UML BASED GRID WORKFLOW
MODELING UNDER ASKALON*

Jun Qin', Thomas Fahringer', and Sabri Pllana?

L Institute of Computer Science, University of Innsbruck
Technikerstr. 21a, 6020 Innsbruck, Austria

{Jun.Qin, Thomas.Fahringer}@uibk.ac.at

2 Institute of Scientific Computing, University of Vienna
Nordbergstr. 15/C308, 1090 Vienna, Austria

pllana@par.univie.ac.at

Abstract Most existing Grid workflow modeling tools are based on user-defined
notations. Lack of standards hinders the collaboration among different
Grid-related projects. The work presented in this paper introduces a
graphical workflow editor Teuta, which has been implemented based on
the latest standard UML 2.0 notations and tailored for specifying Grid
workflows based on our Abstract Grid Workflow Language (AGWL).
In Teuta, Grid workflows are composed by combining predefined UML
modeling elements or user-defined constructs in a hierarchical fashion.
Teuta can generates the corresponding AGWL representations and sub-
mit them to the ASKALON Grid runtime system for execution. We
validate our approach for a real world hydrological application.

Keywords: Grid, workflow modeling, UML, ASKALON, AGWL

1. Introduction

In the recent years, significant research efforts have been involved in
the development of tools support for Grid workflow modeling. Compa-
red with textual-based modeling, graph-based modeling allows users to
graphically define a Grid workflow through dragging and dropping the
modeling elements of interest. However, most of the graph-based Grid
workflow modeling tools are based on user-defined notations, which hin-

*This research has been partially supported by the Austrian Science Fund as part of the
Aurora project under the contract SFBF1104 and the Austrian Federal Ministry for Edu-
cation, Science and Culture as part of the Austrian Grid project under the contract GZ
4003,/2-V1/4c/2004.

192 Qin, Fahringer, Pllana

ders the collaboration among different Grid-related projects. Much re-
mains to be done to streamline the task of Grid workflow modeling.

In this paper we present our graphical modeling tool Teuta. Compa-
red with our previous work [Pllana et al., 2004], we have customized
Teuta for the specification of scientific Grid workflows based on our Ab-
stract Grid Workflow Language (AGWL) [Fahringer et al., 2005b], and
integrated it with the ASKALON Grid environment [Fahringer et al.,
2005a]. In Teuta, Grid workflows are composed based on the Unified
Modeling Language (UML) 2.0 standard. Furthermore, in order to al-
leviate the complexity of composing large and complex Grid workflows,
Teuta supports hierarchical workflow composition. This enables a simple
view of the workflow being maintained at each level of abstraction. Teuta
has been used as the main user interface to ASKALON, and applied to
numerous real world applications.

The remainder of this paper is organized as follows. The related work
is described and compared against our approach in the next section. Sec-
tion 3 provides some background knowledge. Section 4 briefly describes
our approach of UML based Grid workflow modeling. Our tool Teuta for
modeling Grid workflow applications is introduced in Section 5. Section
6 applies Teuta for a real world application to evaluate our approach. In
the last section, we draw our conclusions and outline the future work.

2. Related Work

GridFlow [Cao et al., 2003] uses Petri Nets to model Grid workflow.
Fraunhofer Resource Grid (FhRG) [Hoheisel, 2004, which uses a hier-
archical graph definition to model Grid workflows, is also built on Petri
Nets. However, Petri Nets may be unable to model workflow activities
accurately without extending its semantics [Eshuis and Wieringa, 2003].
And this drawback has been addressed in UML activity diagrams. The
work presented in [Bastos et al., 2002] uses UML activity diagrams
to model Grid workflows. However, the UML they used is UML1.x, in
which the activity diagrams had several serious limitations in the types
of flows that could be represented. Many of these limitations were due
to the fact that activities were overlaid on top of the basic state machine
formalism, and consequently constrained to the semantics of state ma-
chines [Bran Selic, 2005]. Rather than following the standard syntax and
semantics of Petri Nets and UML, many Grid workflow editor tools crea-
te their own graphical representation of workflow components [Yu and
Buyya, 2005], e.g. Triana [Taylor et al., 2005] and Kepler [Altintas et al.,
2004]. However, lack of standards hinders the collaboration among diffe-

UML Based Grid Workflow Modeling under ASKALON 193

rent Grid-related projects. Much work is thus replicated such as different
user interfaces developed by different projects for the same functionality.

In a word, most of existing work suffers from one or several of the
following drawbacks: the use of self-defined notations, the use of old
UML 1.x activity diagrams, or no adequate tool support. In contrast,
we use the latest standard UML 2.0 activity diagram in Teuta to model
Grid workflow applications. Teuta can model graphically any Grid work-
flow application that can be expressed textually using AGWL [Fahringer
et al., 2005b]. Moreover, Teuta has been integrated with the ASKALON
Grid environment as a user interface for Grid workflow composition,
submission, controlling and monitoring.

3. Background
3.1 Abstract Grid Workflow Language (AGWL)

AGWL [Fahringer et al., 2005b] is an XML-based language for descri-
bing Grid workflow applications at a high level of abstraction. AGWL
allows a programmer to define a graph of activities that refer to compu-
tational tasks or user interactions. Activities are connected by control
and data flow links.

In AGWL, activities are described by activity types. An activity ty-
pe is an abstract description of a group of activity instances deployed
in the Grid which have the same input and output data structures.
Activity types shield the implementation details of activity instances
from the AGWL programmer. A rich set of control flow constructs is
provided in AGWL to simplify the specification of Grid workflow appli-
cations, for example, Sequence, If, Switch, While, For, ForEach, DAG,
Parallel, ParallelFor and ParallelForEach. AGWL also supports
sub-workflows. Properties and constraints can be defined in AGWL to
provide additional information for a workflow runtime environment to
optimize and steer the execution of workflow applications.

3.2 UML Activity Diagrams

The UML Activity Diagram is one of the 13 UML diagrams of the
UML 2.0 specification and it is used for flow modeling of various types
of systems independently from their implementation (software or hard-
ware). Hierarchical modeling capabilities of the UML Activity Diagram
support modeling at arbitrary levels of detail and complexity. An ac-
tivity is a flow graph, which consists of a set of nodes interconnected
by directed edges. There are three types of nodes: action nodes, control
nodes, and object nodes. Action nodes are basic units of the behavior

194 Qin, Fahringer, Pllana

CH e ® & o

(2) (b) (©) (d (e)
Action/Activity InitialNode FlowFinal ActivityFinal Object Flow

R o e e

(@ (h) Q] ()]
DecisionNode ~ MergeNode ForkNode JoinNode Control Flow

Figure 1. A subset of modeling elements of UML Activity Diagram

specification (see Figure 1(a)). Actions may contain pins, which repre-
sent input and output. Control nodes steer the control and data along
the flow graph (see Figure 1(b,c,d,f,g,h,i)). Object nodes contain the da-
ta that flows through the graph. An edge of a UML Activity Diagram
indicates either a control flow or an object flow. A control flow edge
specifies the precedence relationship between two interconnected nodes
(see Figure 1(j)). An object flow edge specifies the flow of objects along
interconnected action nodes (see Figure 1(e)).

4. Modeling Grid Workflows with UML Activity
Diagram

A Grid workflow W is a pair (A, D), where A is a finite set of activities
and D is a finite set of activity dependencies. Every activity dependency
d;, d; € D, is associated with an ordered pair of activities (an,, a,), where
am € AN a, € A. An activity diagram (2 is a pair (N, E), where N is a
finite set of nodes and FE is a finite set of directed edges. Every directed
edge is an ordered pair of nodes (ng, n;), where n, € N Anj; € N.
The relationship between a Grid workflow ¥ = (A, D) and an activity
diagram Q = (N, E) is defined by relations R’ = {(a;,n;) | for all 4, a; €
AAn; € N} and R" = {(dj,e;) | for all j, d; € DAej € E}. This means
that each activity a; of a Grid workflow is associated with a node n; of
a UML Activity Diagram, and each dependency d; of a Grid workflow
is associated with an edge e; of a UML Activity Diagram.

In order to be able to model different types of systems, the UML spe-
cification provides several extension mechanisms to specialize semantics
of modeling elements for a particular domain. Based on these mecha-
nisms, we have extended the UML Activity Diagram by defining some
new stereotypes with associated tagged values based on existing elements
to model AGWL constructs (see Table 1). Figure 2 depicts an instance
of the procedure, where we defined a model element GridAction by ste-
reotyping the base class Action to model Grid workflow activities. The
tagged value type specifies the activity type (e.g., Fast Fourier Transform

UML Based Grid Workflow Modeling under ASKALON

195

Table 1. Extending the UML Activity Diagram to model AGWL constructs
Base class Stereotype & Description
Tags
<GridAction> Indicates that the Action represents
Action type: string a fundmental computation unit in
the Grid
Indicates that the SequenceNode
SequenceNode <Sequence> represents a group of Grid acti-
ons/activities that are executed se-
quentially
<If> Indicates that the ConditionalNode
" condition: boolean | represents a conditional execution of
ConditionalNode Grid actions/activities in the if-then-
else fashion
<Switch> Indicates that the ConditionalNode
ConditionalNode caseValue: integer rep_resent's a cono‘lit'i(?nal_ executiog of
Grid actions/activities in the switch
fashion
<Whilex> Indicates that the LoopNode repres-
LoopNode loopCondition: ents a while loop. The loop body is
boolean executed zero or more times.
<For> Indicates that the LoopNode repres-
LoopNode from, to, step: ents a for loop.
integer
Indicates that the ExpansionRegion
ExpansionRegion <ForEachs represents a loop that it.erates over
elements of a data collection sequen-
tially
Indicates that the StructuredActivi-
tyNode represents a group of Grid ac-
StructuredActivityNode | «DAG> tions/activities that are executed ba-
sed on the order specified in the di-
rected acyclic graph
Indicates that the StructuredActivi-
StructuredActivityNode | «Parallel> tyNode rep ‘re.sents a group of Grid ae
tions/activities that are executed in
parallel
<ParallelFor> Indicates that the LoopNode repres-
LoopNode from, to, step: ents a for loop whose iterations are
integer executed in parallel
Indicates that the ExpansionRegion
ExpansionRegion <ParallelForEach> represents a loop that 1t§rat¢?s over
elements of a data collection in par-
allel
Indicates that the StructuredActivi-
StructuredActivityNode | <«SubWorkflow tyNode represents a sub workflow

that is invoked at a point of the main
workflow

196 Qin, Fahringer, Pllana
«metaclass» «stereotype» «GridAction»
Action [GridAction SampleAction
Tags {type = FFT}
type: string

(a) Definition (b) Usage

Figure 2. The definition and usage of the stereotype GridAction
«GridAction»
WasimA
«GridAction» «GridAction»
WasimB WasimC

Figure 3. Modeling data flows

«GridAction»
GridAction_1

«GridAction»
GridAction_2

«While»

While_1

«ParallelFor» (c) SubWorkflow body
ParallelFor_1

-
- . «GridAction»
(a) While loop (b) Loop body of While GridAction 3

(d) Loop body of ParallelFor

Figure 4. Modeling Grid workflow hierarchies

(FFT)), which is an abstract description of a group of activity instances
(concrete implementations of computational entities) implementing the
same functionality and having the same input and output data structure.

We use the object flow in UML Activity Diagrams to model the data
flow in Grid workflows and pins to model input and output data ports,
namely, dataln and dataOut. Connecting one dataOut port of an activi-
ty to one dataln port of another activity constitutes a data flow. Figure 3
illustrates three data flows. The output file filel of the GridAction Wa-
simA and the output file file2 and the number n of GridAction WasimB
serves as the input of the GridAction WasimC.

Graphical representations of Grid workflows are very intuitive and can
be handled easily even by a non-expert user. However, the layout of work-

UML Based Grid Workflow Modeling under ASKALON 197

flow components on a display screen can become very large and beyond
the users control. Similar to [Hoheisel, 2004], our solution is to use hier-
archical graph definition. A Grid workflow can be composed through
several levels of abstraction, each of which is represented in a separa-
te graph. All AGWL control flow constructs like While, ParallelFor,
SubWorkflow, etc. can have lower level workflow graphs. Figure 4 shows
three levels of abstraction of a Grid workflow which are represented in
four graphs. The workflow contains a while loop While_! in the hig-
hest level (Figure 4(a)). The While_1 loop contains two control flow
constructs in its loop body: SubWorkflow-1 and ParallelFor-1 (Figu-
re 4(b)). The SubWorkflow SubWorkflow_1 is represented in detail in
Figure 4(c), which contains two GridActions: GridAction-1 and Gri-
dAction_2. The parallel loop ParallelFor_1 contains a GridAction Gri-
dAction_3 in its loop body (Figure 4(d)). With the hierarchical graphical
definition, users can easily view and evaluate the structure of the entire
workflow or change the local part (e.g. a loop body) without being aware
of the details and complexity of other parts of the Grid workflow.

By AGWL constructs subWorkflow, the hierarchical graph definition
directly supports the sub-workflow definition and invocation. The main
workflow (caller) provides input data to sub-workflow and gets output
data from it. The input data is processed in sub-workflow (callee). The
sub-workflow can be saved and reused.

5. Teuta

Teuta is implemented as a platform independent tool in Java ba-
sed on Model-View-Controller (MVC) paradigm. Teuta comprises three
main components: Graphical User Interface (GUI), Model Traverser, and
Model Checker. The Model Traverser provides the possibility to walk
through the model, visit each modeling element, and access its proper-
ties. We use the model traverser for the generation of various model re-
presentations, e.g. an AGWL representation of a Grid workflow, which
serves as the input for the ASKALON Grid environment. The Model
Checker is responsible for the correctness of the model. Teuta serves
for ASKALON as a user interface for workflow composition, submission,
controlling and monitoring.

Figure 5 illustrates a Grid workflow model in Teuta which consists of
several diagrams. One of the diagrams is main diagram, which can be
compared to the main method in Java/C++ programs, the others are
sub-diagrams, e.g. the loop body of the parallel loop parallelFori. These
diagrams constitute the hierarchy of the Grid workflow. As shown in
Figure 5, the activity types, dataln ports, dataOut ports and AGWL

198 Qin, Fahringer, Pllana

File Edt Wiew Insert Format Run Resources Tools Help

s B @ % Hhohw & 4 4 9 ¢ ¥ o 8 @ <€
® o @
O main | O lnopbordy | O loophody | O lanpbody | Inwmod |~
o[- man
. 4 InitialNode_1
E T (@) ActivityFinaliode_1
_Act.lwtyType - Findgest
invm:CalcParams 50 paralleFort
4 ==GridAction== N :_ E-(O loopbody
CalcParams e r CalcParams O3 Wasimé
- A | Settings for CalcParams. L= i
] - parallelForz
Activity | Dataln Parts | DataOut Ports ', ,’ &, § B e eted
Activity Type: i =) WasimB 1
L WasimB2C
4 i Lol ControlFlow_7
ik or.Calchara o L O3 WasimD
Hame Yalue & S cContralFlow_S
o5 Linus 1 Tl 7] ControlFlow_6
<<GridAction== | o t mf' 5
= = ‘ankrolFlow il
EindHest o il {7 ControlFlow_3 L]
Constraints & . 7
os=Linux Tres Viow f Search [Bookmals |
Name CalcParams [~
| Labei 14
<] »| || ElumL 2.0 =

Selected element: CalcParams

Figure 5. A Grid workflow model and the activity setting dialog in Teuta

properties and constraints can be added through the setting dialog for
each modeling element. By specifying the source attributes of the data
ports, users can create data flows. The corresponding AGWL representa-
tion of the Grid workflow can be generated automatically via the Model
Traverser component.

6. Modeling a Real World Hydrological
Workflow with Teuta

Invmod [Peter Rutschmann Dieter Theiner, 2005] is a hydrological
application for river modeling. It has three levels of nested loops with
variable number of inner loop iterations that depends on the actual con-
vergence of the optimization process. Figure 6 illustrates the graphical
representation of the Invmod Grid workflow application in Teuta. Since
we adopt the hierarchical graph definition mechanism, the Invmod work-
flow looks very simple and can be easily understood: only one parallel
loop parallelForl and two atomic activities CalcParams and FindBest
are shown in the main diagram of the workflow, because all the other
activities are contained in the loop body of the while loop.

The code generation, implemented based on the Model Traverser, is
done in the following steps: (1) put the activities in the main diagram
into the object AGWLWorkflow as the workflow body; (2) put the acti-

UML Based Grid Workflow Modeling under ASKALON 199

. Enviranment -

File Edit Wiew Insert Format Resources Tools Help

aazzzzw.qsmedu'e--‘ 4 44 2 ¢Xmb W ¢
(]

e @ Terminate

O main | O loopbody | O laophoy Suspand Inwmad =
(=3 main
@ Initialhiod=_t
(@) nctivieyFinalode_1
{0 FindBest
-3 parallelForl
=50
) Wasimi
(2 whileLoop
i B loopbody
=2 paralieFor
E-O loopbady
t) WasimB1
b easimB2C
i Lol ControlFlow_7
f D WasimD
L[ControlFlow_S
L[ControlFlow_6
O CalcParams
{7 controlFlow_z

{7 ContralFlow_3
0 a

Tres Wiew | Search [Bookmarks

Resume

. Monitor...,

] Undocked: ... E\EHE|

=<GridAction==
WasimA
==Whilg=>
whileLoop
<=<GridAction==
WasimD

a

Figure 6. UML based graphical representation of the Invmod Grid workflow

vities in the other diagrams into the associated parent control flow con-
structs like the parallel loop parallelForl; (3) invoke the toXml() method
of the object AGWLWorkflow to generate the corresponding AGWL re-
presentation in XML. The workflow then is executed by the ASKALON
enactment engine service, which takes the AGWL representation of the
workflow and executes it based on the execution schedule made by the
ASKALON meta-scheduler service. While the workflow is being execu-
ted, the enactment engine returns the execution status (represented by
different background colors of activities) to Teuta for monitoring.

7. Conclusions and Future Work

There is a need for streamlining the process of Grid workflow mode-
ling. We have tailored our graphical editor Teuta for the composition
of Grid workflows based on the widely adopted standard UML 2.0. We
have demonstrated our approach for a real world hydrological applicati-
on, and showed that thanks to the hierarchical workflow composition a
simple view of the workflow is maintained at each level of abstraction.

To further simplifying the specification of Grid workflows, our future
work will focus on improving data flows modeling, e.g. to automatically
fill the source attributes of data ports based on the model checking. We
will also evaluate Teuta for large and complex Grid workflow applications
in the future work.

200 Qin, Fahringer, Pllana

References

[Altintas et al., 2004] Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludischer, B.,
and Mock, S. (2004). Kepler: An Extensible System for Design and Execution
of Scientific Workflows. In 16th Intl. Conf. on Scientific and Statistical Databa-
se Management (SSDBM’04), Santorini Island, Greece. IEEE Computer Society
Press.

[Bastos et al., 2002] Bastos, R., Dubugras, D., and Ruiz, A. (2002). Extending UML
Activity Diagram for Workflow Modeling in Production Systems. In Proceedings
of 85th Annual Hawaii International Conference on System Sciences (HICSS02),
Big Island, Hawaii. IEEE Computer Society Press.

[Bran Selic, 2005] Bran Selic (2005). What’s New in UML 2.0. ftp://ftp.software.
ibm.com/software/rational/web/whitepapers/intro2uml2.pdf.

[Cao et al., 2003] Cao, J., Jarvis, S., Saini, S., and Nudd, G. (2003). GridFlow: Work-
flow Management for Grid Computing. In 8rd IEEE/ACM International Sympo-
stum on Cluster Computing and the Grid (CCGrid 2003), Tokyo, Japan. IEEE
Computer Society Press.

[Eshuis and Wieringa, 2003] Eshuis, R. and Wieringa, R. (2003). Comparing Petri
Net and Activity Diagram Variants for Workflow Modelling A Quest for Reactive
Petri Nets. In Advances in Petri Nets: Petri Net Technology for Communication
Based Systems; Lecture Notes in Computer Science (LNCS), volume 2472, pages
321-351, Heidelberg, Germany.

[Fahringer et al., 2005a] Fahringer, T., Prodan, R., Duan, R., Nerieri, F., Podlipnig,
S., Qin, J., Siddiqui, M., Truong, H.-L., Villazon, A., and Wieczorek, M. (2005a).
ASKALON: A Grid Application Development and Computing Environment. In
6th International Workshop on Grid Computing (Grid 2005), Seattle, USA. IEEE
Computer Society Press.

[Fahringer et al., 2005b] Fahringer, T., Qin, J., and Hainzer, S. (2005b). Specification
of Grid Workflow Applications with AGWL: An Abstract Grid Workflow Language.
In Proceedings of IEEE International Symposium on Cluster Computing and the
Grid 2005 (CCGrid 2005), Cardiff, UK. IEEE Computer Society Press.

[Hoheisel, 2004] Hoheisel, A. (2004). User Tools and Languages for Graph-based Grid
Workflows. In Grid Workflow Workshop, GGF10, Berlin, Germany.

[Peter Rutschmann Dieter Theiner, 2005] Peter Rutschmann Dieter Theiner (2005).
An Inverse Modelling Approach for the Estimation of Hydrological Model Para-
meters. Journal of Hydroinformatics.

[Pllana et al., 2004] Pllana, S., Fahringer, T., Testori, J., Benkner, S., and Brandic,
I. (2004). Towards an UML Based Graphical Representation of Grid Workflow

Applications. In The 2nd European Across Grids Conference, Nicosia, Cyprus.
ACM Press.

[Taylor et al., 2005] Taylor, I., Wang, I., Shields, M., and Majithia, S. (2005). Distri-
buted computing with Triana on the Grid. Concurrency and Computation: Practice
and Fxperience.

[Yu and Buyya, 2005] Yu, J. and Buyya, R. (2005). A Taxonomy of Workflow Mana-
gement Systems for Grid Computing. Technical Report Technical Report GRIDS-
TR~2005-1, Grid Computing and Distributed Systems Laboratory, University of
Melbourne, Australia. http://www.cis.uab.edu/gray/Pubs/grid-flow.pdf.

