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Abstract—Accelerator clusters are an ongoing trend in high
performance computing, continuously gaining traction and form-
ing a ubiquitous hardware resource for domain scientists to run
large-scale simulations on. However, there is often a gap between
new hardware technologies and adoption by legacy code bases.
Porting real-world applications to new programming models is a
difficult undertaking, aggravated by the need for support for both
distributed-memory and accelerator parallelism. In this work, we
present a case study of porting CRONOS, a real-world code from
the field of magnetohydrodynamics, to Celerity, a high-level pro-
gramming model for distributed-memory accelerator clusters. We
discuss the numerical, algorithmic and implementation properties
of the application and motivate our decisions for adapting them
where necessary. Preliminary results show a parallel efficiency
of up to 87% for 16 GPUs.

Index Terms—accelerators, gpus, sycl, celerity, distributed
memory, parallel programming

I. INTRODUCTION

High performance computing (HPC) is a branch of science
that connects communities from computer science and the
domain sciences. The work of researchers and engineers,
who develop hardware and software stacks—usually aimed
at offering the maximum performance possible—is employed
by scientists in the domain sciences in order to advance their
own field of research and compute solutions to problems of
ever-increasing complexity.

Application software is typically developed by domain
scientists, who are naturally not experts in the field of com-
puter science. However, contemporary HPC architectures are
increasingly complex systems, with multiple nodes, sockets,
cores, or on- and off-chip interconnects, all of which need to
be mastered in order to obtain maximum performance. Fur-
thermore, HPC is fast-evolving. Many programming language
and model standards are updated at least every few years and
hardware platforms offer a continuously increasing plethora of
new features and performance characteristics at a similar pace.
New hardware technologies include extended instruction sets,
continuously increasing core counts or improved interconnects
on all levels of HPC hardware. Specifically, accelerator tech-
nologies are a good example for such technologies, showing a
comparatively high adoption rate and increasing market share

in HPC. The Top500 list [1] of the fastest supercomputers
shows that the number of systems equipped with accelerators
or co-processors increased by 71% between November 2016
and November 2020, with a current share of 147 systems.

The fact that two paradigms—distributed memory paral-
lelism and accelerator computing—have established them-
selves in HPC makes application development a tedious and
error-prone process. While programming models for both
exist, e.g. MPI and CUDA, naively combining them to a
programming paradigm often referred to as MPI+X has several
drawbacks, including the application developer’s responsibility
for efficient domain decomposition—a key factor for perfor-
mance in distributed-memory parallelism. There are several
endeavors that aim at mitigating this issue, including Celer-
ity [2], a SYCL-based high-level distributed-memory acceler-
ator programming model that aims at automatic distributed-
memory parallelism.

In this work, we present a case study of CRONOS [3], a large
magnetohydrodynamics application originally implemented
using MPI only, which we port to Celerity. Specifically, our
contributions are

• a partial Celerity implementation of CRONOS,
• detailed discussion of the algorithm and implementation

considerations and changes necessary when porting such
applications to SYCL and Celerity, and

• performance analysis of our implementation.

The paper is structured as follows: Section II details on
SYCL and Celerity, focusing on the features and characteris-
tics pertinent to our work. Section III presents our use case
application, CRONOS. Our requirements, considerations and
experiences are described in Section IV, whereas Section V
discusses our performance results. Finally, Section VI provides
our conclusion and outlook to future work.

II. SYCL AND CELERITY

In this section, we will briefly describe the key characteris-
tics of our chosen programming model and the motivation for
our decision.



A. Accelerator Programming Models

There are several programming languages and models to
choose from when working with accelerators and various ways
of classifying them. First, there is the distinction of open or
vendor-specific models. CUDA for example is very popular
and established in the HPC community, but it lacks support
for devices from vendors other than Nvidia. On the other hand,
one can categorize these accelerator-enabling technologies by
their nature, i.e. whether they are new programming languages
such as Chapel [4], programming language extensions such as
OpenMP [5], or rather libraries that are fully embedded in a
host language such as SYCL [6]. They all vary in their usage
and parallelism feature support (e.g. accelerators, automatic
data decomposition and distribution, fault tolerance) and often
offer a difficult trade-off when facing the task of implementing
completely new applications.

However, when porting legacy applications, one can make
the case for focusing on a specific subset of these programming
models. Specifically, the new programming model should have
strong debugging support due to the already inherently tedious
task of working with large legacy code bases. As we will
outline below, this leads us to believe that Celerity [2], a
SYCL-based high-level distributed-memory parallel program-
ming model, is a good candidate.

SYCL is an open industry standard for programming both
CPUs and accelerators using modern, single-source, high-level
C++. Its API can be regarded as an embedded domain-specific
language and offers the capability of specifying callable ob-
jects in C++ that are executed as kernels on compute devices.
SYCL offers several operators such as parallel_for that
resemble frequently-used parallelism patterns. Being single-
source, C++-based, and vendor-inspecific, SYCL has strong
advantages over competitor models such as OpenCL or
CUDA, by facilitating implementations with debugging sup-
port. Given that the application developer is working with pure
C++, SYCL code can be easily executed on CPUs, giving
access to a plethora of existing debugging and analysis tools.
As we will describe in Section IV, this facilitates porting
legacy applications—in contrast to parallel programming mod-
els based on extensions or completely new languages, which
require explicit toolchain support.

B. Distributed Accelerator Programming

One disadvantage of SYCL is its lack of support for
distributed memory systems. In order to fully use e.g. a cluster
consisting of several nodes equipped with GPUs, SYCL still
requires a second programming model such as MPI to take
care of inter-node communication (intra-node communication
between host and device memory are handled by SYCL).
This MPI+X programming paradigm is frequently used in
the community but has several drawbacks. First, it requires
the developer to master two distinct programming models
as well as their potentially complex interaction in terms
of both functionality and performance. Second, it shifts the
burden of writing efficient code to the application developer,
since the performance and scalability of many large-scale
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Fig. 1: Simulation of the stellar and pulsar wind interaction in
the gamma-ray binary LS 5039 performed using CRONOS [7].

distributed memory applications is largely driven by efficient
domain decomposition, which neither MPI nor SYCL handle
automatically.

A possible solution to this approach is Celerity, a program-
ming model based on SYCL, developed and maintained by the
University of Innsbruck and the University of Salerno. Celerity
attempts to reduce the aforementioned developer responsibil-
ities by enabling automatic work- and data decomposition
and distribution for a large subset of parallel applications.
Furthermore, one of the design goals of Celerity is an API that
closely resembles SYCL in order to minimize any adoption
barriers. As a result, Celerity applications look very similar
to SYCL applications [2], with the most substantial change
being the addition of so-called range mappers. These range
mappers, to be specified by the user, are the means by which
Celerity accomplishes automatic data decomposition. They
specify the spatial range of access, whether for input or output
data, for every work item (i.e. spatial point of computation).
Implementation-wise, they are callable C++ objects that take
a chunk (a range of work item IDs) and return the computed
data access range. Celerity provides several pre-defined range
mappers that fit commonly-used programming patterns such
as linear algebra or structured grid methods.

III. CRONOS

The CRONOS code is a magnetohydrodynamics (MHD)
code developed for the solution of plasma-dynamical problems
in astrophysics and space science. The details of the code can
be found in [3]. The code solves hyperbolic conservations laws
of the form

∂w

∂t
+∇ · F (w, r, t) = s (1)

where w is a density of a conserved quantity and F is the
related hyperbolic flux.

A. Physical Simulations Using Cronos

Currently, CRONOS contains three different systems of
hyperbolic partial-differential equations (PDEs): classical hy-
drodynamics (HD) or MHD and relativistic hydrodynamics
(RHD).



Using HD as an example, CRONOS solves the following
system of PDEs

∂n

∂t
+∇ · (nu) = 0 (2)

∂ (mnu)

∂t
+∇ · (mnuu) +∇p = f (3)

∂e

∂t
+∇ · ((e+ p)u) = u · f , (4)

where n denotes the number density of the gas particles, m
their average mass, u the velocity of the flow, p its thermal
pressure, and e the total energy density comprised of thermal
and kinetic energy density. Additionally, we allow for an
external force density f that can either be a result of the
considered geometry or can be supplied by the user to consider
additional physics. Also in case of MHD or RHD the equations
show the same fundamental form.

This means that CRONOS was developed to model (mag-
netized) fluids both in a classical and a relativistic framework
with astrophysical applications in mind. In this context, the
formation and evolution of shocks or turbulence is often of
central interest. In order to be able to correctly describe their
dynamics in the modelled fluids, CRONOS employs a finite-
volume scheme to solve the respective equations. Therefore,
the code is particularly efficient and stable for high-Mach-
number flows, whereas a finite-difference code would be more
efficient in the low-Mach-number regime. As required by
the first scientific applications, high-Mach-number turbulence
needs to be reliably modelled using CRONOS. These appli-
cations include investigations of turbulence in the interstellar
medium [8] or in accretions disks [9].

Recently, applications of CRONOS focus on the evolution
and interaction of highly supersonic winds. These applications
either relate to the Sun [10], [11] or to massive stellar binary
systems [12], for which the code was extended by using a
number of passive tracer-fields to account for the transport of
energetic particles [13], [14].

In the latter cases, we aim to model the gamma-ray emission
from colliding-wind binary systems [15] and from so-called
gamma-ray binaries [7], such as depicted in Fig. 1. For this,
we model the dynamics of the winds launched by both com-
panions, which eventually collide and form a so-called wind-
collision region (WCR), either using MHD for the case of
colliding-wind binaries or using RHD in gamma-ray binaries.
At the shock-fronts enclosing the wind-collision region, we
additionally inject energetic particles, for which an additional
transport equation is solved. In particular, advection of the
energetic particles with the fluid can readily be treated using
the standard solution methods in CRONOS.

Especially for such binary systems, it is necessary to take
a large computational domain into account. Extents that span
over several times of the orbital separation are usually required
to correctly describe the acceleration of the massive winds
and/or their interaction leading to the formation of the WCR.

Within the WCR, the colliding winds are separated by a
contact discontinuity. Since both winds are supersonic but

reach different speeds at the collision, one is left with a
very high velocity shear at the contact discontinuity. Even
in the relativistic case, this leads to an efficient growth of
Kelvin-Helmholtz instabilities at this location, which triggers
the development of turbulence in the system. Since the scales
on which these instabilities can grow are usually much smaller
than the stellar separation, our simulations require high spatial
resolutions to cover both the dynamics of the system and the
evolving turbulence.

In particular, the simulation of gamma-ray binaries require
very large spatial resolutions and simulation boxes together
with a small time step.

B. Brief Overview of the Numerical Solver

To solve the hyperbolic system, CRONOS uses a finite-
volume scheme based on the ideas introduced by Go-
dunov [16]: when integrating a system as given by Eq. (1)
over the volume of given cell, one can show that the cell
average w̄, i.e. the value of w averaged over the cell, depends
on the integral of the flux function F over the cell-surface. An
advancement in time can thus be achieved by first obtaining a
suitable estimation of the respective flux averages. For this,
Godunov assumed in his original work that w is constant
within each cell, which leads to jumps in the considered
quantities at the interfaces to its neighboring cells. Such
discontinuities are also known as Riemann problems, which
have been extensively studied in the past for many different
systems of equations and can be solved analytically by so-
called Riemann solvers. Ultimately, these solvers are used to
compute approximations of the fluxes at the cell interfaces that
are required to update the cell averages for the next time step.

In CRONOS, we solve the hyperbolic system using a semi-
discrete form of the finite-volume scheme, as further detailed
in [3]. This means that the equations have only been inte-
grated and hence discretized in space, but not in time. This
allows the application of different standard time-integration
schemes—in our case a second- or third-order Runge-Kutta
TVD scheme [17], [18]—to integrate the system in time.
In contrast toGodunov1959, we assume w to vary linearly
in space, leading to a second-order spatial accuracy of the
scheme. In the semi-discrete form of the scheme, we need
to solve a Riemann problem for each sub-step of the Runge-
Kutta time integrator. To save computation time, we use an
approximate solution for the Riemann problem.

Dealing with a hyperbolic system of equations means that
the speed at which signals and disturbances can propagate are
finite. Applying the Courant-Friedrichs-Lewy (CFL) condition
(see [19]) within the code, we made sure that any signal can
only propagate less than the width of a numerical cell during
one time step to maintain numerical stability. This also means
that the numerical stencil is rather small, thus allowing for
efficient parallelization of the code with only minimal need
for communication of boundary values.

At each substep of these time-integration schemes, we then
use the following procedure to solve the spatial part of the
problem:



1) Reconstruction of the left- and right-sided point values
for a given cell interface from w̄.

2) (Approximate) solution of the Riemann problem at the
cell interfaces, yielding a numerical value for the flux
functions.

3) Computation of the change of cell averages of the base
quantities via application of the numerical fluxes.

Relating to the stencil, point values at the cell interfaces are
computed using a linear, one-dimensional sub-grid reconstruc-
tion in each dimension, where the slope is determined from
the cell averages of the local cell and its direct neighbors.
The reconstruction of a Riemann problem at a given interface
thus involves the values of the next two cells on either side
of the interface and consequently a stencil consisting of four
cells is needed to obtain the numerical fluxes. Since a cell
depends on the fluxes across two interfaces in each coordinate
direction, the stencil to advance a given cell in time comprises
five cells, including itself. Up to now, CRONOS has been
parallelized by dividing the computational domain into Ncores
identical hyperslabs, where Ncores is the number of computer
cores used for a given simulation. To assure continuity between
the different volumes, a surface with a thickness of two cells
needs to be communicated between the different processes.
The related MPI ghost cell exchange is very efficient as long
as the volumes per core are sufficiently large.

Coupled with the need for large-scale computation for
complex simulations that exceed local and even national in-
frastructures, CRONOS is also used successfully in an ongoing
a PRACE access project and has shown to scale well up to at
least 16,000 cores on the Joliot-Curie Rome system [20]. For
the same reasons, we expect CRONOS to be highly suitable
for GPU parallelism.

IV. PORTING CONSIDERATIONS

Porting legacy applications to new programming models
is often a tedious task. Many long-term applications are
maintained by a continuously changing team of researchers
over several years, leading to differences in programming style
or use of programming model and language features. In this
section, we detail on considerations that have to be taken
into account when porting CRONOS to Celerity, as well as
experiences gathered during this process.

A. Original Implementation

CRONOS consists of approximately 40,000 lines of C++
code, along with approximately 3,000 lines of Python for
output processing and a few hundred lines of shell scripts and
makefiles that form the build system. However, it should be
mentioned that a large portion of the code base is unused
legacy code or provides multiple implementation variants of
the same component. The C++ code is divided into two main
components, CRONOS itself and CRONOSNUMLIB, a self-
written matrix library for storing multi-dimensional arrays.
CRONOS can be compiled into a sequential or a parallel
version using preprocessor defines and requires an MPI-2

compliant implementation for distributed memory execution.
Furthermore, output handling is done via (parallel) HDF5.

For our work presented in this paper, we will focus on the
numerical solver discussed in Section III-B.

B. Implementation Obstacles and Changes

CRONOS holds several obstacles that need to be overcome
in order to be ported to a high-level programming model such
as Celerity.

First of all, CRONOS relies on input-driven, dynamically
dispatched virtual function calls for flexibility and low-effort
extension with new component implementations. However,
since SYCL was originally closely aligned with OpenCL, its
specification lacks support for calling function pointers or
dynamically dispatched virtual member functions in device
kernels. For this reason, virtual function calls in to-be kernel
code need to be converted to e.g. manual, static type enumer-
ation or curiously recurring template patterns (CRTPs). Note
that this only affects device kernels and does not pose any
limitations on virtual function calls on the host side.

Second and related to the previous aspect, CRONOS contains
a lot of manual memory allocation management code. A mul-
titude of calls to new and delete manually allocate and free
memory for data structures in every time step. This can be par-
tially attributed to the age of the application, which dates back
at least to the early 2000s when C++98 was considered new.
While this kind of manual memory management is regarded
as an error-prone programming style by today’s standards and
should be removed in favor of more resilient patterns such
as RAII, it can be left in place for code that executes on the
host only. Nevertheless, the distributed memory address spaces
of host and accelerator make it impossible to dereference host
pointers on the device and vice versa. For this reason, we place
data structures that need to be exchanged between host and
device in SYCL buffers. As it turns out, most data structures
are only temporarily needed on the device and hence are
placed in the register file instead of in host-accessible memory
buffers.

Third, our application—like most structured and unstruc-
tured grid applications—relies on ghost cells for both enabling
distributed memory parallelism via halo exchanges and es-
tablishing boundary conditions. For this reason, it uses the
CRONOSNUMLIB component of CRONOS that offers arbitrary
multi-dimensional array index ranges, including negative ones,
to create 3-dimensional tensors that represent the physical
domain to be simulated. However, SYCL buffers do not
support this indexing scheme, requiring us to re-align loop
iteration spaces to be non-negative and provide ample padding
for ghost cells. As a side-effect, this removes the entailed
performance overhead of the otherwise omnipresent offset
computations whenever an array element is accessed.

Beyond the aforementioned aspects, there are also several
minor issues present in the original code, such as silent
memory corruption errors or occurrences of deprecated pro-
gramming styles that impede fast development. While these
naturally need to be addressed, they are not immediately



Fig. 2: Original sub-domain decomposition and simplified
finite volume computation performed by each MPI rank for
a single direction. Note that this is a simplified illustration for
clarity, as only the center cell and its interfaces are shown.
The actual computation requires two additional cells beyond
interfaces A and B respectively, to correctly compute the
fluxes, thus forming a 5-point stencil per direction.

relevant to our work described in this paper and are expected
in any large legacy codebase without continuous integration or
code coverage tests. For this reason, we omit their discussion.

Finally, in order to ensure productive porting and ease
of development, we replace the platform-specific shell and
Makefile scripting framework with a more modern and generic
CMake project that includes Windows support and also pro-
vides the capability of automated integration testing with
several input data sets and corresponding reference output.
With very limited overhead, this allows us to establish our
work as a multi-platform basis for future research such as a
qualitative comparison of additional SYCL implementations.
In addition, our experience has shown that toolchain and
software stack diversity can help in spotting programming
errors hidden behind implementation-defined semantics.

C. Algorithmic Changes

Besides implementation-focused code changes, we also per-
formed a number of algorithmic modifications and selections.
Note that while the algorithm in terms of the numerical solver
involved remains unchanged, there are a number of high-level
changes required for efficient GPU parallelism. Since these
changes are programming style agnostic and rather relate to
parallelism patterns, we consider them as algorithmic changes
from an HPC point of view and discuss them in this subsection.

There are multiple implementation variants in CRONOS
regarding sub-domain decomposition and iteration order. The
original implementation, shown in Fig. 2, iterates over a two-
dimensional space and extracts a full pole of data in the third
dimension. It then iterates over the individual cells of this
pole, performing computations and cell updates in the current
direction (e.g. front and back) as required. After finishing
all poles in one direction, this process is repeated for the
second direction, computing and updating physical quantity
contributions between left- and right-facing cells, and finally
repeated for the third direction. After such a three-phase
step has been completed for all three directions, all cells of
this subdomain received contributions from each of their 6
interfaces.

This kind of domain decomposition is efficient since it
works on one-dimensional poles which simplifies memory ac-
cess patterns or optimizations such as vectorization. However,
this scheme is not suitable for Celerity, since we aim for
automatic decomposition of the global domain without user
directions. It would entail submitting three kernels per time
step, one per direction, and temporarily saving the computed
updates before applying them in a fourth kernel. A second
approach would be to distribute these updates throughout the
system after every of the three phases, introducing additional
communication overhead.

Furthermore, the original implementation of CRONOS fol-
lows an input-parallel scheme by computing the flux compo-
nents between two cells only once and applying the corre-
sponding change to both cells. This is an input-decomposition
based strategy and leads to computational dependencies be-
tween individual iterations over the domain, which makes
it difficult to parallelize them. In the MPI implementation
of CRONOS, this is not an issue since each subdomain is
computed by a single rank, and hence this computation is
entirely sequential. While minimizing computational overhead
by computing these components only once per cell pair,
it is not suitable for distributed-memory GPU parallelism
in Celerity since the computation at a single point in our
three-dimensional space does not only update the cell at this
point, but also its neighbors within the same kernel. Celerity
currently does not support such intra-kernel dependencies and
explicitly forbids using range mappers with overlapping data
ranges for write access.

For this reason, we change the implementation in two
aspects. First, we follow a blocked scheme where we de not
iterate over a pole of cells at a time but individual cells.
Second, we change the algorithm to an output-decomposition
scheme such that the computation of a single position only
requires an update operation of the cell at this position and
does not imply updates to its neighbors. While this leads to
a much higher degree of parallelism, it introduces computa-
tional overhead since we need to re-compute flux components
between two cells A and B twice, once for updating A and
again for updating B. A code excerpt illustrating this overhead
will be shown and discussed in Section IV-D.

D. Porting Strategy

CRONOS offers both an MPI-parallel as well as a sequen-
tial implementation via preprocessor-conditional compilation.
Since Celerity itself is a distributed-memory programming
model and not suitable to be added incrementally to already
parallel applications (contrary to e.g. OpenMP), we base
our Celerity port on the sequential implementation. Since
a full time step in CRONOS consists of several sub-steps
and components, we add ported versions of these steps and
components one after the other, comparing respective outputs
via code assertions to ensure semantic correctness. Since these
assertions require data transfers from device memory back to
host memory for comparison, we disable them for production



1 queue.submit([=](celerity::handler& cgh) {
2

3 auto ReadMode = cl::sycl::access::mode::read;
4 auto WriteMode = cl::sycl::access::mode::read_write;
5

6 auto srcAcc = src.get_access<ReadMode>(cgh, celerity::access::neighborhood<3>(2,2,2));
7 auto dstAcc = dst.nom.get_access<WriteMode>(cgh, celerity::access::one_to_one<3>());
8

9 Problem problem = {...};
10

11 cgh.parallel_for<class Compute>(range, cl::sycl::id<3>{3,3,3}, [=](cl::sycl::id<3> item) {
12 int z = item.get(0);
13 int y = item.get(1);
14 int x = item.get(2);
15

16 numValsType numVals[DirMax], numValsX[DirMax], numValsY[DirMax], numValsZ[DirMax];
17

18 compute(srcAcc, numVals, problem, x, y, z);
19

20 compute(srcAcc, numValsX, problem, x + 1, y, z);
21 getChanges(dstAcc, problem, numVals, numValsX, x, y, z, DirX);
22

23 compute(srcAcc, numValsY, problem, x, y + 1, z);
24 getChanges(dstAcc, problem, numVals, numValsY, x, y, z, DirY);
25

26 compute(srcAcc, numValsZ, problem, x, y, z + 1);
27 getChanges(dstAcc, problem, numVals, numValsZ, x, y, z, DirZ);
28

29 });
30 });

Listing 1: Simplified code excerpt of the main Celerity computation kernel of CRONOS.

runs due to the overhead introduced by these data transfers
over PCIe.

Since Celerity entails comparatively benign code changes
when coming from SYCL applications, we first port our
application to pure SYCL and only move to Celerity in a
second step. This has the advantage of a purely single-node
program during a major part of the development phase. While
the design goal of Celerity is to alleviate the burden of
thinking and programming in distributed memory parallelism
or message exchange terms, it is still easier to debug a
single process during the development phase. Second, SYCL
implementations support a so-called host device which
allows kernel execution on the CPU instead of an accelera-
tor. This feature greatly improves any debugging experience,
since it enables use of all the standard toolchain support
that has been established for C/C++ programs throughout the
years, such as debuggers and memory checkers (e.g. gdb or
valgrind). After ensuring that we have semantically correct
SYCL versions of our components of interest, we move to
Celerity.

Listing 1 shows an abbreviated code version of the main
Celerity kernel of CRONOS. Lines 1–30 submit a C++
lambda that holds both the actual kernel as well as pref-
ace code that sets up accessors to the input (line 6) and
output (line 7) buffers. Note that the input buffer uses a
neighborhood<3>(2,2,2) range mapper, meaning that
for any point of computation in our three-dimensional domain,
Celerity needs to provide input data from neighbor cells up to a
distance of 2 in each of the three dimensions. The output buffer

on the other hand is accessed with a one_to_one<3>()
mapper due to our output-decomposition parallelism scheme.
The original code, due to its input-decomposition scheme,
would have required a neighborhood<3>(1,1,1) range
mapper for write access, which is illegal in Celerity because
of the resulting overlapping ranges for individual work items.

After establishing the accessors, a few use-case-specific
parameters are set up in line 9 and the actual kernel is specified
in lines 11–29. It is three-dimensional and starts with an
offset (id<3>(3,3,3)) due to the ghost cell shift discussed
in Section IV-B, whereas the original implementation simply
used negative indices as supported by CRONOSNUMLIB and
performed offset computations on the fly.

Finally, the actual computation happens in outlined compute
calls in lines 18, 20, 23, and 26. Each of these calls performs
point reconstruction, transformation to characteristic variables
and the computation of fluxes as described in Section III-B.
These individual functions are adopted from the original
implementation, with minor to no code changes beyond the
aspects detailed in Section IV-B. This lack of effort illus-
trates the benefits of adopting a programming model and
host langauge close to that of the original implementation.
Afterwards, the current cell is updated with the computed
changes (lines 21, 24, and 27). While the original implemen-
tation held the same number of getChanges() calls, our
output-decomposition-based parallelization strategy duplicates
compute() calls, leading to lower absolute performance than
possible. Among future work is to investigate the minimum
set of computations required, as well as other strategies



TABLE I: Experimental platform description.

Nodes GPUs per Node CPUs per Node RAM Network Compiler SYCL impl. Backend MPI impl.
4 4x RTX 2070S 1x AMD 2950X 128 GB 10 GbE llvm 11.0.1 hipSYCL 0.9.1 CUDA 10.1 OpenMPI 4.0.1

to minimize re-computation of intermediate results without
affecting the numerical properties of the algorithm or intro-
ducing computational dependencies.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our Celerity
port of CRONOS, discussing relevant hardware and software
characteristics in detail when necessary.

A. Experiment Setup and Methodology

Our experimental target hardware platform consists of four
nodes equipped with x86 CPUs and a total of 16 NVidia RTX
2070 Super 8 GB GPUs. Additional hardware details are listed
in Table I. While the RTX 2070 Super is an affordable con-
sumer model, its double-precision floating-point peak perfor-
mance (approximately 283 GFLOPS) is considerably slower
compared to single-precision (approximately 9.1 TFLOPS).
Nevertheless, the numerical properties of CRONOS require
double precision for major parts of the computation due to
the necessary conservation of energy and impulse quantities.
However, benchmarking on multiple consumer model GPUs
still allows us to get a grasp on the scalability of our Celerity
implementation, even though performance reductions must be
taken into account.

Beyond hardware information, Table I also lists the most
important software stack implementations and versions in use.
Celerity itself is built from git commit ae66f221. Compila-
tion optimizations are enabled via -O2 and we have hipSYCL
use its CUDA backend to target GPU architecture sm_75.

We run a simple shock-tube test as our use case. Our stencil
kernel is run once in a warm-up phase in order to eliminate
measurement perturbation caused by the initial data transfer
from host to device memory via PCIe. Afterwards, we run
10 iterations of this stencil operation and measure the time
it takes for them to complete. Note that this measurement
does not include the transfer back to the host memory since
it is only required for file output. This output is triggered
only sporadically by CRONOS and could be performed at least
partially asynchronously.

In order to find the problem size to conduct our experiments
with, we evaluate increasing domain sizes between 163 and
3203 on a single GPU and observe the throughput in cell
updates per second. Our expectation is that increasing the
problem size reduces the relative amount of any runtime
system overhead, thereby maximizing performance. The upper
limit of 3203 was chosen since it requires approximately 6.6
GB of our 8 GB of device memory and we intend to examine
strong scaling behavior—larger problem sizes cannot be run
reliably on a single GPU. Fig. 3 shows the results of these

1https://git.io/JOnAi
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Fig. 3: Cell updates per second on a single GPU for cubic
domains with a per-dimension length of multiples of 16.

experiments, confirming our hypothesis that increasing the
problem size increases performance, although at a slowing
pace. Nevertheless the peak is reached at 3203 with approxi-
mately 1.3 × 107 cell updates per second. Hence we choose
this problem size for our scalability experiments. Furthermore,
we run our experiments 10 times for every number of GPUs
and report arithmetic mean and confidence interval data.

B. Results

First, we examine the performance and scalability of the
original implementation. Table II lists average wall times and
parallel efficiency for increasing core counts on the host CPUs.
The data shows that the scalability is very high, attributed
to the efficient domain decomposition scheme and ghost cell
exchange. This is expected, since the code has been shown
to scale up to much larger core counts, as detailed in Sec-
tion III-B. Parallel efficiency even seems to slightly increase
again after 16 cores. This could be explained by the fact that
the nodes of our target hardware platform are single-socket
16-core CPUs. Hence, when moving from 16 to 32 cores,
we double all off-core entities, especially both the number of
memory controllers available to the application, as well as the
amount of L3 cache (from 32 MB to 64 MB), and again for
64 cores (128 MB). This is also illustrated in Fig. 4, which
shows application throughput in number of cell updates per
second per core and also indicates a throughput increase after
16 cores.

The results of our Celerity implementation are listed in
Table III and illustrated in Fig. 5. First, it is evident that
the parallel efficiency is very high, at around 99%, for up
to 4 GPUs. Since up to 4 GPUs we are still within a single-
node system, all communication happens via PCIe, which has
much higher bandwidth and lower latency compared to the 10
Gigabit Ethernet inter-node interconnect. However, even with
the full system of 4 nodes and 16 GPUs total, efficiency is
still high at 87%.



TABLE II: Average MPI wall times in seconds over 10 runs
with 95%-confidence intervals, along with parallel efficiency.

Cores Wall time [s] Efficiency
1 179.14 ± 5.67× 10−1 1,00
2 94.88 ± 6.61× 100 0,94
4 48.72 ± 5.93× 100 0,92
8 22.55 ± 4.44× 100 0,99

16 11.96 ± 2.72× 100 0,94
32 5.83 ± 1.91× 100 0,96
64 2.80 ± 5.80× 10−1 1,00

TABLE III: Average Celerity wall times in seconds over
10 runs with 95%-confidence intervals, along with parallel
efficiency.

GPUs Wall time [s] Efficiency
1 24.77 ± 1.55× 10−3 1.00
2 12.49 ± 6.91× 10−4 0.99
4 6.28 ± 8.12× 10−4 0.99
8 3.35 ± 1.08× 10−3 0.93

16 1.78 ± 3.77× 10−4 0.87

Finally, comparing throughput numbers between MPI on
the CPUs and Celerity on the GPUs, it can be observed that
8 cores of a 16-core AMD Threadripper 2950X CPU achieve
roughly the same application throughput as an NVidia RTX
2070 Super in double-precision. This matches our expecta-
tions, as the 2950X offers 8 double-precision floating-point
operations per second per core and clocks at approximately
4 GHz. The resulting peak performance of around 500-
550 GFLOPS is roughly twice that of an RTX 2070 Super.
Naturally, these approximate numbers do not allow us to draw
conclusions about the specific efficiency of our application
with respect to peak floating-point performance on either
the CPU or the GPU. However, they seem to indicate that
our application is running at comparable efficiency on both
architectures.

VI. CONCLUSION

In this work we have shown a case study of porting a real-
world application to GPU clusters by using a modern, high-
level programming model, Celerity. We have discussed the
numerical and algorithmic characteristics of the application
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Fig. 4: Performance of the original MPI implementation in
cell updates per second per CPU core.
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Fig. 5: Performance of the Celerity implementation in cell
updates per second per GPU.

as well as its intricacies in parallelization and suitability
for GPUs. In addition, the considerations to be taken when
porting larger legacy applications to modern platforms and
our motivational basis for taking design and implementation
decisions have been presented. Results indicate that within the
scope of our experiments, an efficiency of 87% can be obtained
even without hardware architecture-specific optimizations.

Future work includes additional code coverage by porting
more CRONOS components to Celerity and a more detailed
performance analysis on multiple hardware platforms that offer
higher double-precision floating-point performance. Further-
more, pending optimizations such as partially switching from
double-precision to single-precision where possible will be
explored.
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