
ndzip-gpu: Efficient Lossless Compression of Scientific
Floating-Point Data on GPUs

Fabian Knorr
fabian@dps.uibk.ac.at
University of Innsbruck

Austria

Peter Thoman
petert@dps.uibk.ac.at
University of Innsbruck

Austria

Thomas Fahringer
tf@dps.uibk.ac.at

University of Innsbruck
Austria

ABSTRACT
Lossless data compression is a promising software approach for
reducing the bandwidth requirements of scientific applications
on accelerator clusters without introducing approximation errors.
Suitable compressors must be able to effectively compact floating-
point data while saturating the system interconnect to avoid intro-
ducing unnecessary latencies.

We present ndzip-gpu, a novel, highly-efficient GPU paralleliza-
tion scheme for the block compressor ndzip, which has recently set
a new milestone in CPU floating-point compression speeds.

Through the combination of intra-block parallelism and efficient
memory access patterns, ndzip-gpu achieves high resource utiliza-
tion in decorrelatingmulti-dimensional data via the Integer Lorenzo
Transform.We further introduce a novel, efficient warp-cooperative
primitive for vertical bit packing, providing a high-throughput data
reduction and expansion step.

Using a representative set of scientific data, we compare the
performance of ndzip-gpu against five other, existing GPU com-
pressors. While observing that effectiveness of any compressor
strongly depends on characteristics of the dataset, we demonstrate
that ndzip-gpu offers the best average compression ratio for the
examined data. On Nvidia Turing, Volta and Ampere hardware, it
achieves the highest single-precision throughput by a significant
margin while maintaining a favorable trade-off between data re-
duction and throughput in the double-precision case.

CCS CONCEPTS
• Computing methodologies→ Parallel algorithms; • Theory
of computation → Data compression.

KEYWORDS
accelerator, gpgpu, data compression, floating-point

1 INTRODUCTION
On the path toward Exascale, energy efficiency is becoming the
dominant driver of innovation in High Performance Computing.
The rapid increase of intra-node parallelism, including the advent
of GPUs as general-purpose accelerators, has lowered energy costs
for compute-intensive applications considerably [8, 23]. Meanwhile,
the relative time and energy cost of inter-node communication is

projected to increase with overall system performance [20]. This
form of data movement is already the most energy-intensive in
a compute cluster, motivating the optimization of link usage in
software [15], for example via communication avoidance.

Data compression with the goal of avoiding I/O bottlenecks in
large-scale distributed applications has been studied extensively,
primarily for checkpointing. Since the bandwidth of I/O links is com-
paratively low, lossy compression has allowed significant time sav-
ings in this context [5]. As checkpoints are not frequently reloaded,
the loss in fidelity is acceptable for many applications.

This assumption does not hold for inter-node communication as
part of a distributed computation. In simulations, data is usually ex-
changed at least once per time step, leading to the accumulation of
compression artifacts above an acceptable level. For distributed lin-
ear algebra, kernels might not provide sufficient numerical stability
under the error introduced by a lossy encoder.

Lossless data compression avoids these precision problems at the
cost of a lower potential compression ratio due to incompressible
noise inherent in low-order floating-point mantissa bits. Although
general-purpose compressors have comparatively low throughput
and parallelism due to their large state, there exist fast specialized
floating-point compressors for both CPU [11] and GPU [16, 25].

Compression of communication data is only viable if compressor
output and decompressor input speeds exceed the interconnect
bandwidth. To avoid offsetting the gains from compressed com-
munication, additional latencies must be as small as possible. For
example, the cost of a device-to-host transfer prior to compression
of results acquired on a GPU would be prohibitive.

To demonstrate the viability of data compression for the accel-
eration of inter-node communication, we explore how GPU com-
pression can deliver the necessary performance. The contribution
of this paper is as follows:

• ndzip-gpu, a highly-efficient GPU parallelization scheme for
ndzip, a state-of-the-art lossless floating-point compressor

• A fast, warp-cooperative bit packing primitive
• An evaluation of ndzip-gpu on state-of-the-art hardware

and a large set of representative test data
• A performance comparison of ndzip-gpu against five exist-

ing, publicly available lossless GPU compressors
• An open-source implementation of all of the above



Fabian Knorr, Peter Thoman, and Thomas Fahringer

The remainder of this article is structured as follows. Section 2 gives
an introduction to floating-point compression and GPU implemen-
tation considerations for general-purpose as well as specialized
compressors. Section 3 provides an overview of the ndzip compres-
sor design. Section 4 discusses the architecture of the ndzip-gpu
parallelization scheme in detail and derives an efficient method for
vertical bit packing on GPUs. Section 5 compares ndzip-gpu against
state-of-the-art GPU compressors on representative test data with
current HPC hardware. Section 6 summarizes our research.

1.1 Reference System
The reference hardware for throughput evaluation in this work
is the Marconi-100 supercomputer in Bologna, Italy, which holds
rank 11 of the TOP500 list as of November 20201.

It is a cluster of 988 dual-CPU IBM POWER9 AC922 nodes with
256 GB RAM and four Nvidia Tesla V100 Volta GPUs each2. Inter-
node communication is realized using Infiniband EDR with dual-
channel Mellanox ConnectX5 network interface cards.

The theoretical, unidirectional peak transfer rate of Infiniband
EDR is 100 Gb/s (12.5 GB/s) per channel, so each node can send and
receive 25 Gigabytes per second. A suitable compression algorithm
must therefore be able to deliver at least 25 GB/s in compressed
throughput to avoid underutilizing the network link of this system.

2 BACKGROUND
We begin with an overview of lossless scientific-data compression
and the problem of selecting and implementing efficient compres-
sors on graphics hardware.

2.1 GPU Hardware and Programming Model
Although there are strong similarities between GPU vendors and
hardware generations, high performance applications still require
careful tuning for target architectures to achieve maximum perfor-
mance. Our work primarily targets the Nvidia Volta and Ampere
microarchitectures, released in 2018 and 2020.

Even though we implement ndzip-gpu using the SYCL program-
ming model which follows the OpenCL naming scheme for various
GPU concepts, we stick to CUDA terminology in the hope that it
will be more familiar to the reader.

The defining parameter of a GPU program (kernel) is its parallel
iteration space (grid), specified as the number of blocks in the grid
together with the number of threads per block. Upon launch, the
blocks of a kernel are distributed among the streaming multiproces-
sors (SMs) of the device, where multiple blocks can occupy an SM.
For execution, blocks are subdivided into warps of 32 threads each.
In each cycle, the schedulers of an SM each pick an eligible warp
and schedule an instruction on one of the SM’s execution units.
Branch divergence between threads of a warp potentially reduces
performance by requiring the scheduler to process the instructions
of all branches sequentially. A high number of active threads per
SM increases scheduler occupancy which facilitates instruction
latency hiding but can lead to higher register and cache pressure.

1https://www.top500.org/lists/top500/list/2020/11
2https://wiki.u-gov.it/confluence/download/attachments/358212674/redp5494.pdf

As accessing global device memory has very high latency, each
SM provides, in addition to its caches, a small area of fast shared
memory that is common to all threads of a block. Shared memory
has similar access latencies to registers but requires careful layout to
avoid bank conflicts. An SM has 32memory banks, each 32 bits wide,
to which shared memory addresses are mapped in a modulo fashion.
Memory access is conflict-free if either all simultaneous accesses
within a warp map to different memory banks or all accesses that
share a bank refer to the same memory address.

Kernels can issue warp-level or block-level barrier instructions
which synchronize thread execution and act as a memory fence.
This is required whenever threads within a thread block exchange
data through shared or global memory. Barriers are inexpensive
in themselves, but cause stalls when they are not reached by all
participating threads simultaneously.

In addition to data exchange via shared memory, threads can
make use of warp-cooperative operations such as shuffles and reduc-
tions, which provide versatile primitives for fast data accumulation
and exchange without memory round-trips.

2.2 Challenges in Parallel Lossless Data
Compression

Traditional lossless compressors tend to favor serial implementa-
tions because of mutable encoder / decoder state and the necessity
of a variable-length output stream encoding.

Mutable Encoder / Decoder State. In the general case, lossless
reduction of data volume is achieved by constructing a probability
model for the input data and assigning short representations to
probable inputs and longer representations to improbable ones. The
decoder must have access to the encoder’s probability model to re-
verse this mapping. Since the model is usually neither known ahead-
of-time nor static for the entire length of the stream, exchanging it
explicitly becomes infeasible for single-pass compressors. Instead,
encoder and decoder will both construct and continuously update
identical models from previously observed uncompressed symbols.

A highly-parallel compressor must be able to break this depen-
dency chain in order to avoid a runtime behavior dominated by
synchronizing on shared state. Compressors with large state such as
dictionary coders will not tolerate fine-grained subdivision of their
input space without a significant drop in effectiveness. Small-state
local decorrelation schemes are more robust in that regard.

Variable Length Encoding. Compression of a chunked data stream
is an input-parallel problem since the compressed chunk length is
not known ahead of time. Threads of a parallel compressormust syn-
chronize in order to determine the positions of individual chunks
in the output stream. There are two fundamental approaches to
avoiding serialization around this dependency:

(a) Compressing 𝑘 chunks in 𝑘 parallel threads in fast scratch
memory, deriving output positions after a barrier, and finally
having each thread commit the write to the output stream.

(b) Compressing the entire stream to a sufficiently sized interme-
diate buffer, computing the output positions for all chunks
using a prefix sum, and finalizing the output stream with a
separate compaction step.

https://www.top500.org/lists/top500/list/2020/11
https://wiki.u-gov.it/confluence/download/attachments/358212674/redp5494.pdf


ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs

Option (a) minimizes the required global memory bandwidth
at the cost of potentially expensive barrier operations, whereas
(b) keeps the compressor threads fully parallel, which is useful for
avoiding stalls when their run-time is not constant.

2.3 Specialized Floating-Point Compressors
Floating-point binary representations have a larger word size than
assumed by byte-oriented general-purpose compressors. Also, it
is unusual for floating-point data from real-world applications to
exhibit bit-identical repeating values that are easily deduplicated.
Therefore, the traditional dictionary coder approach is not particu-
larly efficient on this kind of data.

However, dense grid data originating from physical simulations
or sensor arrays tends to exhibit low-frequency components, mak-
ing local prediction from neighboring values feasible. The higher
the dimensionality of a grid, the more local correlations are ex-
pected due to the larger number of neighboring cells for each value.

Construction of a specialized floating-point compressor therefore
usually includes the following three components:

(1) A predictor estimates data from previously-encoded points
via dictionaries, hash tables or from neighboring values.

(2) A difference operator calculates the residual between a
value and its prediction in a reversible way, for example with
an XOR operation or an integer difference.

(3) A residual coder expresses residuals using a variable-length
code favoring small-magnitude values. Algorithms usually
aim to eliminate leading-zero bits through a representation
such as run-length encoding or arithmetic coding.

Several notable CPU-based lossless floating-point compressors
exist in addition to the ndzip algorithm described in section 3.

fpzip [14] uses the Lorenzo predictor [9] to exploit smoothness
in the direct neighborhood of points within an 𝑛-dimensional grid,
compacting residuals using a range coder. The scheme exhibits high
compression efficiency especially for single-precision values, but is
limited to single-threaded operation.

FPC [3] uses a pair of hash-table based value predictors to com-
press an unstructured double-precision data stream. The thread-
parallel pFPC variant [4] allows further prioritization of compres-
sion throughput by processing input data in chunks.

ZFP [13] is a fixed-rate lossy compressor that uses a frequency
transform to decorrelate floating-point values in amultidimensional
grid. The implementation additionally features a variable-rate loss-
less mode. Unlike the lossy variant, lossless compression is currently
not realized on GPUs.

2.4 Data Compression on GPUs
Few publicly available, lossless data compressors exist for GPUs
that are suitable for floating-point data.

General-Purpose Compressors. nvCOMP3 is a lossless data com-
pression framework for Nvidia GPUs. It includes, among others,
a high-throughput implementation of the well-known LZ4 com-
pressor and a configurable Cascaded compression pipeline that is
well-suited for integer data.

3https://developer.nvidia.com/nvcomp

cudppCompress [18] is a general-purpose byte-oriented compres-
sor for GPUs. It parallelizes three stages of the well-known bzip2
compressor, achieving measurable speedup compared with a CPU
implementation on hardware from a similar era. The corresponding
decompressor is not implemented.

In related work, GPUs have been successfully used as a coproces-
sor to accelerate Burrows-Wheeler transform [6]. There further ex-
ist parallel implementations of the Lempel-Ziv-Welch (LZW) [7] and
Lempel–Ziv–Storer–Szymanski (LZSS) [17] compressors, and GPU
entropy coding has seen notable progress in the form of fast Huff-
man [2, 22] and Asymmetric Numeral System (ANS) coders [24].

Specialized Floating-Point Compressors. MPC [25] is a GPU com-
pression scheme for unstructured, multivariate streams of single-
or double-precision floating point data. Two-step, one-dimensional
value prediction is combined with vertical bit packing, a coding
scheme that maps well to the target hardware.

GFC [16] is an exceptionally fast GPU compressor for unstruc-
tured double-precision data. Residuals from a one-dimensional pre-
dictor are compacted by run-length encoding leading zero bits. Un-
like all other evaluated compressors, GFC produces a fragmented
compressed output that is compacted on transfer back to the host.

The authors’ reference implementations of both GFC and MPC
are CUDA programs targeting the Nvidia Kepler microarchitecture.

3 THE NDZIP ALGORITHM
We briefly summarize the established ndzip algorithm [11] before
presenting the ndzip-gpu parallelization scheme.

ndzip is a state-of-the-art block compressor targeting one- to
three-dimensional grids of single- or double precision floating point
data. It approximates the Lorenzo predictor [9] using the Integer
Lorenzo Transform, a separable in-place operation for local decorre-
lation of multidimensional blocks. Residuals are encoded using the
vertical bit-packing scheme previously found in MPC, eliminating
zero-runs in bit-positions of neighboring residuals. By operating
entirely within the integer domain, the algorithm guarantees re-
versibility of the compression operation as well as portability.

ndzip has been shown to deliver exceptional throughput on
CPUs compared to established general-purpose compressors such
as Deflate and specialized algorithms like fpzip [14] or FPC [3] with
an implementation leveraging both thread- and SIMD parallelism.
The ndzip-gpu compressor we present in this paper reproduces the
compressed format of ndzip exactly.

3.1 Block Compression
Instead of operating on the entire, arbitrarily-sized input grid at
once, ndzip subdivides it into fixed-size hypercubes. Each cube
consists of 4096 elements, which corresponds to block sizes of 40961,
642 and 163, respectively. When the grid size is not a multiple of the
block size in any dimension, the remaining border is transmitted in
its uncompressed form.

3.2 Integer Lorenzo Transform
The floating-point Lorenzo predictor [9] estimates the value on
one corner of a length-2 hypercube within an 𝑛-dimensional space
with an implicit polynomial of degree 𝑛 − 1. It has been shown to
be highly effective on multidimensional data [14]. However, the

https://developer.nvidia.com/nvcomp


Fabian Knorr, Peter Thoman, and Thomas Fahringer

1D 2D 3D

negative coefficient

positive coefficient

true value

Figure 1: Decorrelation via Integer Lorenzo Transform

row 0
row 1
row 2
row 3
row 4
row 5
row 6
row 7



0 · · · 1 0 1 1
0 · · · 0 0 0 0
1 · · · 0 1 1 1
1 · · · 0 0 0 0
0 · · · 1 1 0 0
0 · · · 0 0 0 1
1 · · · 0 0 1 0
0 · · · 0 1 0 0



T

=



0 0 1 1 0 0 1 0
· · · · · · · ·
· · · · · · · ·
· · · · · · · ·
1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0


⇌



1 0 0 0 1 1 1 1

0 0 1 1 0 0 1 0
1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0



head

column 0
column 4
column 5
column 6
column 7

Figure 2: Residual coding through Vertical Bit Packing

separation of prediction and residual computation steps requires the
decompressor to reconstruct each prediction from already-decoded
neighboring values, restricting parallelism.

To avoid this limitation, ndzip bijectively maps the bit pattern of
uncompressed floating-point input onto an integer representation
that roughly preserves its monotonicity properties. The resulting
block is then decorrelated using the 𝑛-dimensional Integer Lorenzo
Transform. Starting at the second element of each block, the trans-
form replaces every value with the integer difference to its prede-
cessor. This subtraction step is repeated along each dimension, or 𝑛
times in total, exploiting separability of the multi-dimensional case.
This construction is visualized in Figure 1.

Since integer addition and subtraction are reversible, the Inverse
Integer Lorenzo Transform is a similar in-place operation and sepa-
rable in the same fashion.

3.3 Vertical Bit Packing
Small two’s complement integer residuals exhibit a large number of
leading redundant sign bits, which are encoded space-efficiently us-
ing vertical bit packing. This is achieved by translating residuals to
a sign-magnitude representation, grouping them into sequences of
32 single-precision or 64 double-precision values, and transposing
the resulting 32 × 32 or 64 × 64 bit matrix as shown in Figure 2. All
resulting zero-rows are eliminated. The head, a bitmap with each
position indicating whether the corresponding input column was
non-zero, communicates to the decoder how to expand the stream.

4 PARALLELIZATION SCHEME
The ndzip compressor was originally designed for efficient im-
plementation on SIMD-capable multicore CPUs, exploiting both
thread parallelism between blocks and vector operations to achieve
high throughput in the transform and encoding stages. The CPU
reference implementation utilizes the 256-bit wide x86_64 AVX2
extension to accelerate the transform and bit packing stages. Due
to the rather rigid addressing modes of AVX2, SIMD parallelism is
effectively limited to adjacent values in memory.

While the block subdivision scheme maps well onto independent
thread blocks of the SYCL model, an efficient GPU implementation

Global Memory Shared MemorySM

Block

Residuals

Load

Transform

Grid
×n

Sc
ra

tc
h

Encode

Lengths

Prefix Sum

Offsets
Compact

Stream

1

2

3

Figure 3: Three-stage compression pipeline

must extract significantly more parallelism from within blocks to
keep all threads of an SM occupied. Investing additional compute
resources into fine-grained, conflict-free value addressing to avoid
starving execution units on the GPU is both viable and necessary,
and forms a core innovation of our approach.

In this section, we detail how our novel parallelization scheme
ndzip-gpu is able to efficiently distribute both transform and resid-
ual coding among up to 768 threads while keeping branch diver-
gence and serialization to a minimum.

We target compression and decompression between global mem-
ory buffers on the device. ndzip-gpu prefers coalesced loads and
stores where global-memory access is necessary, but relies on fast
shared-memory and warp-cooperative operations where possible.

We chose the SYCL 2020 programming model4 for implementa-
tion, which exposes hierarchical parallelism and warp-cooperative
primitives in an expressive fashion. Although our code is currently
limited to devices with a warp size of 32 as is usual for Nvidia GPUs,
SYCL will ensure portability to other architectures in the future.

4.1 Compression Pipeline Overview
As discussed in Section 2.2, the output-offset problem of parallel
compression can be solved via whole-device synchronization in
each block or multiple kernel launches and a round-trip through an
intermediate global scratch buffer. ndzip-gpu employs the second
variant. We would expect global barriers to partially negate the
benefit of short-circuit evaluation in the compute-heavy residual
coder. Also, whole-device synchronization is not supported natively
by the SYCL programming model.

Figure 3 details the three-stage compression process. Kernel 1
loads an uncompressed block from global into shared memory,
translating floating-point values to their integer representation. The
𝑛-dimensional Integer Lorenzo Transform then computes residuals
in 𝑛 passes over the block data in-place. The residuals are grouped
into sequences of 32 single- or 64 double-precision values and
encoded via vertical bit packing, resulting in one head word and a
variable number of non-zero columns.

4https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html


ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs

Block OffsetsHeader

Block 0 Chunk Heads Chunk Columns

Block N

Uncompressed Border

Chunk Heads Chunk Columns

Figure 4: Compressed stream layout

Global Memory Shared MemorySM

Block

Residuals

Decode

×n

Store

Stream

Offsets

Transform-1

Grid

Figure 5: Single-stage decompression pipeline

A single global scratch buffer is allocated, providing enough
space for the incompressible case. The index space is subdivided into
chunks, reserving per block a single chunk for all head words fol-
lowed by a smaller chunk for each sequence of bit-packed columns.
All chunk offsets in the scratch buffer are known a priori from the
dimensions of the input grid.

After encoding, each thread block writes their respective chunks
to scratch memory and the chunk lengths to a separate buffer.

Kernel 2 computes a parallel prefix sum over the length buffer
to obtain the offsets of all chunks in the compact output stream.

Finally, using the offset buffer, kernel 3 loads the chunks back
from scratch memory and stores them at their final position in the
output stream. The output offsets of the first chunk in each block
are collected in the stream header.

The stream layout, visualized in Figure 4, purposely separates
fixed-size meta-information (block offsets and chunk heads) from
variable-length packed column encoding. This allows the decoder
to compute absolute offsets of packed columns in parallel without
requiring synchronization or multiple passes over the stream.

4.2 Decompression Pipeline Overview
Since offsets for each block in the compressed buffer can be retrieved
from the stream header, decompression is output-parallel and does
not need synchronization between blocks. A single kernel launch
is sufficient to decode an entire stream or an arbitrary subset of
blocks. Figure 5 details the decompression process of a single block.

The kernel first loads all heads from the first chunk, counts the
set bits to obtain the number of non-zero columns per sequence,
and finally performs a prefix sum to generate an offset table in
shared memory. Bit packing of all chunks can then be reversed in
parallel, expanding into the shared-memory block of residuals. The
integer representation of uncompressed values is then restored by
inverse Integer Lorenzo Transform. Finally, the floating point bit
pattern is recovered by reversing the integer mapping, after which
the block is written to the global output grid buffer.

4.3 Shared Memory Block Layout
The shared memory layout for intermediate results of the multi-
pass transform step must be chosen carefully to avoid bank con-
flicts between all required access patterns. The hardware will split
conflicting loads or stores into as many conflict-free accesses as
necessary, which can dramatically increase the runtime of func-
tions that are bound by shared-memory access, such as the Integer
Lorenzo Transform. There is no obvious general solution to this
problem, instead, the index space transformation must be special-
ized for the one-, two- and three-dimensional case as well as single-
and double-precision data separately.

Padding. To ensure that consecutive indices for accessing the hy-
percube along all axes can map to non-overlapping banks, padding
words are inserted. Since each memory bank is 32 bits wide and 64-
bit loads and stores are executed as two sequential 32-bit accesses,
padding in the double-precision case must still be 32 bits wide. This
requires deliberately misaligned accesses to 64-bit values.

Directional Access Order. In each dimension of the transform
step, iterating over the items of a lane can be modelled as a loop
of fixed stride. However since each active warp processes 32 lanes
simultaneously, the memory offset of the first item in each lane
must be calculated explicitly. Partitioning the set of lanes must
again be done carefully to avoid bank conflicts.

Table 1 shows one such possible conflict-free configuration of
padding and offset computation. This is also the configuration used
by our implementation of ndzip-gpu. Since forward and inverse
Integer Lorenzo Transform expose different degrees of parallelism,
compression and decompression require slightly different memory
layouts. Both variants are compatible with grid load/store oper-
ations and the vertical bit packing scheme, so the block layouts
shown are valid for the entire pipeline.

4.4 Parallel Integer Lorenzo Transform
The 𝑛-dimensional Integer Lorenzo Transform, both forward and
inverse, consists of 𝑛 passes. In every directional pass, 𝐿 lanes can
be processed in parallel; these lanes are distributed among𝑇 threads
of the thread block (see Table 1b).

Forward Transform. The forward transform constructs residuals
in 4096/𝐿 iterations per lane, replacing value representations with
the integer difference to their predecessor. The predecessor value
is tracked in a register, so this scheme only needs to perform one
load and one store per data point in shared memory.

Inverse Transform. To reconstruct value representations, each
inverse transform passmust add the already-decoded predecessor to
each residual. Since this introduces a dependency chain equal in size
to the block side length, there can be at most 40961−1/𝑛 independent
lanes (1 for one, 64 for two and 256 for three dimensions).

Since the inverse transform of each lane constitutes a prefix
sum, serialization can be avoided by employing a parallel scan. In
practice we invert the one-dimensional transform by using a fast
parallel prefix sum on the contiguous block memory and accepting
limited occupancy for the two- and three-dimensional cases by
performing sequential summation per lane.



Fabian Knorr, Peter Thoman, and Thomas Fahringer

Transform Bits 𝑛 32-bit padding word inserted

forward 32 1 every 32 values
forward 64 1 every 16 values
inverse any 1 none
forward 32 2 every 32 values
forward 64 2 every 16 values
inverse 32 2 every 64 values
inverse 64 2 every 16, skip every 64 values
any 32 3 every 32 values
any 64 3 every 16, skip every 512 values

𝑛: Grid dimensionality

Table 1a: Conflict-free block memory layout

Transform 𝑛 𝑘 𝐿 Offset of first item in lane 𝑙 Stride

forward 1 0 𝑇 𝑙 · (4096/𝐿) 1
inverse 1 0 1 0 1

forward 2 0 𝑇 𝑙 · (642/𝐿) 1
forward 2 1 𝑇 (𝑙/64) · ((642/𝐿) · 64) + 𝑙 mod 64 64
inverse 2 0 64 𝑙 · 64 1
inverse 2 1 64 𝑙 mod 64 64

any 3 0 162 𝑙 · 16 1
any 3 1 162 2𝐿(𝑙/16) − 2𝑙/𝐿 · 3840 + 𝑙 mod 16 16
any 3 2 162 𝑙 162

𝑛: Grid dimensionality 𝑘 : Direction 𝐿: Number of lanes
𝑇 : Number of threads per thread block (configurable)

Table 1b: Directional block memory access patterns

4.5 Warp-Cooperative Vertical Bit Packing
Vertical bit packing of fixed-width integer sequences has seen prior
application in Database systems [12]. This approach to compacting
bit patterns with a length indivisible by a processor’s smallest
addressable unit is efficiently vectorized on parallel hardware such
as SIMD-capable processors [19].

Instead of operating on the contiguous bits in an integer, it can
be easily adapted to compact an arbitrary subset of input bit po-
sitions, again allowing highly-efficient implementation on SIMD
architectures [11]. In this form, it has previously been used in GPU
floating point compression as part of the MPC compressor [25].

In the following, we refer to unpacked words as rows and to bits
of identical position in an uncompressed sequence as columns.

State of the Art. For packing, the MPC encoder5 first transposes a
set of rows via warp shuffles, buffering columns in shared memory
before computing a thread-block wide prefix sum to obtain output
positions compacting all non-zero columns in-place. It then busy-
waits for a predecessor thread block to finish compaction in order
to derive the global output position for the current data.

5https://userweb.cs.txstate.edu/~burtscher/research/MPC/MPC_float_12.cu, l. 205ff

When unpacking, MPC calculates relative positions of non-zero
columns using a prefix sum. After again busy-waiting on a pre-
decessor block to calculate the global read offset, it expands the
compact stream into shared memory and repeats the transposition.

Profiling reveals that on contemporary hardware, MPC runtime
is dominated by a thread re-convergence stall after busy-waiting
on the stream position update in global memory.

The novel packing scheme of ndzip-gpu improves performance
beyond the MPC approach on modern GPUs significantly by

(1) short-circuit-evaluating the expensive transposition step for
all-zero blocks without thread divergence

(2) allowing independent forward progress of warps by avoiding
block-wide synchronization entirely

(3) during packing, avoiding serialization around output stream
positions by writing compressed chunks to a global scratch
buffer and employing a separate compaction kernel

(4) during unpacking, avoiding serialization around input stream
positions by reading coarse-grained block offsets from the
stream header and calculating fine-grained chunk offsets
within blocks as a parallel prefix sum.

Packing. In the ndzip-gpu encoder, 32 threads cooperate to pack
32 32-bit or 64 64-bit rows. Listing 1 shows the mechanism for the
simpler 32-bit case, where one word corresponds to one thread.

First, the head, storing positions of zero and non-zero columns,
is computed using warp-cooperative reduction.

In parallel, all 32 rows are staged into contiguous shared mem-
ory to avoid repeated addressing into the complex memory layout
present after the transform step (see Table 1a).

Each thread then accumulates the column identified by its thread
ID in a register. To accomplish this, it iterates over each row in the
sequence, collecting one bit per iteration.

Zero-columns are eliminated by having each thread calculate
the position of its column in the compressed chunk via a warp-
cooperative prefix sum. This scan is efficiently implemented using
warp shuffle operations and requires neither thread-block-level
synchronization nor additional shared memory allocation.

Each thread holding a non-zero column then writes it to the now
known position in the output chunk.

As an effective performance optimization, the entire packing step
can be skipped whenever the head is zero and the chunk therefore
known to be empty. Since the entire warp takes the same branch at
this conditional, no adverse thread divergence occurs.

Unpacking. The decoding stage employs a similar thread assign-
ment, shown for the 32-bit case in Listing 2. First, the length of each
packed chunk is determined as the population count (popcount) of
its head. From these lengths, the offset into the packed stream is
computed using a thread-block parallel prefix sum.

The same zero-head optimization seen in the encoding stage
is applied. The packed chunk with a maximum of 32 entries is
first staged in local memory to reduce L1 cache pressure in the
transposition loop. Then the original rows are reconstructed, again
using one loop iteration per bit. Since the unpacked output positions
are statically known, rows can finally be stored in shared memory
without requiring further synchronization.

https://userweb.cs.txstate.edu/~burtscher/research/MPC/MPC_float_12.cu


ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs

in shared rows
out global lengths, column_chunks
parallel for register c in chunks {

register head = warp_bitwise_or_reduce(rows[c][tid])
if head != 0 {

shared stage[32]
stage[tid] = rows[c][31 - tid]
warp_barrier()
register col = 0
for i in [0,32) {

col |= ((stage[i] >> (31 - tid)) & 1) << i
}
register off = warp_exclusive_prefix_sum(col != 0)
if col != 0 {

column_chunks[c][off] = col
}
lengths[c] = popcount(head)

} else {
lengths[c] = 0

}
}

Listing 1: Cooperative vertical bit packing

in global heads, columns
out shared rows
shared lengths = [popcount(h) for h in heads]
shared offsets = parallel_exclusive_prefix_sum(lengths)
parallel for register c in chunks {

register head = heads[c]
if (head != 0) {

shared stage[32]
stage[tid] = columns[offsets[c] + tid]
warp_barrier();
register row = 0
register off = 0
for i in (32,0] {

if ((heads[c] >> i) & 1) != 0 {
col = stage[off]
row |= ((col >> (32 - tid)) & 1) << i
off += 1

}
}
rows[c][tid] = row

} else {
rows[c][tid] = 0

}
}

Listing 2: Cooperative vertical bit unpacking

On contemporary GPUs, 64-bit operations tend to be slower
than their 32-bit equivalents due to the wider memory operations
involved. However, 64-bit vertical bit packing can be realized with-
out a loss in throughput as no real 64-bit arithmetic is required for
correctness. Instead, the 64× 64 bit matrix is logically split into four
32 × 32 quadrants which are processed independently.

4.6 Parameter Tuning
Since the ndzip format mandates a fixed block size, the most im-
portant tunable parameter is the number of threads per block. This
number can be chosen independently from the rest of the imple-
mentation and allows trading cache locality for higher occupancy,
which improves the ability to hide instruction latencies.

5 EVALUATION
Our implementation of ndzip-gpu is realized as a C++17 library
using a custom version of hipSYCL [1], a cross-vendor CPU/GPU
implementation of the SYCL 2020 programmingmodel. We compare
its performance against five competing GPU compressors with
publicly available source code.

MPC 1.26 and GFC 2.27 are available as stand-alone CUDA pro-
grams. The source of both compressors was updated to CUDA 11,
augmented with an interface for in-memory compression and in-
strumented to provide accurate kernel timings.

nvCOMP 2.0 is provided as a library8 with an interface similar to
the CUDA runtime API. We chose its LZ4 and Cascaded modes for
comparison, which are both available for all evaluated platforms
and produce a single compact compressed stream.

cudppCompress is part of the larger CUDPP 2.3 parallel primi-
tives library9. In addition to syntactic fixes for compatibility with
Clang and an update to CUDA 11, the sequence of compression
kernel launches was instrumented to record GPU timings.

FPC 1.110 is provided as a file compressor and was adapted to
allow in-memory compression.

Neither the code of liblzma 5.2.511, implementing thewell-known
LZMA compressor, nor fpzip 1.3.012 or ZFP 0.5.513 required any
modifications for benchmarking.

The C++, SYCL and CUDA source code of ndzip-gpu, MPC, GFC,
cudppCompress, FPC and fpzip was compiled for Linux on each
host architecture using Clang 10 and the -O3 optimization flag.
nvCOMP, currently being incompatible with Clang, was compiled
using NVCC while keeping the remaining configuration identical.

5.1 Test Data
Compressor performance and the achieved compression ratios were
evaluated on data of varying dimensionality from real-world ap-
plications [10], shown in Table 2. Datasets are available in single
precision, double precision, or both.

msg_sppm and msg_sweep3d are messages sent by a cluster node
running ASCI Purple solvers. snd_thunder is a 32-bit float PCM
audio recording. ts_gas is a time series of gas sensor readings.
ts_wesad is a time series of physiological and motion sensor read-
ings. hdr_night and hdr_palermo are luminance components of HDR
photographs. hubble is an image taken by the Hubble space tele-
scope. rsim is a radiosity field from room response simulation
for time-of-flight imaging. spitzer_fls_irac, spitzer_fls_vla and

6https://userweb.cs.txstate.edu/~burtscher/research/MPC
7https://userweb.cs.txstate.edu/~burtscher/GFC
8https://github.com/NVIDIA/nvcomp/
9https://github.com/cudpp/cudpp
10https://userweb.cs.txstate.edu/~burtscher/research/FPC
11https://tukaani.org/xz
12https://github.com/LLNL/fpzip/releases/tag/1.3.0
13https://github.com/LLNL/zfp

https://userweb.cs.txstate.edu/~burtscher/research/MPC
https://userweb.cs.txstate.edu/~burtscher/GFC
https://github.com/NVIDIA/nvcomp/
https://github.com/cudpp/cudpp
https://userweb.cs.txstate.edu/~burtscher/research/FPC
https://tukaani.org/xz
https://github.com/LLNL/fpzip/releases/tag/1.3.0
https://github.com/LLNL/zfp


Fabian Knorr, Peter Thoman, and Thomas Fahringer

spitzer_frontier are images from the Spitzer telescope. asteroid is
the pressure component in an asteroid impact simulation. astro_mhd
is the temperature component of a magnetohydrodynamic solar
wind simulation. astro_pt is one velocity component of a particle
transport simulation. hurricane is the precipitation component of a
hurricane simulation. magrecon is one time step from a simulation
of magnetic reconnection. redsea is the salt content of a sea eddy
simulation. sma_disk is observational data from the Submillimeter
Array. turbulence is one time step of a turbulent flow simulation.
wave are multiple time steps of a wave propagation function.

5.2 Environment
All compressors discussed so far were evaluated on the following
four GPU-accelerated systems:

• One node of the Marconi-100 supercomputer, featuring dual
POWER9 AC922 CPUs with 256 GB RAM and four Nvidia
Tesla V100 Volta HPC GPUs (Compute Capability 7.0).

• One AMD Ryzen 9 3900X desktop system with 64 GB RAM
and one Nvidia RTX 2070 SUPER mid-range Turing con-
sumer GPU (Compute Capability 7.5)

• One Nvidia DGX A10014 node featuring dual AMD EPYC
7742 CPUs with 1 TB RAM and eight Nvidia A100 40GB
Ampere HPC GPUs (Compute Capability 8.0)

• One dual-socket AMD EPYC 7282 node with 256 GB RAM
and four Nvidia RTX 3090 high-end Ampere consumer
GPUs (Compute Capability 8.6)

We did not specialize ndzip-gpu to exploit functionality present of
the Ampere card that is not available on Volta or Turing. For our
use case, the GPUs differ mainly in their shared memory size and
maximum thread / warp allocation per SM15.

5.3 Methodology
We define the compression ratio of a dataset as compressed size
divided by uncompressed size in bytes, with lower ratios indicating
better compression. This definition allows meaningful analysis of
expected compression ratios from a set of observations using the
unweighted arithmetic mean.

Compressor erformance was evaluated by measuring device
execution time from the start of the first kernel to the end of the last
kernel. Buffer allocation as well as host-device memory transfers
are excluded from the measurements. We report the throughput of
uncompressed bytes per second, which translates to compression
input and decompression output bandwidth. Measurements for
each algorithm–dataset pair were repeated until the total runtime
exceeded one second, but at least five times.

nvCOMP Cascaded requires configuration of the compression
pipeline ahead of time. Results vary with the GPU architecture,
but parameters num_RLEs=1, num_deltas=0 and use_bp=1 result in
the best average compression ratio for our test data in all situations,
so this configuration was used for benchmarking.

All CPU algorithms were benchmarked by measuring execution
time excluding all memory allocations that could be performed
ahead of time. Since not all compressors can make use of multiple

14https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
15https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-
and-technical-specifications

dataset data type dimensions extent
msg_sppm single, double 1 34,874,483
msg_sweep3d single, double 1 15,716,403
snd_thunder single 1 7,898,672
ts_gas single 1 4,208,261
ts_wesad single 1 4,588,553
hdr_night single 2 8,192 × 16,384
hdr_palermo single 2 10,268 × 20,536
hubble single 2 6,036 × 6,014
rsim single, double 2 2,048 × 11,509
spitzer_fls_irac single 2 6,456 × 6,389
spitzer_fls_vla single 2 8,192 × 8,192
spitzer_frontier single 2 3,874 × 2,694
asteroid single 3 500 × 500 × 500
astro_mhd single 3 128 × 512 × 1024
astro_mhd double 3 130 × 514 × 1026
astro_pt single, double 3 512 × 256 × 640
hurricane single 3 100 × 500 × 500
magrecon single 3 512 × 512 × 512
redsea single, double 3 50 × 500 × 500
sma_disk single 3 301 × 369 × 369
turbulence single 3 256 × 256 × 256
wave single, double 3 512 × 512 × 512

Table 2: Scientific sample datasets

threads, we only evaluated single-threaded configurations. The CPU
implementation of ndzip requires an x86_64 processor, so instead of
the POWER9 Marconi-100, the Ryzen 9 3900X system was chosen
for its high single-threaded performance.

5.4 Discussion
Figure 6 and Table 3 demonstrate the superior trade-off between
throughput and compression ratio offered by ndzip-gpu. On the
evaluated test data, our novel parallelization scheme simultaneously
delivers both the best average compression ratio and the highest
throughput of all examined compressors in the single precision case.
For double precision, the GFC and nvCOMP Cascaded schemes
manage to exceed ndzip-gpu’s speed on the RTX 2070 SUPER and
A100 GPUs, albeit at a worse compression ratio.

Unlike both GFC and MPC, ndzip-gpu shows a notable discrep-
ancy between compression and decompression speeds. This can
be explained with the multi-stage architecture of the compressor,
which requires a full global-memory round-trip for compaction.

Kernel Runtime Allocation. Figure 7 breaks down the average
time spent per kernel on Volta hardware. The combined transform
and encoding / decoding kernels of both pipelines show the largest
contribution to total runtime. Performance is not identical between
the two pipelines because although the underlying computations
are similar, different memory access patterns and resulting opti-
mization strategies make them not entirely comparable.

The compression pipeline has the compaction kernel as a second
major contributor. Runtime of the remaining kernels is negligible;
also border compaction can be overlapped with chunk compaction
and border expansion with block decoding and transformation.

https://docs.nvidia.com/dgx/pdf/dgxa100-user-guide.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#features-and-technical-specifications


ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

C
om

pr
es
si
on

ra
ti
o

float compression

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

double compression

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

float decompression

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

double decompression

ndzip-gpu
MPC
GFC
nvCOMP LZ4
nvCOMP Cascaded
cudppCompress

Figure 6: Average compression ratio compared to compressor / decompressor throughput on Tesla V100

Algorithm Ratio Compress GB/s Decompress GB/s

V1
00

20
70

A
10
0

30
90

V1
00

20
70

A
10
0

30
90

single precision
ndzip-gpu .565 135 81 162 177 196 107 273 241
MPC .581 33 38 24 40 33 39 24 41
nvC. LZ4 .729 3.9 2.8 8.6 5.6 68 48 81 80
nvC. Casc. .884 73 45 91 92 113 58 169 138
cudppCo. .654 .03 .04 .01 .03 —

double precision
ndzip-gpu .500 216 98 259 236 235 111 324 278
MPC .539 34 40 25 42 35 40 25 42
GFC .584 111* 126* 105* 136* 101 110 100 127
nvC. LZ4 .576 8.6 6.0 14 11 75 57 106 94
nvC. Casc. .728 145 89 201 189 213 111 359 261
cudppCo. .560 .03 .04 .01 .03 —

* Excluding compaction of the compressed blocks

Table 3: GPU compressor benchmark results. Values report
the arithmetic mean over the analyzed datasets.

Performance of Existing GPU Compressors. As a dictionary coder,
the nvCOMP implementation of LZ4 shows a strong asymmetry
between encoding and decoding speeds.

While the nvCOMP Cascaded scheme achieves exceptional com-
pression and decompression throughput, its compression ratio is
much worse than that of all other alternatives. As such, it is not
well suited for compressing most discussed floating-point datasets.

The general-purpose cudppCompress is orders of magnitude
slower than all specialized competitors. Since it does not provide a
GPU-based decoder, only encoding performance is reported.

Despite its algorithmic similarities to ndzip-gpu, MPC achieves
significantly lower throughput and an unusually consistent perfor-
mance between systems. This matches our observations regarding
the limitations of MPC’s packing scheme (Section 4.5).

The compression throughput shown for GFC underestimates its
total cost, since unlike all other studied compressors, GFC does not
produce a contiguous compressed stream on the device. Instead, it

Algorithm single precision double precision
Ratio GB/s Ratio GB/s

ndzip (CPU) .565 2.9 2.3 .500 3.0 2.6
ZFP lossless .693 .25 .22 .654 .32 .27
fpzip .475 .15 .12 .416 .30 .23
FPC -15 — .464 1.2 1.3
LZMA -9 .481 .01 .10 .336 .01 .20

Serial compression / decompression on AMD Ryzen 9 3900X

Table 4: Reference serial CPU benchmark results. Values
report the arithmetic mean over the analyzed datasets.

0 ms 0.5 ms 1 ms 1.5 ms

Expand Border

Decode + Transform−1

Compact Border

Compact Chunks

Prefix Sum

Transform + Encode

Average time per kernel

Compression
Decompression

Figure 7: Average ndzip-gpu kernel runtimes on Tesla V100

relies on a chunked transfer back to the host for compaction. Similar
to MPC, an unusual performance consistency between systems
suggests that GFC would benefit from an updated implementation
for newer microarchitectures.

Comparison with CPU-Based Compressors. Although the through-
put numbers of most GPU compressors are out of reach for their
CPU counterparts due to limited main memory bandwidth, a com-
parison is still appropriate to analyze the trade-offs involved in the
choice between CPU and GPU compression.

The CPU variant of ndzip produces an identical compressed
stream to ndzip-gpu. Following the comparison in Table 4, the



Fabian Knorr, Peter Thoman, and Thomas Fahringer

Algorithm as
te

ro
id

.f
32

as
tr

o_
mh

d_
te

mp
.f

32

as
tr

o_
mh

d_
te

mp
.f

64

as
tr

o_
pt

_v
x.

f3
2

as
tr

o_
pt

_v
x.

f6
4

hd
r_

ni
gh

t.
f3

2

hd
r_

pa
le

rm
o.

f3
2

hu
bb

le
.f

32

hu
rr

ic
an

e.
f3

2

ma
gr

ec
on

.f
32

ms
g_

sp
pm

.f
32

ms
g_

sp
pm

.f
64

ms
g_

sw
ee

p3
d.

f3
2

ms
g_

sw
ee

p3
d.

f6
4

re
ds

ea
.f

32

re
ds

ea
.f

64

rs
im

.f
32

rs
im

.f
64

sm
a_

di
sk

.f
32

sn
d_

th
un

de
r.

f3
2

sp
it

ze
r_

fl
s_

ir
ac

.f
32

sp
it

ze
r_

fl
s_

vl
a.

f3
2

sp
it

ze
r_

fr
on

ti
er

.f
32

ts
_g

as
.f

32

ts
_w

es
ad

.f
32

tu
rb

ul
en

ce
.f

32

wa
ve

.f
32

wa
ve

.f
64

Compression ratio
ndzip-gpu .29 .07 .08 .47 .70 .87 .72 .41 .79 .83 .32 .39 .75 .83 .14 .15 .51 .63 .92 .83 .77 .42 .29 .57 .60 .81 .50 .72
MPC .62 .09 .12 .64 .79 .81 .67 .38 .81 .78 .32 .38 .72 .81 .11 .16 .65 .71 .90 .82 .74 .41 .27 .55 .42 .83 .66 .79
GFC — — .11 — .91 — — — — — — .39 — .89 — .15 — .73 — — — — — — — — — .92
nvCOMP Casc. 1.0 .04 .04 1.0 1.0 1.0 1.0 .69 1.0 .88 .45 .81 1.0 1.0 .12 .10 1.0 .90 1.0 1.0 1.0 .74 .44 .81 .78 .91 1.0 1.0
nvCOMP LZ4 .46 .04 .04 1.0 1.0 .93 .91 .48 1.0 1.0 .12 .23 .98 .98 .09 .07 .76 .76 1.0 1.0 .81 .44 .42 .99 .91 1.0 .97 .94
cudppCompress .51 .15 .16 .91 .98 .78 .68 .50 .98 .89 .22 .25 .41 .78 .17 .16 .75 .77 .97 .98 .85 .53 .37 .86 .51 .96 .73 .82

Compression throughput (GB/s)
ndzip-gpu 184 264 386 143 155 132 137 183 100 128 159 203 121 148 153 300 111 169 118 95 138 178 125 69 74 80 146 155
MPC 32 32 34 33 33 33 32 33 33 34 33 34 31 33 32 34 33 34 32 31 34 33 32 32 32 33 32 34
GFC — — 143 — 93 — — — — — — 108 — 93 — 139 — 95 — — — — — — — — — 103
nvCOMP Casc. 65 288 387 47 72 48 38 87 45 44 126 102 47 69 156 238 56 84 47 40 58 96 91 34 36 43 48 65
nvCOMP LZ4 4.3 19 33 1.7 1.7 1.7 2.0 3.7 1.7 1.7 18 11 2.1 1.7 4.3 8.6 2.5 2.2 1.6 2.5 2.0 3.9 2.5 2.1 1.6 1.9 1.6 1.8
cudppCompress .03 .03 .03 .03 .04 .03 .03 .03 .03 .04 .03 .03 .03 .03 .03 .03 .03 .03 .04 .04 .03 .03 .03 .03 .03 .04 .03 .03

Decompression throughput (GB/s)
ndzip-gpu 248 507 411 187 171 172 174 224 147 185 266 195 139 161 172 365 163 170 163 122 175 266 213 123 126 162 189 172
MPC 35 34 35 34 35 34 33 34 34 35 32 35 32 34 33 33 33 35 33 32 33 35 34 31 31 32 35 35
GFC — — 135 — 89 — — — — — — 89 — 86 — 133 — 88 — — — — — — — — — 89
nvCOMP Casc. 87 438 549 74 105 69 69 128 65 68 181 137 68 94 296 387 80 109 73 70 83 120 143 66 59 73 71 107
nvCOMP LZ4 90 60 102 119 114 62 77 58 85 117 76 54 24 52 13 26 19 67 135 46 112 129 8.3 13 7.1 76 100 108
cudppCompress — — — — — — — — — — — — — — — — — — — — — — — — — — — —

Table 5: Per-dataset compression ratio and throughput achieved by each GPU compressor on Tesla V100

lossless mode of ZFP achieves only moderate volume reduction
at a much lower speed. fpzip, FPC and LZMA all achieve better
compression ratios than ndzip, with fpzip delivering the best single-
precision- and LZMA the best double-precision results.

Compressor Efficiency per Dataset. Table 5 lists the compres-
sion ratio and throughput achieved per dataset by each compres-
sor. While ndzip-gpu achieves the best data reduction and highest
throughput on average, some datasets can be compressed more
effectively or quicker by competitor algorithms.

Ratios for ndzip and MPC are very close for most inputs since
both algorithms share the same residual coding algorithm. The
largest differences are visible for asteroid.f32 in favor of ndzip-gpu
and ts_wesad.f32 in favor of MPC. A likely explanation is that the
three-dimensional asteroid.f32 is strongly correlated in multiple
dimensions while the ts_wesad.f32 time series interacts favorably
with the second prediction step of MPC.

In a variety of other datasets, MPC holds a minute, but consistent
advantage in compression ratio of around two percentage points.
This is expected for data that is not strongly correlated in multiple

dimensions, where ndzip’s block subdivision can limit effectiveness
by leaving some border elements uncompressed.

GFC never manages to outperform all other evaluated compres-
sors in terms of compression ratio.

Both nvCOMP schemes are unique in that they compress a few se-
lect datasets exceptionally well (astro_mhd_temp.*, redsea.*) while
being completely ineffective for many other datasets.

Although cudppCompress exhibits the lowest average compres-
sion ratio, it performs best for some of the unstructured msg_*

datasets. This is likely due to other compressors’ assumptions about
data smoothness being violated for these streams.

With the exception of MPC and cudppCompress, compressor
throughput of all implementations shows an inverse relationship to
compression ratio: Highly compressible data consumes less global
memory bandwidth on output and, in the case of ndzip-gpu, allows
the compressor to short-circuit part of its computation.

The same relationship exists in the decompressor pipelines of
ndzip-gpu, GFC and nvCOMP Cascaded, but is notably absent in
nvCOMP LZ4, for which compressor and decompressor throughput
appear to be uncorrelated.



ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs

128 256 384 512 640 768

Threads per block

100

150

Th
ro

ug
hp

ut
 [

G
B

/s
]

float compression

128 256 384 512 640 768

Threads per block

100

200

double compression

128 256 384 512 640 768

Threads per block

100

200

float decompression

128 256 384 512 640 768

Threads per block

100

200

300

double decompression

V100
2070
A100
3090

Figure 8: Effect of thread block size on compressor and decompressor throughput

Parameter Tuning Results. Figure 8 shows the effect of varying
the thread block size parameter, sampled at multiples of 128. For
small block sizes, occupancy is limited by the high shared memory
requirements of the transform kernel. A higher thread count will
increase occupancy within a thread block but will limit the number
of blocks resident per SM. Since shared memory and thread count
limits per SM vary between architectures, the optimal configuration
is hardware dependent. To obtain close-to-optimal performance on
all hardware studied in this paper, our implementation chooses a
default block size of 256 threads for single-precision and 512 for
double-precision pipelines.

Suitability for Network Communication. To avoid underutilizing a
system’s network link, throughput of compressed data (as opposed
to uncompressed data throughput, which was discussed so far)
must exceed the link bandwidth. Since all high-efficiency GPU
compressors are memory bound, this becomes increasingly difficult
as compression effectiveness rises.

For our reference systemMarconi-100, we follow the throughput
measurement in Table 5, assuming the minimum of compressor
and decompressor throughput.

Multiplying with the compression ratio per dataset, we conclude
that a single Tesla V100 GPU is able to saturate the 25 GB/s Infini-
band EDR interconnect for all except two single-precision and all
double-precision datasets studied. The two exceptions, redsea.f32
and astro_mhd_temp.f32, occupy a theoretical bandwidth of 18 and
21 GB/s respectively, slightly underutilizing the link.

Saturation is thus easily achievable in the average case.

6 CONCLUSION
We presented ndzip-gpu, an efficient parallelization scheme for
the state-of-the art ndzip compressor, targeting multi-dimensional
dense grids of floating-point data. Through the combination of a
block transform step optimized for data locality and an efficient
warp-cooperative vertical bit packing primitive, ndzip-gpu makes
excellent use of modern GPU hardware.

By comparing ndzip-gpu against five other, existing lossless GPU
compressors, we observe that compressibility strongly depends on
interactions between the decorrelation strategy of the algorithm
and the structure of the dataset in question. For instance, a multi-
dimensional grid with strong correlation along more than one di-
mension will be compressed very effectively by ndzip-gpu, whereas
some unstructured datasets can be decorrelated more effectively
by stream compressors like MPC or dictionary coders such as LZ4.

Over the representative set of single- and multi-dimensional test
data considered in this paper however, ndzip-gpu delivers the most
effective average data reduction of all evaluated algorithms on both
single- and double-precision data.

On the Tesla V100 GPUs of the Marconi-100 supercomputer, our
method achieves average compression speeds of 135 and 216 GB/s
and decompression speeds of 196 and 235 GB/s for single and double
precision data respectively, significantly outperforming all com-
pared state-of-the-art compressors. Performance results vary with
the compute power and memory bandwidth of the device, and
on other GPUs, two competing algorithms are able to exceed the
throughput of ndzip-gpu in the double precision case at the cost of
a worse compression ratio.

For most evaluated datasets, the compressed data stream form a
single GPU running ndzip-gpu is sufficient for exceeding the system
interconnect bandwidth, promising benefits for communication-
bound applications in the future.

The source code of our ndzip-gpu implementation is publicly
available on GitHub16.

6.1 Future Work
We are currently evaluating the integration of ndzip-gpu in Celer-
ity [21], a distributed-memory runtime for accelerator clusters that
is especially well-suited for dense-grid algorithms. As all data move-
ment is managed transparently by the runtime, Celerity can au-
tomatically decide which data transfers will profit from lossless
compression by ndzip-gpu.

Once a future version of the SYCL standard exposes whole-device
synchronization, we will be able to further increase compressor
performance by avoiding the global-memory round-trip currently
necessary for compaction. This will require intelligent load bal-
ancing to avoid negating the benefit of zero-head short-circuit
evaluation in the residual coder.

6.2 Acknowledgement
This research is supported by the D–A–CH project CELERITY,
funded by FWF project I3388, and the European High-Performance
Computing Joint Undertaking (JU) project LIGATE under grant
agreement No 956137.

16https://github.com/fknorr/ndzip

https://github.com/fknorr/ndzip


Fabian Knorr, Peter Thoman, and Thomas Fahringer

REFERENCES
[1] Aksel Alpay and Vincent Heuveline. 2020. SYCL beyond OpenCL: The archi-

tecture, current state and future direction of hipSYCL. In Proceedings of the
International Workshop on OpenCL. 1–1.

[2] Ana Balevic. 2009. Parallel Variable-Length Encoding on GPGPUs. In European
Conference on Parallel Processing. Springer, 26–35.

[3] Martin Burtscher and Paruj Ratanaworabhan. 2008. FPC: A high-speed compres-
sor for double-precision floating-point data. IEEE Trans. Comput. 58, 1 (2008),
18–31.

[4] M. Burtscher and P. Ratanaworabhan. 2009. pFPC: A parallel compressor for
floating-point data. In 2009 Data Compression Conference. IEEE, 43–52.

[5] Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat Gok, Dingwen Tao,
Chun Hong Yoon, Xin-Chuan Wu, Yuri Alexeev, and Frederic T Chong. 2019.
Use cases of lossy compression for floating-point data in scientific data sets. The
International Journal of HPC Applications 33, 6 (2019), 1201–1220.

[6] Aditya Deshpande and PJ Narayanan. 2015. Fast burrows wheeler compression
using all-cores. In 2015 IEEE International Parallel and Distributed Processing
Symposium Workshop. IEEE, 628–636.

[7] Shunji Funasaka, Koji Nakano, and Yasuaki Ito. 2015. A parallel algorithm for
LZW decompression, with GPU implementation. In International conference on
parallel processing and applied mathematics. Springer, 228–237.

[8] Song Huang, Shucai Xiao, and Wu-chun Feng. 2009. On the Energy Efficiency of
Graphics Processing Units for Scientific Computing. In 2009 IEEE International
Symposium on Parallel & Distributed Processing. IEEE, 1–8.

[9] Lawrence Ibarria, Peter Lindstrom, Jarek Rossignac, and Andrzej Szymczak. 2003.
Out-of-core compression and decompression of large n-dimensional scalar fields.
In Computer Graphics Forum, Vol. 22. Wiley Online Library, 343–348.

[10] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2020. Datasets for Bench-
marking Floating-Point Compressors. arXiv e-prints, Article arXiv:2011.02849
(Nov. 2020), arXiv:2011.02849 pages. arXiv:2011.02849 [cs.DC]

[11] Fabian Knorr, Peter Thoman, and Thomas Fahringer. 2021. ndzip: A High-
Throughput Parallel Lossless Compressor for Scientific Data. In 2021 Data Com-
pression Conference. IEEE. https://dps.uibk.ac.at/~fabian/publications/2021-
ndzip-a-high-throughput-parallel-lossless-compressor-for-scientific-data.pdf

[12] Yinan Li and Jignesh M Patel. 2013. Bitweaving: Fast scans for main memory
data processing. In Proceedings of the 2013 ACM SIGMOD International Conference
on Management of Data. 289–300.

[13] Peter Lindstrom. 2014. Fixed-rate compressed floating-point arrays. IEEE trans-
actions on visualization and computer graphics 20, 12 (2014), 2674–2683.

[14] Peter Lindstrom and Martin Isenburg. 2006. Fast and efficient compression of
floating-point data. IEEE Transactions on Visualization and Computer graphics
12, 5 (2006), 1245–1250.

[15] Robert Lucas, James Ang, Keren Bergman, Shekhar Borkar, William Carlson,
Laura Carrington, George Chiu, Robert Colwell, William Dally, Jack Dongarra,
et al. 2014. DOE advanced scientific computing advisory subcommittee (ASCAC)
report: Top ten exascale research challenges. Technical Report. USDOE Office of
Science (SC)(United States).

[16] Molly A O’Neil and Martin Burtscher. 2011. Floating-point data compression
at 75 Gb/s on a GPU. In Proceedings of the Fourth Workshop on General Purpose
Processing on Graphics Processing Units. 1–7.

[17] Adnan Ozsoy and Martin Swany. 2011. CULZSS: LZSS lossless data compression
on CUDA. In 2011 IEEE International Conference on Cluster Computing. IEEE,
403–411.

[18] Ritesh A Patel, Yao Zhang, Jason Mak, Andrew Davidson, and John D Owens.
2012. Parallel lossless data compression on the GPU. IEEE.

[19] Orestis Polychroniou and Kenneth A Ross. 2015. Efficient lightweight compres-
sion alongside fast scans. In Proceedings of the 11th International Workshop on
Data Management on New Hardware. 1–6.

[20] Seung Woo Son, Zhengzhang Chen, William Hendrix, Ankit Agrawal, Wei-keng
Liao, and Alok Choudhary. 2014. Data compression for the exascale computing
era-survey. Supercomputing frontiers and innovations 1, 2 (2014), 76–88.

[21] Peter Thoman, Philip Salzmann, Biagio Cosenza, and Thomas Fahringer. 2019.
Celerity: High-Level C++ for Accelerator Clusters. In European Conference on
Parallel Processing. Springer, 291–303.

[22] Jiannan Tian, Cody Rivera, Sheng Di, Jieyang Chen, Xin Liang, Dingwen Tao,
and Franck Cappello. 2020. Revisiting Huffman Coding: Toward Extreme Perfor-
mance on Modern GPU Architectures. arXiv preprint arXiv:2010.10039 (2020).

[23] Oreste Villa, Daniel R Johnson, Mike Oconnor, Evgeny Bolotin, David Nellans,
Justin Luitjens, Nikolai Sakharnykh, Peng Wang, Paulius Micikevicius, Anthony
Scudiero, et al. 2014. Scaling the power wall: a path to exascale. In SC’14: Proceed-
ings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 830–841.

[24] André Weißenberger and Bertil Schmidt. 2019. Massively Parallel ANS Decoding
on GPUs. In Proceedings of the 48th Int. Conference on Parallel Processing. 1–10.

[25] Annie Yang, Hari Mukka, Farbod Hesaaraki, and Martin Burtscher. 2015. MPC:
a massively parallel compression algorithm for scientific data. In 2015 IEEE
International Conference on Cluster Computing. IEEE, 381–389.

https://arxiv.org/abs/2011.02849
https://dps.uibk.ac.at/~fabian/publications/2021-ndzip-a-high-throughput-parallel-lossless-compressor-for-scientific-data.pdf
https://dps.uibk.ac.at/~fabian/publications/2021-ndzip-a-high-throughput-parallel-lossless-compressor-for-scientific-data.pdf

	Abstract
	1 Introduction
	1.1 Reference System

	2 Background
	2.1 GPU Hardware and Programming Model
	2.2 Challenges in Parallel Lossless Data Compression
	2.3 Specialized Floating-Point Compressors
	2.4 Data Compression on GPUs

	3 The ndzip Algorithm
	3.1 Block Compression
	3.2 Integer Lorenzo Transform
	3.3 Vertical Bit Packing

	4 Parallelization Scheme
	4.1 Compression Pipeline Overview
	4.2 Decompression Pipeline Overview
	4.3 Shared Memory Block Layout
	4.4 Parallel Integer Lorenzo Transform
	4.5 Warp-Cooperative Vertical Bit Packing
	4.6 Parameter Tuning

	5 Evaluation
	5.1 Test Data
	5.2 Environment
	5.3 Methodology
	5.4 Discussion

	6 Conclusion
	6.1 Future Work
	6.2 Acknowledgement

	References

