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ABSTRACT
Today digital revolution is having a dramatic impact on the pharma-
ceutical industry and the entire healthcare system. The implemen-
tation of machine learning, extreme-scale computer simulations,
and big data analytics in the drug design and development process
offers an excellent opportunity to lower the risk of investment and
reduce the time to patient.

Within the LIGATE project 1, we aim to integrate, extend, and
co-design best-in-class European components to design Computer-
Aided Drug Design (CADD) solutions exploiting today’s high-end
supercomputers and tomorrow’s Exascale resources, fostering Eu-
ropean competitiveness in the field.

The proposed LIGATE solution is a fully integrated workflow
that enables to deliver the result of a virtual screening campaign
for drug discovery with the highest speed along with the highest
accuracy. The full automation of the solution and the possibility to
run it on multiple supercomputing centers at once permit to run
an extreme scale in silico drug discovery campaign in few days to
respond promptly for example to a worldwide pandemic crisis.
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1 INTRODUCTION
The pharmaceutical industry is among the sectors investing in R&D
more than any other. So far most of the investments in R&D were
not in computational tools, but rather in wet chemistry, and clinical
trials. In recent years, the situation changed with growing invest-
ments in computational tools (HPC in particular) to reduce the cost
1LIGATE website - https://www.ligateproject.eu/

for the development of new drugs or shorten the time to market and
digital transformation in general. The investment in HPC, besides
becoming fundamental for competitiveness, is being recognized as
having a high ROI (Return of Investment), for the pharmaceutical
sector. HPC has been used in the field of drug discovery to acceler-
ate the process of finding new drugs since it permits researchers to
analyze large chemical libraries against selected targets in a short
amount of time, allowing them to identify potential treatments
more quickly. Indeed, the embarrassingly parallel nature of the
virtual screening process [20] makes it suitable for exploiting large
computing infrastructures composed of powerful compute nodes.

In this direction, the LIGATE project supports the development
of a European drug-discovery platform capable to exploit recent
HPC investments, guaranteeing independence from other economic
areas in the world, and reducing the risk of suffering from digital
gaps with respect to competitors.

The LIGATE computer-aided drug discovery (CADD) platform
will be designed with the following key characteristics:

(i) Portability, to execute on all the pre-exascale and future
exascale European supercomputers;

(ii) Tunability, to select the optimal configuration depending
on the target goal of small-/extreme-scale virtual screening
campaign;

(iii) Scalability, to run on all available resources dedicated to the
experiment, from a single heterogeneous node to a multi-site
execution in case of urgent computing.

LIGATE is a three-year project co-funded by the European High-
Performance Computing (EuroHPC) Joint Undertaking under the
topic Industrial software codes for extreme scale computing environ-
ments and applications. It is led by Dompè Farmaceutici (Project
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Figure 1: Overview of the LIGATE workflow including also
the number of molecules that it is expected to analyze at
each stage during an extreme-scale virtual screening cam-
paign

Coordinator) and Politecnico di Milano, and aggregates overall 10
partners among Universities, Research Institutions, and Companies,
including CINECA, VSB-IT4Innovation, E4 Computer Engineer-
ing, University of Salerno, University of Innsbruck, KTH - Royal
Institute of Technology, University of Basel, PH3, and Chelonia.

The remainder of the document is organized as follows: Sec-
tion 2 briefly describes the LIGATE Computer-Aided Drug Discov-
ery workflow. Section 3 lists and describes the main project goals
by outlining the main achievement reached so far. Finally, Section 4
concludes the paper.

2 LIGATE CADDWORKFLOW
The main goal of a virtual screening campaign is to suggest to a
domain expert a relatively small set of promising molecules, that
have been predicted with the strongest interaction (high-affinity
values) with at least one binding site of the target proteins. This
output will drive the selection of molecules that will proceed to the
in-vitro and in-vivo stages of the classical drug discovery process.
Recent studies show how the introduction of this in-silico phase
increases the success probability [1, 19].

Figure 1 provides an overview of the LIGATE CADD workflow.
The proposed workflow is a structure-based approach since it uses

the 3D shape of both the ligands and the target protein as the basis
for the evaluation. While we explain all the components in the order
required to virtually screen a chemical library, its implementation is
modular. This enables us to create on-demand additional workflows
by arranging the required components in a different way.

The chemical library that we want to analyze is composed of
virtual molecules that are derived by simulating known chemical
reactions or by composing known ligand fragments. In this way,
we have access to a very large chemical space. To limit its storage
requirement, we use the SMILES format, which encodes a molecule
in a single text line. Moreover, we use a custom algorithm to com-
press/decompress each line independently using a single dictionary
that is independent of the input file. The second kind of input is the
target proteins, which are required by almost all the components
of the CADD workflow, encoded using the PDB format. We are
agnostic with respect to the methodology used to resolve them [9].

The SMILES notation of a molecule is compact because it de-
scribes only the topological shape of the molecule. The first compo-
nent of theworkflow aims at computing all the information required
by the other ones, such as the 3D displacement of the molecule’s
atoms. Then, we dock the ligand in the target binding sites. The
adopted docking algorithm uses a gradient descent with multiple
restarts that promote diversity in the generated poses, increasing
the chemical library size. The docking gradient is a simple scoring
function that takes into account only geometric information. There-
fore, we use an additional component to re-score the generated
poses, taking into account also physico-chemical information. We
consider the ligand score equal to the one of its best pose. Since
the computation effort required by the latter component can have
a big impact on the performance, we can have an intermediate
step between them. In particular, the pose filtering step aims at
discarding the poses that are not likely to yield a high score. These
four components are implemented using LiGen.

LiGen is a high throughput virtual screening software part of the
EXSCALATE platform 2 that can scale up to a full modern super-
computer. It is a computational toolbox for molecule manipulation
having its core in the dock and score phase. It is used to quickly
estimate the interaction strength between a protein and a small
molecule, and then for selecting a relatively small set of promising
candidates. In the context of the EXCALATE4CoV European Project,
LiGen virtually screened more than 70-billion ligands docking and
scoring them in 15 binding sites of 12 viral proteins of SARS-CoV-2
[7]. The experiment lasted 60 hours, and it involved two supercom-
puters with a combined throughput peak of 81 PFLOPS.

Once the scoring function has been used to evaluate the input
chemical library, we can rank them to select which molecule we
want to investigate further by evaluating the absolute binding free
energy (ABFE). The estimation of the affinity at which a small
molecule binds to a protein (ABFE) happens by studying an all-
atom molecular dynamics (MD) of the complex in a solution. This
component requires the highest computational effort among the
available ones. Therefore, we can’t evaluate all the molecules in
the initial chemical library, but we rely on the previous stages to
select the most promising candidates and to provide a reasonable
initial displacement of the molecule’s atoms to start the free energy

2EXSCALATE website - https://exscalate.com/
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evaluation. The domain experts can use this output to support
the selection of the molecules to test in-vitro. This component is
implemented using the GROMACS software package.

GROMACS provides a fast and highly portable MD implemen-
tation that efficiently uses both MPI and OpenMP parallelization.
GROMACS can offload nearly all computations of an MD step to
the GPU using CUDA, OpenCL, and SYCL. Its kernels have been
optimized for 11 CPU SIMD instruction sets. GROMACS also fea-
tures a variety of enhanced-sampling techniques, i.e., algorithms
that reduce the number of MD steps needed to achieve a precise
binding affinity estimate.

While the actual LIGATE CADD pipeline ends after the free
energy evaluation, we envisioned to enhance with an AI engine
that helps the evaluation of the existing components. In particular,
when we consider existent softwares that use machine learning
techniques to score or dock a ligand [14], they use experimental
data as the training set. These training sets are limited in number
and include only positive samples. Therefore, by using the designed
CADD workflow we can increment the sheer number of available
data by generating them in-silico. This solution based on the in-
silico free energy calculation can generate also data for negative
samples since we can feed the module with ligands and poses that
cannot occur naturally.

3 MAIN GOALS AND ACHIEVEMENTS
This section briefly describes the main goals of the LIGATE project
and provides an outlook on the main achievement reached so far
in the project.

3.1 Performance Portability
Modern high-performance computing (HPC) systems leverage hard-
ware heterogeneity (e.g. GPUs, FPGAs) as a key feature. In the HPC
scenario, the Top500 list 3 shows that, at the end of 2022, eight
out of the ten top systems are GPU-accelerated, with NVIDIA and
AMD being the primary hardware providers. However, applications
developed for GPUs are often written in proprietary, non-portable
programming languages, such as CUDA for NVIDIA GPUs, which
can lead to vendor lock-in and hinder the ability to quickly mi-
grate to different platforms. Moreover, being bound to a single
architecture can significantly impact the application’s ability to
be applied in urgent computing scenarios where the maximum
computing power needs to be harnessed. Therefore, it is crucial to
have application code that can efficiently run on different devices.

In recent years, several programming models for heterogeneous
computing have been proposed. One such model is SYCL[11], a
royalty-free, cross-platform abstraction layer that enables code
for heterogeneous processors to be written using standard ISO
C++. SYCL allows for both the host and kernel code for an applica-
tion to be in the same source file. The Kronos Group consortium
maintains SYCL, and it has multiple implementations provided by
companies, such as Intel [13], and universities [2]. SYCL enables
the development of high-level, performance-portable applications
that can target CPUs, GPUs, and FPGA cards without requiring
device-specific code.

3Top500 List Website - https://www.top500.org/

Figure 2: LiGen Performance Results on different Clusters
(IT4I-Karolina, CINECA-Marconi100, LUMI-G and E4), and
using different implementations (CUDA and SYCL)and soft-
ware stacks (OpenSYCL, OneAPI).

Within LIGATE, we designed a performance-portable implemen-
tation of LiGen, originally written in C++ and CUDA to target only
NVIDIA GPUs [7, 33]. We ported the legacy code to SYCL2020
analyzing different alternative possibilities (e.g., adopting Unified
Shared Memory and Buffer-Accessors paradigms). The new SYCL
implementation can target CPUs, as well as both NVIDIA and AMD
GPUs, unlocking the possibility to run on the GPU partition of
LUMI supercomputer and on an E4 internal research cluster.

Figure 2 presents the performance results in terms of Ligands
per second per GPU with both the native CUDA application and the
SYCL version. While the former can only run on NVIDIA hardware,
for the SYCL version we show the results on both NVIDIA (A100,
V100) and AMD (MI250X, MI100) GPUs using the OpenAPI and
OpenSYCL compilers. The results have been benchmarked on three
top European supercomputers, and on the E4 research cluster.While
the native CUDA version achieves a higher throughput on the same
hardware, the SYCL version is able to run also on AMD GPUs
with comparable performance, while also proving a ground base
for following optimizations tailored to novel systems (e.g. LUMI
cluster).

3.2 The Celerity Runtime System
While SYCL aids in alleviating the portability issues of single-GPU
code across vendors, developers of applications targeting a dis-
tributed memory cluster with accelerators still have to contend
with manually implementing communication. Doing so efficiently,
especially in the presence of the large amount of low-level details
introduced by GPU computing and network communication across
different vendors, topologies, and technology stacks, is a challenge
even for parallel system experts. The Celerity Runtime System [22]
provides a high-level C++ layer closely inspired by SYCL, which
automatically manages work distribution and data dependencies.
It enables high-productivity development of applications for GPU
clusters [29], only requiring efforts comparable to a baseline single-
GPU SYCL implementation.

3
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Figure 3: Exploration of the LiGen software knob

Within the LIGATE project, we have extended the Celerity sys-
tem with new high-level primitives to more directly encode the
semantics of the target applications [30], and we improved the
throughput on large systems by introducing a zero-communication-
overhead distributed command generation scheme [22].

3.3 LiGen Autotuning
In the context of HPC, autotuning [4, 24] refers to the process of
automatically selecting the best configuration of the software or
compiler parameters according to a specific target hardware and
execution condition. This automatic process permits amore efficient
execution of the code eliminating the need for manual intervention.
The importance of autotuning is not only for a specific application-
architecture pair, but it has a huge impact when it is important to
guarantee performance portability across multiple architectures or
application versions that can exploit a different best configuration.

Several autotuning software solutions exist [3, 8] that allow to
efficiently explore the configuration space with varying degrees of
complexity, with or without the possibility of taking constraints
into account. Within LIGATE, our intention has been to exploit this
possibility together with an explicit parameterization of one of the
main LIGATE components. In particular, we revised the original
LiGen code by exposing as much as possible the internal param-
eters that can have an impact on both quality and performance,
or that can spot different optimization opportunities on different
architectures. We extracted 11 software parameters (knobs) of the
LiGen application, accounting for overall more than 60 million dif-
ferent configurations, and we run a tuning campaign to search for
Quality-Performance tradeoffs. The importance of the trade-off is
the possibility to use the same docking tool for both small-scale cam-
paigns requiring higher quality, and extreme-scale virtual screening
experiments where the overall duration of the campaign and re-
source usage (cost) can be the actual limit. To make the exploration
feasible from the execution time perspective, we adopted an itera-
tive approach based on the Bayesian Optimization (BO) algorithm
supported by Machine Learning techniques, named MALIBOO [12].
This approach is efficient in minimizing the execution costs of
recurring resource-constrained computing jobs.

Figure 3 shows an example of the exploration results where
obtained evaluating a small subset of 320 different LiGen config-
urations (blue dots). In particular, the RMSD (Root Mean Square
Distance) calculation refers to the distance between the predicted

best pose and the actual experimental pose for each ligand-protein
pair derived from the CASF2016 dataset [27]. The wall-time refers
to the overall time needed to screen 1M ligands.

In addition to the parameters that are explicitly exposed by LiGen,
we also exploited the possibility of auto-tune part of the code ac-
cording to the characteristics of the input data, i.e. the ligands. In
fact, to target high-throughput experiments making better use of
GPUs, we completely re-designed LiGen in a way that it processes
a batch of ligand-protein pairs across the device, instead of a single
one as done by state-of-the-art approaches [32]. To maximize the
efficiency of the new approach the ligands are clustered by size be-
fore the GPU kernels and are temporarily stored in a set of buffers.
The GPU computation is launched once one of the batches reached
a specific size that is dependent on the ligand characteristics, i.e.
number of atoms and rotatable bonds, and GPU memory/micro-
architecture. The fine-grain tuning of the batch size for each ligand
size has been derived using an abstract model of the device that
resulted to be portable across the different analyzed GPUs.

3.4 Integrated automatic setup and execution
of free energy calculations

The main goal of the molecular simulation work in LIGATE is to
provide a high-performance implementation of accurate free energy
calculations that is also fully automated and portable. To achieve
this, we have first developed a workflow ranking drug candidates
by their relative free energy of binding (RBFE) to the target protein.
Starting from lists of thousands of docked compounds/poses, this
workflow with its new interfaces can automatically determine the
force field parameters for both the protein and the compound, set up
free energy calculations in GROMACS, execute the entire ensemble
as a parallel run on HPC resources using HyperQueue (See Section
3.6), and return free energies with a requested standard error.

To obtain the RBFE estimates with a minimal number of molec-
ular dynamics (MD) steps, the compounds are grouped into pairs
that are alchemically transformed into each other during the MD
simulations, which requires the workflow to solve the maximum
common substructure problem for each compound pair. In the MD
simulations, the Accelerated Weight Histogram method (AWH)
creates a bias potential to facilitate the alchemical transformation
of the compound pair, and this bias potential converges to the
RBFE. [18]. For GROMACS-2023, the performance of free energy
calculations has also been improved by rewriting the free energy
non-bonded kernels to use SIMD instructions, which more than
doubles performance when the algorithm is a bottleneck, which
was typically the case when running e.g. on GPU accelerators.

Finally, to build an AI engine supporting the analysis in the early
stages of the CADD platform, it is necessary to go beyond rela-
tive free energies and rather target absolute binding free energies
(ABFEs) of protein-compound complexes. To this end, we are de-
veloping a variant of the above workflow in which the free energy
calculations are replaced with standard MD simulations with GRO-
MACS. ABFEs are subsequently estimated from the MD trajectories
as the sumof gas and solvation free energywith gmx_MMPBSA. [31]
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3.5 Machine Learning engines to further
speedup the virtual screening phase

In LIGATE, we want to exploit the possibility of generating a large
set of data to analyze the possibility to use Machine Learning (ML)
techniques to further speed up the virtual screening phase. In par-
ticular, one of the goals of the project is to evaluate the possibility
of predicting the binding affinity in the early stages of the CADD
platform, using the costly free energy computation derived by GRO-
MACS as ground truth.

Since the design of the best prediction algorithm for a given class
of applications strictly depends on the problem at hand and on the
available data, this task will evaluate different machine learning
approaches starting from simple, computationally efficient tech-
niques (e.g. multivariate regressions) up to techniques demanding
more computational effort, such as deep/graph neural networks.
The most suitable prediction technique for the CADD platform
has to be identified considering the cost to obtain the prediction in
relation to the specific usage of the CADD platform. Fast screening
of a large ligand database (e.g. in case of urgent computing) would
require a cheaper prediction model, while a more detailed analy-
sis on a reduced set of molecules can use a more computationally
demanding model. Starting from the scoring function already avail-
able in LiGen [5], we will identify the features related to ligand,
pocket and their interaction to be used as input variables of the
free-energy prediction model to be used. Moreover, we are going
to analyze the possible subset of them that can be used also to steer
the pose generation during the geometric docking phase [6] which
is the core engine within LiGen.

While waiting for the data to be generated by free energy calcu-
lations on GROMACS, we analyzed the problem of pose selection.
Pose selection is the step within the structure-based virtual screen-
ing phase that is in charge of the selection of the most reliable and
interesting poses to be evaluated in terms of binding affinity. We
generated a large set of data using LiGen and we labeled them using
the RMSD with respect to known experimental poses. Several state-
of-the-art machine learning methods have been analyzed while
looking at the most promising ones. 3D-CNN (Convolutional Neu-
ral Networks, i.e. Pafnucy [26], and DimeNet [21]), GNN (Graph
Neural Networks, i.e. GraphBar [25]), and MDN (Mixture Density
Network, i.e. DeepDock [17], and RTMScore [23]) have been re-
trained using the generated large set of RMSD labeled data and are
currently under investigation for a seamless integration within the
pipeline.

Moreover, a novel pose selector scheme called LiHPS (LiGen
High-throughput Pose Selector), targeting extreme-scale virtual
screening campaigns, has been developed from scratch adopting a
mix of approximate computing, and supervised/unsupervised tech-
niques.With respect to the previouslymentioned 3D-CNN/GNN/MDN
methods, LiHPS exploits another sweet spot in the throughput-
accuracy trade-off curve, where a small reduction in accuracy brings
a very large performance improvement.

3.6 Efficient sub-node task scheduler.
Modern HPC clusters contain a large number of heterogeneous
resources that provide vast amounts of computational power. The
potential of these clusters might not be fully exploited when users

submit a large number of tasks that cannot utilize the whole com-
putational node. Existing HPC job managers are not well prepared
for such scenarios, which can lead to nodes being underutilized.

HyperQueue is a task runtime framework 4 designed for the
efficient execution of a large number of heterogeneous tasks on
HPC systems, which was developed within LIGATE. It takes care
of asking for computational resources from the job manager on
behalf of the user, and load balances submitted tasks on all avail-
able computing nodes with a sophisticated scheduler to keep node
utilization as high as possible.

HyperQueue has been used within LIGATE to simplify the exe-
cution of the target in-silico virtual screening application, which
is composed of many small tasks. Using HyperQueue, users of the
application do not have to care about splitting the tasks into indi-
vidual HPC jobs and then submitting these jobs separately. They
simply submit all tasks into HyperQueue and it takes care of the
rest.

3.7 Virtual Screening-as-a-Service.
Among the several goals, LIGATE directly addresses the contempo-
rary challenges that running a virtual screening campaign at a large
scale requires extensive expertise and manual intervention. This is
motivated by the fact that (i) there is a lack of ability for different
tools to interoperate efficiently and automatically through APIs and
well-specified data formats, and (ii) that the efficient management
of large HPC resources requires additional skills that are not always
available for domain experts.

To address this issue, we integrated the LiGen molecular docking
application with an HPC-as-a-Service framework (HEAppE 5) [28]
to permit the execution of virtual screening tasks on supercomput-
ing resources through REST API without a direct access to them.
This allowed us the simple integration with the LEXIS Platform
[10] which provides an easy to use web-portal to manage data and
workflow execution on remote HPC resources.

The LEXIS platform and the integrated LiGen-related workflow
have been designed to enable multi-site execution of a large-scale
computation in case of urgent computing, thus permitting the de-
ployment of part of the virtual screening campaign on multiple
HPC centers without the need for explicit management. A central
part of this platform is the support for distributed data manage-
ment between different sites together with data staging to/from
HPC resources. The LEXIS-LiGen integration permits also to envi-
sion the use of the LIGATE platform at the end of the project in a
Virtual Screening-as-a-service fashion for researchers and public
institutions.

3.8 Scientific validation of the CADD platform
The LIGATE CADD platform is a promising tool for structure-based
drug discovery due to its key characteristics: portability, tunability,
and scalability. However, we plan to demonstrate the effectiveness
of the technology not only by considering extra-functional aspects
but also analyzing the actual advantages that the innovative CADD
platform can bring to the target drug discovery field.

4https://github.com/It4innovations/hyperqueue
5HEAppE Website - https://heappe.eu/web
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To do so, we have compiled comprehensive datasets of protein-
ligand complexes that encompass a diverse range of drug targets
and small molecules. These benchmark datasets are derived from
the PDB and meet rigorous quality criteria, serving as a reliable
"ground truth" for the evaluation of the LIGATE CADD platform.
We have ensured the diversity of the datasets from three perspec-
tives: protein, ligand, and binding pocket, ensuring sufficient repre-
sentation of each. Moreover, we have included special sets of mutant
structures and similar ligands to better assess the platform’s per-
formance in challenging cases. We then developed an automated
pipeline for continuous benchmarking and evaluation of the vir-
tual screening platform, with automated reporting on the scale and
areas of improvement.

As the final step, the project consortium plan to select antimi-
crobial drug targets for infectious diseases as real-world test cases.
In vitro experimental validation of hits identified by the CADD
platform would demonstrate the practical applicability of the ap-
proach on disease targets with high medical relevance according to
the WHO priorities. The results will be published in peer-reviewed
journals, and benchmark data will be made openly accessible under
FAIR data principles.

3.9 Key Technologies on the Cronos Use Case
To further validate the technology developed to support the tuning,
parallelization, and portability of the CADD platform for extreme-
scale virtual screening, within the project an additional use case
has been considered. The selected application, Cronos [16], comes
from the astro- and particle physics world, a completely differ-
ent field with respect to LiGen and GROMACS. A structured grid
magneto-hydrodynamics simulation in 3D that resolves plasma-
dynamical problems in astrophysics and space science. The original
implementation is written in C++, and parallelized using MPI to
target CPU-based distributed memory systems. This version, while
demonstrating excellent scalability on medium-sized clusters (ap-
prox. 95% parallel efficiency on 1024 cores, 60-70% on 16,384 cores),
does not use GPUs despite the fact that structured grid applications
are often well-suited for accelerated clusters.

The goal for Cronos within LIGATE is (1) to have a SYCL and
Celerity [22] implementation to enable a portable GPU execution,
(2) to rigorously test both platform suitability for this use case as
well as performance and scalability, and (3) to investigate and bench-
mark possible performance optimizations. At the current stage of
the project, a functional SYCL porting is available. A deviation in
the output from the CPU to GPU execution originates from the
different implementations of reduction algorithms coupled with
floating-point math semantics. The Celerity implementation is on-
going, after which initial performance tests can be performed to
drive further optimization work.

4 CONCLUSIONS
Although capable of accurate predictions, in-silico tools like vir-
tual screens with docking and free energy calculations used to be
limited by the availability of experimental structures of the target
protein. With the accurate protein structure predictions provided
by AlphaFold2, [15] starting structures for the vast majority of
target proteins can now be generated computationally; and thanks

to the large chemical space covered by the LiGen tools, protein-
compound complex structures can be obtained entirely in silico for
a very diverse and chemically motivated set of drug candidates. The
integration of docking and free energies from MD in the CADD
workflowwe present here is thus timely to exploit the new potential
of these in-silico tools and foster methodological developments; in
particular, free energy labels from MD for docking poses can help
to improve the scoring functions used in docking via AI engines
trained on these MD free energy labels.

Complementing the increased scientific scope of application of
docking and free energy calculations, performance portability of the
respective software packages, LiGen and GROMACS, and efficient
task scheduling with HyperQueue ensure their wide technical ap-
plicability, and the vast computational resources currently deployed
e.g. in EuroHPC will open new opportunities to generate synthetic
training data for machine learning in drug design applications.

Overall, the LIGATE project aims to provide an automated solu-
tion for CADD on EuroHPC resources from the current pre-exascale
architectures to the future exascale systems. The integration of best-
in-class European software components will be made available to
industrial as well as non-profit academic research and public insti-
tutions, as a Platform-as-a-Service solution for drug discovery.
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