omg.org/spec/UML/2.1.2/
Superstructure/PDF/

[17] Protege Team, “Protege-OWL Editor.” [Online]. Available: http:
//protege.stanford.edu/overview/protege-owl.html

[18] Jena Team, “Jena Semantic Web Framework API.” [Online]. Available:
http://jena.sourceforge.net/

[19] F. Schüller, J. Qin, F. Nadeem, R. Prodan, T. Fahringer, and G. Mayr,
“Performance, Scalability and Quality of the Meteorological Grid Work-
flow MeteoAG,” in Proceedings of 2nd Austrian Grid Symposium.
Innsbruck, Austria: OCG Verlag, September 21-23, 2006.

[20] W. R. Cotton, R. A. Pielke, R. L. Walko, G. E. Liston, C. J. Tremback,
H. Jiang, R. L. McAnelly, J. Y. Harrington, M. E. Nicholls, G. G. Carrio,
and J. P. McFadden, “RAMS 2001: Current status and future directions,”
Meteorology and Atmospheric Physics, vol. 82, pp. 5–29, 2003.

[21] P. Lord, P. Alper, C. Wroe, and C. Goble, The Semantic Web: Research
and Applications. Springer, 2005, ch. Feta: A Light-Weight Architecture
for User Oriented Semantic Service Discovery, pp. 17–31.

[22] J. Zhang, “Ontology-Driven Composition and Validation of Scientific
Grid Workflows in Kepler: a Case Study of Hyperspectral Image
Processing,” in Proceedings of 5th International Conference on Grid
and Cooperative Computing Workshops, 2006.

[23] A. Mayer, S. McGough, M. Gulamali, L. Young, J. Stanton, S. New-
house, and J. Darlington, “Meaning and Behaviour in Grid Oriented
Components,” in GRID ’02: Proceedings of the Third International
Workshop on Grid Computing. London, UK: Springer-Verlag, 2002,
pp. 100–111.

[24] L. Salayandia, P. P. da Silva, A. Q. Gates, and F. Salcedo, “Workflow-
Driven Ontologies: An Earth Sciences Case Study,” in Proceedings of
Second IEEE International Conference on e-Science and Grid Comput-
ing (e-Science’06), vol. 0. Los Alamitos, CA, USA: IEEE Computer
Society, 2006, p. 17.

[25] METEOR-S Team, “METEOR-S: Semantic Web Services and
Processes.” [Online]. Available: http://lsdis.cs.uga.edu/projects/meteor-s/

[26] M. Lemos, M. A. Casanova, L. F. B. Seibel, J. A. F. de Macedo,
and A. B. de Miranda, “Ontology-Driven Workflow Management for
Biosequence Processing Systems,” in Proceedings of 15th International
Conference Database and Expert Systems Applications (DEXA 2004),
vol. 3180/2004. Zaragoza, Spain: Springer, August 30-September 3
2004, pp. 781–790.

[27] L. Chen, N. Shadbolt, C. Goble, F. Tao, S. Cox, C. Puleston, and
P. Smart, “Towards a Knowledge-based Approach to Semantic Service
Composition,” in Proc. of the 2nd International Semantic Web Confer-
ence (ISWC2003), Florida, USA, 2003, pp. 319–334.

[28] L. Chen, N. R. Shadbolt, F. Tao, C. Goble, C. Puleston, and S. J.
Cox, “Semantics-Assisted Problem Solving on the Semantic Grid,”
Computational Intelligence, vol. 21, pp. 157–176, 2005.

[29] G. Nadarajan, Y.-H. Chen-Burger, and J. Malone, “Semantic-Based
Workflow Composition for Video Processing in the Grid,” in Proceed-
ings of the 2006 IEEE/WIC/ACM International Conference on Web
Intelligence, Hong Kong, China, December 12-18 2006.

[30] S. Majithia, D. W.Walker, and W.A.Gray, “Automated Composition of
Semantic Grid Services,” in Proceedings of the UK e-Science All Hands
Meeting 2004, S.J.Cox, Ed., Nottingham, UK, August 31st - September
3rd 2004.

[31] S. Beco, B. Cantalupo, L. Giammarino, N. Matskanis, and M. Surridge,
“OWL-WS: A Workflow Ontology for Dynamic Grid Service
Composition,” in 1st IEEE International Conference on e-Science and
Grid Computing. IEEE Computer Society, December 5–8 2005, pp.
148–155. [Online]. Available: http://eprints.ecs.soton.ac.uk/12773/

[32] The World Wide Web Consortium (W3C), “Web Service Semantics
- WSDL-S.” [Online]. Available: http://www.w3.org/Submission/
WSDL-S/

