
Noname manuscript No.
(will be inserted by the editor)

Declarative Data Flow in a Graph-Based Distributed
Memory Runtime System

Fabian Knorr · Peter Thoman ·
Thomas Fahringer

Received: date / Accepted: date

Abstract Runtime systems can significantly reduce the cognitive complexity
of scientific applications, narrowing the gap between systems engineering and
domain science in HPC. One of the most important angles in this is automat-
ing data migration in a cluster. Traditional approaches require the application
developer to model communication explicitly, for example through MPI prim-
itives. Celerity, a runtime system for accelerator clusters heavily inspired by
the SYCL programming model, instead provides a purely declarative approach
focused around access patterns. In addition to eliminating the need for explicit
data transfer operations, it provides a basis for efficient and dynamic schedul-
ing at runtime. However, it is currently only suitable for accessing array-like
data from runtime-controlled tasks, while real programs often need to interact
with opaque data local to each host, such as handles or database connec-
tions, and also need a defined way of transporting data into and out of the
virtualised buffers of the runtime. In this paper, we introduce a graph-based
approach and declarative API for expressing side-effect dependencies between
tasks and moving data from the runtime context to the application space.

Keywords Runtime System · DAG · Accelerator · Data Flow · API

1 Introduction

Modern scientific and High Performance Computing (HPC) is a challenging
environment for software engineering. In order to increase compute throughput
despite the ever tighter constraints on power efficiency, modern supercomputer
hardware embraces heterogeneous processor architectures, deep memory hier-
archies with non-uniform access characteristics and specialized network topolo-
gies. Most of the increasing complexity is directly passed onto the application

Fabian Knorr, Peter Thoman, Thomas Fahringer
University of Innsbruck, Austria
E-mail: {fabian,petert,tf}@dps.uibk.ac.at



2 Fabian Knorr et al.

developer in the form of intricate APIs—and in some cases entirely disjoint
programming models—allowing optimal utilization of the available technolo-
gies in every use case. While the resulting increase in up-front development
cost can be acceptable for large-scale applications such as general-purpose sim-
ulation toolkits, specialized single-use codes for novel discovery will not have
the development budget required to test a research hypothesis that might turn
out to be a dead-end.

Distributed Memory Runtime Systems are an established concept for eas-
ing select aspects of the complexity in these heterogeneous systems, such as
performance portability, optimizing execution schedules with unbalanced loads
or automatic data migration between computation steps. They typically in-
cur a trade-off between expressiveness, correctness guarantees, and the level
of permitted user control.

The mission statement of Celerity[14], a task-based distributed memory
runtime system for accelerator clusters, is to make programming heteroge-
neous HPC systems more accessible and time-efficient by facilitating low-effort
porting of single-node SYCL[11] accelerator programs. The Celerity model de-
composes a problem into compute tasks and their data dependencies, using
subdivision of the computational index spaces to transparently distribute work
onto a cluster. Celerity exposes a declarative, data-flow-based API operating
on virtualized buffers, inferring dependencies and necessary data transfers in
the distributed program and relieving the programmer of manual scheduling
decisions and data migration.

Celerity’s APIs allow it to statically guard against unmanaged buffer ac-
cesses and race conditions between tasks, greatly reducing the potential for
programming errors. The runtime implementation benefits from an information-
dense API that supports the generation of efficient execution schedules, while
the user is assured of their code’s correctness by an expressive programming
paradigm, allowing them to focus on core algorithm development instead.

A notable use of Celerity is the Cluster-accelerated magnetohydrodynamics
simulation CRONOS [9], which demonstrates the viability of the Celerity model
for real-world applications. It is also sufficiently generic to serve as the basis
for further abstractions like the Celerity High-level API [15], a programming
model exposing data transformations using composable functional operator
pipelines similar to the C++20 ranges library.

While domain-specific problems can be fully described by compute tasks
and data dependencies between them, real codes need additional features to
perform I/O operations with side effects. Incremental porting from single-node
SYCL applications, an important development goal of Celerity, further requires
data movement between the legacy host application and runtime-controlled
virtual buffers.

In this paper, we present an approach to augmenting the Celerity exe-
cution model with declarative mechanisms for tracking I/O side effects and
safely moving data out of the managed context on pre-existing synchroniza-
tion points.



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 3

2 Related Work

We compare our novel developments in Celerity to state-of-the-art runtime
systems based on their coherence model and synchronization behavior.

SYCL[11] is an industry-standard, single-source programming model for
parallel software targeting hardware accelerators. A multitude of implemen-
tations exist, with backends for GPUs [1], multi-core CPUs, and application-
specific FPGAs [10]. Its execution model is fundamentally asynchronous, and
scheduling is constrained by implicit and explicit data dependencies on buffers.
SYCL is the primary influence on the API of Celerity, which aims to ease port-
ing from single-node SYCL programs to distributed-memory applications.

Legion [3] is a runtime system for distributed heterogeneous architectures
including GPU clusters. It models task parallelism through manual subdivision
of programs into hierarchical tasks in accordance with user-controlled data par-
titioning. Legion tasks are spawned and awaited asynchronously based on fu-
tures, giving the runtime’s out-of-order scheduler the freedom to migrate tasks
between nodes. Unlike other systems, there is no notion of a “main thread”
driving the execution flow, instead, any task (starting with a single top-level
task) has the freedom to issue more parallel work as it executes.

SkePU [7,6] is a skeleton programming system targeting single-node exe-
cution on CPUs or GPUs or distributed execution on an MPI-based backend.
Skeletons are higher-order constructs such as Map, Reduce or Scan that can be
efficiently implemented on all target backends. SkePU follows a synchronous
model where skeleton computations are performed in lock-step with the main
program flow. Memory coherence between host and device containers (and in
a distributed setting, within a container partitioned between MPI ranks) must
be established manually using flush commands.

Kokkos [5,16] is a single-source programming model targeting various high-
performance computing architectures. It optimizes performance portability by
building abstractions on both the compute and memory hierarchy of modern
hardware. Kokkos has both synchronous and asynchronous APIs for dispatch-
ing work, depending on how output data is passed back to the caller. The user
explicitly controls in which memory space data resides in and for which access
pattern the data layout is optimized, e.g. with row-major or column-major
matrix layouts.

3 The Celerity Runtime System

Celerity is a high-level C++ API and runtime system bringing the SYCL [11]
accelerator programming model to distributed-memory clusters. Using an en-
hanced declarative description of data requirements, it transparently distributes
compute kernels onto the nodes of a cluster while maintaining an API very
close to its single-node ancestor. Celerity has evolved significantly beyond what
has previously been published [13,14], so we give a broad overview of the in-
terface and execution model.



4 Fabian Knorr et al.

using mat = buffer<float, 2>;
const range<2> size{256, 256};

void diag(handler& cgh, mat& M, float d) {
accessor m{M, cgh, access::one_to_one{}, write_only, no_init};
cgh.parallel_for(size, [=](item<2> i) {

m[i] = i[0] == i[1] ? d : 0;
});

}

void mul(handler& cgh, mat& A, mat& B, mat& C) {
accessor a{A, cgh, access::slice<2>{1}, read_only};
accessor b{B, cgh, access::slice<2>{0}, read_only};
accessor c{C, cgh, access::one_to_one{}, write_only, no_init};
cgh.parallel_for(size, [=](item<2> i) {

c[i] = 0;
for(size_t k = 0; k < i.get_range(0); ++k) {

c[i] += a[i[0]][k] * b[k][i[1]];
}

});
}

void is_diag(handler& cgh, mat& C, float d, buffer<bool>& ok_buf) {
accessor c{C, cgh, access::one_to_one{}, read_only};
auto ok_r = reduction(ok_buf, cgh, sycl::logical_and<bool>{},

property::reduction::initialize_to_identity{});
cgh.parallel_for(size, ok_r, [=](item<2> i, auto &ok) {

ok.combine(c[i] == (i[0] == i[1] ? d : 0));
});

}

int main() {
distr_queue q;
mat A{size}, B{size}, C{size};
q.submit([=](handler& cgh) { diag(cgh, A, 2); });
q.submit([=](handler& cgh) { diag(cgh, B, 3); });
q.submit([=](handler& cgh) { mul(cgh, A, B, C); });
buffer<bool> ok{1};
q.submit([=](handler& cgh) { is_diag(cgh, C, 6, ok); });
return /* ok[0] is true */ ? EXIT_SUCCESS : EXIT_FAILURE;

}

Listing 1: Simple Celerity program computing the product of two diagonal matrices.

Listing 1 exemplifies the source code of a typical Celerity application. The
main function allocates three two-dimensional buffers for square matrices and
instantiates a distributed queue. It then launches a sequence of kernels that
initialize A and B as diagonal matrices (diag function) and compute the
naïve matrix product C := A ·B (mul function). Finally, the result is verified
by launching a fourth kernel that computes the expected value of each cij and
combines the results using a distributed reduction over the && operator.

Work is submitted to the asynchronous distributed queue in the form of
command group functions, which are implemented as lambdas receiving a
command group handler called cgh in the example. A command group de-
clares a set of buffer requirements and specifies the work to be executed.

Buffer access is guarded by accessors, which bind buffers to the command
group handler and inform Celerity of the mode of access and the access ranges
through range mappers (here one_to_one and slice). Captured inside the



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 5

kernel function that is passed on to parallel_for, these accessors facilitate
reading and writing of the actual buffer contents.

All submissions to the distributed queue happen asynchronously and in-
struct Celerity to build an internal representation of data requirements and
execution ranges. The actual scheduling, distribution and execution of the
submitted kernels within the cluster is transparently managed by the runtime.
The completion of all submitted command groups is finally awaited implicitly
by the ~distr_queue() destructor.

As indicated by the comment in the last line of main, Celerity does not have
a designated mechanism for transporting data managed by the runtime back
to the host application. Closing this gap is non-trivial and a core contribution
of this work, for which workarounds need to be inserted currently.

3.1 Celerity’s Graph-Based Execution Model

Execution of a Celerity program is distributed unto nodes, where a desig-
nated master node creates the execution schedule for the entire cluster and
determines how data and computational load is distributed. This centralized
approach has the potential to incorporate dynamic scheduling decisions such
as load balancing at runtime without requiring costly synchronization be-
tween equal nodes in a distributed scheduling setting. By relying on fully
asynchronous work assignment, Celerity is able to avoid the scalability prob-
lems that a more traditional lock-step implementation of centralized scheduling
would be certain to encounter.

As command groups are submitted from the application thread of a Celer-
ity program, a coarse-grained, directed acyclic graph (DAG) called the task
graph is constructed. Each command group creates a corresponding task node,
and data dependencies between command groups manifest as true- or anti-
dependencies as if the entire program was executed on a single node.

On the master node, the scheduler then constructs a fine-grained command
graph that models the distributed executions and all data transfers that arise
with it. Commands are always bound to a particular node, but the precise
projection of tasks onto commands varies with the task type. For example,
device execution tasks, which are generated from command groups invoking
handler::parallel_for(), may be split such that each worker node receives
one part of the total execution range.

Figure 1 shows possible task and command graphs for the program in
Listing 1. While the task graph reflects the high-level dependency structure
visible in the source code, the command graph contains only dependencies
induced by the subranges executed on each node.

Within task and command graph, dependencies are assigned based on the
access modes of buffer accesses and the submission order. For example, a com-
mand group with write access followed by a command group with read access
to the same buffer region will generate a true dependency, while the inverse
order will generate an anti-dependency.



6 Fabian Knorr et al.

Tasks

diag
write A

diag
write B

mul
read A
read B
write C

is_diag
read C
write ok

Commands (Node 0) Commands (Node 1)

exec diag [0..128, ∗]
write A [0..128, ∗]

exec diag [128..256, ∗]
write A [128..256, ∗]

exec diag [0..128, ∗]
write B [0..128, ∗]

exec diag [128..256, ∗]
write B [128..256, ∗]

push to 1
read B [0..128, ∗]

push to 0
read B [128..256, ∗]

await push from 1
write B [128..256, ∗]

await push from 0
write B [0..128, ∗]

exec mul [0..128, ∗]
read A [0..128, ∗]

read B [∗, ∗]
write C [0..128, ∗]

exec mul [128..256, ∗]
read A [128..256, ∗]

read B [∗, ∗]
write C [128..256, ∗]

exec is_diag [0..128, ∗]
read C [0..128, ∗]

writer ok [∗]

exec is_diag [128..256, ∗]
read C [128..256, ∗]

writer ok [∗]

true dependency data transfer

Fig. 1: Task graph (left) and command graph (right) arising from Listing 1 for two nodes in
stable Celerity. Kernel execution commands show the 2-dimensional iteration sub-range and
the resulting data requirements as assigned by the scheduler. In each dimension, the interval
a..b includes a but excludes b, and ∗ denotes the entire range. The necessary inter-node data
exchange generates auxiliary push / await push command pairs.

A unique concept in Celerity, and one of the fundamental points where
its API differs from SYCL, are range mappers. These projections, required on
each accessor, inform the runtime which portions of each buffer an arbitrary
subdivision of the execution space will access.

The stream of serialized commands is forwarded to the respective worker
nodes, which place them into their executor queue. The executor of each worker
node will then make its own local scheduling decisions to best allocate its
resources to the pending commands. While all nodes construct identical task
graphs in parallel, the command graph structure only exists on the master node
in its full form. Pure worker nodes only reconstruct the relevant dependency
graph locally from the serialized commands.

4 Modeling Node-Local Side Effects

SYCL and Celerity share the concept of host tasks that asynchronously sched-
ule the execution of arbitrary code on the host, avoiding host-device syn-
chronization and scheduler stalls. Similar to device tasks, host tasks can read
and write buffers through the accessor mechanism. Additionally, they are able
interact with operating system APIs such as file I/O and reference objects
allocated in the main thread, since they operate in the same address space.



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 7

As soon as multiple host tasks references a single resource, the resulting syn-
chronization or ordering constraints need to be enforced during execution.

The only synchronization primitive offered by Celerity are cluster-wide bar-
riers that can be inserted between command groups through the aptly-named
distr_queue::slow_full_sync() API. These barriers additionally serialize
the execution on each node and synchronize between the main and executor
threads of the runtime.

In order to avoid race conditions around node-local state, the applica-
tion developer must currently insert such a barrier in any place where an
invisible node-local dependency exists between two tasks. This “sledgehammer
synchronization” is not only error-prone, but also detrimental to application
performance due to the subsequent stalling of work submission.

In the following, we want to explore how to establish ordering on node-
local state while conserving as much scheduling freedom as possible through
an in-graph mechanism.

4.1 Node-Local Side Effects and Dependencies in Related Work

SYCL offers host tasks for asynchronously executing arbitrary C++ code. In
addition to implicit data dependencies arising from buffer accesses, a user is
free to add control-flow dependency edges using the handler::depends_on()
API. These dependencies ensure correct ordering around side effects.

Legion forbids side-effects inside task code since its scheduler will dynam-
ically migrate tasks between nodes. To perform I/O work, Legion offers spe-
cialized Launchers that permit attaching global resources to a task.

SkePU forbids side effects inside skeleton user functions to ensure protabil-
ity between CPU and accelerator backends. Since it uses lock-step execution,
code containing side effects can be freely interspersed with skeleton calls as
long as the necessary memory coherence is established using flush commands.
In the distributed setting, SkePU offers the external facility for constraining
code with cluster-global side effects to a single MPI rank.

Kokkos has support for light-weight task parallelism using the host_spawn
facility. Spawing a task will yield a future which can be named as a prerequi-
site to a successor task, introducing a scheduling dependency. Aside from the
naming, this approach is identical to SYCL.

4.2 Dataflow-Centric: Host Objects and Declarative Side Effects

Even though the closely-related SYCL sets a precedent for explicit control-flow
dependencies, the depends_on API is primarily intended for the alternative,
explicit memory management added in SYCL 2020—a feature that is funda-
mentally at odds with the transparent coherence model of Celerity.

To the contrary, adopting this approach would introduce room for user
error that does not exist for buffer data dependencies since no connection
could be made between a dependency declaration and the actual side effect.



8 Fabian Knorr et al.

template <typename T>
class host_object {

host_object(T&& obj);
};

template <typename T>
class host_object<T&> {

host_object(std::reference_wrapper<T> obj);
};

template <>
class host_object<void> {

host_object();
};

enum class side_effect_order { relaxed, exclusive, sequential };
template<side_effect_order> struct /* exposition only */ order_tag {};
inline constexpr order_tag<side_effect_order::relaxed> relaxed_order;
inline constexpr order_tag<side_effect_order::exclusive> exclusive_order;
inline constexpr order_tag<side_effect_order::sequential> sequential_order;

template <typename T, side_effect_order Order = sequential>
class side_effect {

side_effect(const host_object<T>& object, handler& cgh,
order_tag<Order> = {} /* for class template argument deduction */ );

/* reference-type */ operator*() const; // when T is not void
/* pointer-type */ operator->() const; // when T is not void

};

Listing 2: Host Object and Side Effect API

int main() {
distr_queue q;
host_object<std::ofstream> ofs("file.txt");
q.submit([=](handler& cgh) {

side_effect e{ofs, cgh, /* sequential by default */ };
cgh.host_task(on_master_node, [=] { *e << "Hello "; });

});
q.submit([=](handler& cgh) {

side_effect e{ofs, cgh, sequential_order /* deduction tag */ };
cgh.host_task(on_master_node, [=] { *e << "world!"; });

});
}

Listing 3: Using side effects to serialize writes to a shared file handle

As a novel data-flow centric API, we introduce the concept of host objects
and side effects as shown in Listing 2. Similar to how buffers and accessors
manage distributed data, they provide an expressive and safe interface for
creating data-flow dependencies between command groups.

A host object is a wrapper to a reference or value type with semantics
that are entirely user-defined, but for which access is guarded by the runtime.
Any host object is guaranteed to outlive its last observing host task, so no
dangling reference problems arise from deferred kernel execution.

A side effect, when defined in a command group, grants the host task ac-
cess to a host object and communicates the resulting local ordering constraints
to the runtime. The host object–side effect duality is deliberately similar to
the one between buffers and accessors, both in SYCL and Celerity.



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 9

The example in Listing 3 shows how a file handle is wrapped in a host
object to capture it in a host task. Thereafter, accessing the handle itself is
only possible by constructing a side effect. This statically guarantees that the
object state can only be observed inside host tasks and resulting ordering
constraints are always known to the runtime.

To guard against the accidental observation of non-managed state, we as-
sert at compile time that a command group function does not capture by
reference1 unless it is passed with the allow_by_ref tag. Since buffers and
host objects have shared-pointer semantics internally, by-value captures are
always sufficient in kernels interacting with them.

4.3 Accurate Scheduling Constraints through Side Effect Orders

By default, side effects as proposed above will always serialize execution be-
tween host tasks observing the same object. Since host objects are opaque and
the precise semantics of interactions within the host task cannot be further
inspected by the runtime, this can be overly restrictive. For example, incre-
menting an atomic counter from multiple host tasks does not need to introduce
any scheduling or synchronization constraints, but the user should still be able
to rely on the runtime for the liveness guarantees on the host object.

Choosing between different scheduling guarantees for side effects is remi-
niscent of access modes on buffer access. However, the read–write dichotomy
itself is not a good fit for this new use case: First of all, whether two “writ-
ing” side effects can be scheduled concurrently or not depends on the level of
synchronization employed by the object itself, which is outside of Celerity’s
control. Also, for buffers, the access modes are instructive of implicit data
movement by the runtime, which does not apply to host objects either.

We therefore propose three distinct side effect orders that can optionally
be specified when a side effect is declared:

– sequential order : The task cannot be re-ordered against or executed con-
currently with any other task affecting the same host object.

– exclusive order : The task may be re-ordered, but not executed concurrently
with any other task affecting the same host object.

– relaxed order : The task may be executed concurrently with and freely re-
ordered against other tasks affecting the same host object.

Relaxed-order side effects are sufficient if the contained object provides
synchronization internally, or if the task only performs inherently thread-safe
non-mutating accesses while any mutating operations in other tasks occur in
the context of a sequential-order side effect.

An exclusive-order side effect is indicated when execution order is irrel-
evant, but concurrent accesses would violate synchronization requirements.

1 In C++, references and types transitively containing references are not consid-
ered standard layout types, so this property can be conservatively verified using
std::is_standard_layout_v<>.



10 Fabian Knorr et al.

task 1
sequential H

task 2
exclusive H task 3

relaxed H

task 4
relaxed H task 5

exclusive H

task 6
sequential H

true dependency
conflict

Fig. 2: Mixed task graph originat-
ing from side effects with different
orders on a single host object H.
Sequential-order side effects serial-
ize against other tasks using tempo-
ral dependencies, whereas exclusive-
order side effects introduce conflict
edges to otherwise concurrent tasks.
No edge arises between the two re-
laxed tasks 3 and 4, so this pair
remains concurrent. The associated
command graph (not shown here)
will have an equivalent structure.

procedure AddSideEffect(t, h)
if sh exists ∧ (r(t, h) ̸= sequential ∨ Ah = ∅) then

D ← D ∪ {(t→ sh)}
end if
if r(t, h) = sequential then

D ← D ∪ {(t→ t′) | t′ ∈ Ah}
Ah ← ∅
sh ← t

else
C ← C ∪ {(t↔ t′) | t′ ∈ Ah

: r(t, h) = exclusive ∨ r(t′, h) = exclusive}
Ah ← Ah ∪ {t}

end if
end procedure

Legend

t task
h host object
sh last task with sequential

side effect on h

r(t, h) side effect order of task t on
host object h

Ah active conflict set of tasks on h

D set of dependenciesd
(directed edges)

C set of conflicts
(undirected edges)

Algorithm 1: Generating dependency and conflict edges for side effects on the task graph.
This algorithm also applies to the command graph, where states (D,C,A, s) are tracked
separately per worker instead.

This is superior to a relaxed-order side effect combined with manual locking if
the lock would have to be held for any significant amount of time. Instead of
stalling executor threads, each worker node is able to generate efficient local
schedules around the resulting constraints ahead of time.

A sequential-order side effect must be used when re-ordering would change
the semantics of the node-local state in a way that invalidates results, or
concurrency on execution would violate synchronization requirements. This is
the strongest guarantee and also the default behavior.

Note that between a pair of tasks affecting the same host object, the more
restrictive side effect order decides the level of freedom with respect to re-
ordering and concurrency. As a consequence, relaxed side effects give a stronger
guarantee than an unmanaged reference-capture of the raw object would, since
they are guaranteed to not be re-ordered against sequential effects.

To implement re-ordering constraints, we augment the task and command
graph structures to track undirected conflict edges between tasks in addi-
tion to the existing directed dependency edges. Conflict edges indicate mutual
exclusion between tasks, a strictly weaker requirement than the serializing
dependencies impose. Task and command graphs thus become mixed graphs
as seen in Figure 2. Algorithm 1 shows how dependencies and conflicts are
derived from side effects.



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 11

As evaluating the necessary concurrency constraints of arbitrary opera-
tions on a host object requires intricate knowledge of its API guarantees, we
consider the explicit specification of side effect orders an advanced feature.
The sequential default guarantees scheduling correctness until an exact set of
constraints proves beneficial for a specific problem.

4.4 Opportunistic Scheduling of Mixed Command Graphs

The output of the existing Celerity scheduler is a stream of commands per node
consisting of kernel execution ranges, metadata, and an list of prior command
identifiers that it depends on. These commands are serialized to worker nodes
in a topological order of the directed dependency graph. Executors do not need
to reconstruct the command graph from this stream, but can instead maintain
a set of eligible commands which contains all those that have no remaining
unmet dependencies. The executor can then perform local scheduling on the
eligible set to dynamically optimize resource utilization.

With the addition of conflict edges to the command graph, we extend the
local scheduler to handle mutual exclusions between commands. The theory
behind efficient scheduling around conflict graphs has been studied in the
context of scheduling tasks with known completion times on a fixed number of
general-purpose processors [2]. For certain classes of graphs, optimal solutions
can be found efficiently [4].

Because Celerity has no a priori knowledge of kernel execution times and
aims to minimize latencies by intentionally leaving low-level allocation of re-
sources like GPU cycles to the operating system scheduler, the scheduling
target is to maximize the number of active concurrent tasks.

A correct but sub-optimal implementation could execute all eligible con-
flicting commands sequentially in receiving order. This however misses poten-
tial concurrency between tasks, and to properly harness the increased scheduler
freedom, we instead find the largest conflict-free set of eligible commands.

As a classic NP-hard graph theory problem, the Maximum Independent
Set can be found in exponential time through backtracking [8], although other,
more efficient algorithms exist [12][17]. Since we expect the eligible set to be
rather small most of the time, we implement a simple backtracking solution
that will yield sufficient performance in the common case. Independent of the
algorithm, the exponential growth of run time can thwart potential efficiency
gains of the scheduler, so we stop backtracking early after rejecting 100 can-
didate solutions to limit evaluation time to a constant on degenerate graphs.

This method is opportunistic as the full set of eligible commands may not
be known at the time a scheduling decision is made. Commands should begin
execution as soon as they arrive to minimize latency, so waiting for a certain
filling degree is infeasible. However, since we expect most commands to have an
execution time that greatly exceeds that of command generation, executors will
have a well-filled command queue—and thus the full set of eligible commands
for one earlier time step—most of the time.



12 Fabian Knorr et al.

int main() {
bool host_ok;
{

distr_queue q;
// ...
buffer<bool> ok{1};
q.submit([=](handler& cgh) { is_diag(cgh, C, ok); });

q.submit(allow_by_ref, [=, &host_ok](handler& cgh) {
accessor passed_acc{ok, cgh, access::all{}, read_only_host_task};
cgh.host_task(on_master_node, [=, &host_ok] {

host_ok = passed_acc[0];
});

});
} // await implicit synchronization shutdown from ~distr_queue()
return host_ok ? EXIT_SUCCESS : EXIT_FAILURE;

}

Listing 4: Reference-capture workaround for retrieving buffer data. Necessary data transfers
are requested through a host task accessor and awaited in the queue destructor.

5 Data Extraction from Runtime-Managed Structures

Although the Celerity runtime mostly concerns itself with distributing work
while keeping actively managed buffer data coherent between nodes, real-world
applications must be able to convert existing in-memory data into Celerity
data structures on startup and extract buffer contents and host object state
once execution has completed.

The former is already available in Celerity today: like in SYCL, buffers can
be initialized from a pointer to host memory on construction, assuming that
all nodes pass identical initialization data. In the same fashion, host objects
can be constructed from arbitrary values.

There is however no native way for the application to observe buffer data
or host object state in the main thread after their construction. Instead, host
tasks must be used to export data through the file system or copy them to
a user-controlled data structure that can be accessed once the asynchronous
task has finished executing.

Stalling the main thread for synchronization with such a host task inter-
rupts the asynchronous submission of more work, negatively impacting per-
formance by starving workers until the barrier is cleared. However, Celerity
already has explicit synchronization points where this performance impact is
anticipated: The non-recurring implicit shutdown on queue destruction, where
each node awaits all currently pending commands, and explicit barriers issued
through distr_queue::slow_full_sync().

Both of these synchronization points currently serve as a workaround to
manually extract managed data using a host task. Listing 4 shows how the
verification result from Listing 1 can be observed from the application thread
by reference-capturing a result value and relying on the implicit shutdown as
a synchronization point.



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 13

While functionally correct, this method is non-obvious, requires signifi-
cant boilerplate, and can easily lead to undefined behavior if the application
developer does not ensure that the reference-captured object outlives the syn-
chronization point. In the following, we present a programming model allowing
the extraction of arbitrary managed data data by-value and without the afore-
mentioned hazards using existing synchronization points.

5.1 Data Extraction in Related Work

SYCL knows three ways of accessing buffer data outside of asynchronous tasks:
By constructing a host_accessor, by explicitly synchronizing a host-coherent
buffer via handler::update_host(), and by issuing a copy operation to a
user-managed host data pointer via handler::copy(). Constructing a host
accesser stalls the submitting thread until dependencies are satisified and mem-
ory coherence is established. Similarly, explicit copying must be followed up
with a call too event::wait() to synchronize with the main threads. The la-
tencies caused by both of these approaches is often more acceptable in SYCL’s
single-node context than it would be in Celerity’s distributed setting.

In Legion, any task can access data produced by its sub-tasks without ad-
ditional synchronization by awaiting the corresponding future. This execution
model has no direct correspondence to Celerity, since Legion has no notion of
a main thread of execution.

In Kokkos, some operations such as parallel_reduce will implicitly syn-
chronize with the main thread when the output argument is a user-defined
scalar variable. In all other cases, the user is expected to issue a fence oper-
ation in order to perform explicit synchronization, and/or establish memory
coherence by constructing a data view that is accessible on the host side.

SkePU allows accessing data inside containers on the host side after man-
ually flushing it to establish coherence within its lock-step execution.

5.2 Attaching Data Requirements to Synchronization Points with Epochs

In stable Celerity, barrier synchronization and convergence on runtime shut-
down and is orchestrated using ad-hoc control commands which are sent to
workers like regular commands, but are not part of the command graph.

While this enables a less involved implementation, it is not compatible with
Celerity’s graph-based mechanisms of orchestrating and tracking the necessary
data migrations ahead of any synchronization point that wants to extract
buffer data. The first step is therefore to integrate these synchronization points
into the task and command graphs.

To that end, we introduce the concept of epoch tasks and commands that
fully serialize execution on each node by placing appropriate dependencies in
the graphs. In this model, each task or command (except for the first epoch)
has exactly one preceding epoch, and no task or command can ever depend
on an ancestor of its preceding epoch.



14 Fabian Knorr et al.

task 1
. . .

task 2
write A

task 3
r/w A

barrier

task 4
. . .

task 5
read A

shutdown

epoch init

task 1
. . .

task 2
write A

task 3
r/w A

epoch barrier

task 4
. . .

task 5
read A

epoch shutdown

data-flow
dependency

backward
serialization
dependency

forward
serialization
dependency

Fig. 3: Ad-hoc synchronization with broadcast commands (left, implied) and in-graph syn-
chronization with epoch tasks (right). The barrier epoch becomes the effective producer of
A, so task 5 receives a data-flow dependency on it. Serialization dependencies are inserted
whenever no other transitive dependencies exist to the preceding or succeeding epoch to
enforce correct temporal ordering.

Figure 3 illustrates the approach. We begin by inserting an epoch task in
to the task graph, from which the scheduler generates exactly one epoch com-
mand per node. To ensure correct temporal ordering, each epoch graph node
receives a forward serialization true-dependency on the entire previous exe-
cution front, and all nodes without other true-dependencies (pure producers)
receive a backward serialization true-dependency on the preceding epoch.

On each worker node, all synchronizing API calls block the application
thread until the local executor reaches the epoch command.

Since dependency information from before an epoch is irrelevant for gen-
erating future command dependencies, as an optimization, all commands pre-
ceding an epoch can be eliminated from the graph once the epoch command
has been issued to executors and the epoch can be regarded as the producer
of any value currently available on that node.

5.3 Extracting Buffer Data and Host Object State with the Captures API

With epoch-based synchronization in place, the runtime can attach data de-
pendencies onto synchronization commands and thus automatically generate
data migrations for reading up-to-date buffer contents on every node.

To safely inspect buffer contents and host objects without introducing un-
necessary additional submission stalls, we propose captures, a declarative API
for attaching data requirements to shutdown and barrier epochs, which will
be returned to the caller as snapshots by value.

Listing 5 shows how the distr_queue class is extended to allow data ex-
traction at existing synchronization points. The existing slow_full_sync()
barrier primitive gains additional optional parameters, and shutdown conver-
gence can be triggered explicitly using the drain() function. Both functions



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 15

template <typename T, int Dims>
class buffer_data {

decltype(auto) operator[](size_t idx);
};

template <typename T, int Dims>
class capture<buffer<T, Dims>> {

using value_type = buffer_data<T, Dims>;
explicit capture(buffer<T, Dims> buf);

};

template <typename T>
class capture<host_object<T>> {

using value_type = T;
explicit capture(host_object<T> ho);

};

class distr_queue {
template <typename T> typename capture<T>::value_type

slow_full_sync(const capture<T>& cap);
template <typename... Ts> std::tuple<typename capture<Ts>::value_type...>

slow_full_sync(const std::tuple<capture<Ts>...>& caps);

template <typename T> typename capture<T>::value_type
drain(const capture<T>& cap);

template <typename... Ts> std::tuple<typename capture<Ts>::value_type...>
drain(const std::tuple<capture<Ts>...>& caps);

};

Listing 5: Capture API around celerity::distr_queue (excerpt)

int main() {
// ...
buffer<bool> ok{1};
q.submit([=](handler& cgh) { is_diag(cgh, C, ok); });
return q.drain(capture{ok})[0] ? EXIT_SUCCESS : EXIT_FAILURE;

}

Listing 6: Data retrieval through the high-level capture construct. Data transfers are
generated and awaited inside the drain() function.

either accept a single capture or a tuple of captures and returns a single value
or tuple of values as a result.

Each capture adds the necessary dependencies and data transfers to the
generated epoch nodes and creates a snapshot of the data once the epoch has
executed. As Celerity requires all MPI processes to perform the same sequence
of API calls in order to allow centralized scheduling without worker-to-master
communication, all nodes must currently request identical captures.

Listing 6 shows how the verification result from Listing 1 can be inspected
in the application thread on the shutdown convergence explicitly triggered by
distr_queue::drain().

Figure 4 shows the DAGs resulting from the capture-augmented Listing 6.
With the switch to epoch-based synchronization, the graphs first shown in
Figure 1 now explicitly include the data requirement on the result buffer ok.

The introduction of the side-effect and capture–drain APIs eliminate all
strictly necessary uses of by-reference captures in kernels that have been en-
countered during Celerity development so far.



16 Fabian Knorr et al.

Tasks

epoch init

diag
write A

diag
write B

· · ·

is_diag
read C
write ok

epoch shutdown
read ok

Commands (Node 0) Commands (Node 1)

epoch init epoch init

exec diag [0..128, ∗]
write A [0..128, ∗]

exec diag [128..256, ∗]
write A [128..256, ∗]

exec diag [0..128, ∗]
write B [0..128, ∗]

exec diag [128..256, ∗]
write B [128..256, ∗]

· · · · · ·

exec is_diag [0..128, ∗]
read C [0..128, ∗]

writer ok [∗]

exec is_diag [128..256, ∗]
read C [128..256, ∗]

writer ok [∗]

push →1
readr ok [∗]

push →0
readr ok [∗]

await push ←1
writer ok [∗]

await push ←0
writer ok [∗]

reduction
readr write ok [∗]

reduction
readr write ok [∗]

epoch shutdown
read ok [∗]

epoch shutdown
read ok [∗]

Fig. 4: The updated task and command graph, first seen in Fig. 1, after the introduction
of epochs and capture-based data extraction following Listing 6. The reduction operation in
verify() places the ok buffer in the pending reduction state indicated by the subscript in
readr and writer. A reduction command is generated as the result of the data requirement
in the shutdown epoch which reverts the buffer back to the distributed state.

6 Evaluation

While work focuses primarily on API expressiveness and programmability, the
introduction of declarative side effects promises a performance improvement.
Conversely, the introduction of epoch-based synchronization increases internal
complexity, so the proposed changes demand further assessment.

We evaluated Celerity’s performance on the Marconi 100 supercomputer in
Bologna, Italy, which holds rank 18 of the TOP500 list as of November 20212.
Each node is powered by dual-socket IBM POWER9 AC922s and 256 GB
of RAM, while inter-node communication is handled by dual-channel Infini-
band EDR with a unidirectional bandwidth of 12.5 Gbit/s.

Although this system is GPU-accelerated and Celerity is built around accel-
erator computation, no device kernels are executed as part of the benchmarks.
Celerity unconditionally depends on a SYCL implementation for type defini-
tions such as sycl::range, but results are expected to be independent of the

2 https://www.top500.org/lists/top500/list/2021/11

https://www.top500.org/lists/top500/list/2021/11


Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 17

1 2 4 8 16 32 64
processes

10 7

10 5

10 3

tim
e 

[s
]

epoch-based slow_full_sync
broadcast slow_full_sync
MPI_Barrier

Fig. 5: Latency of barrier synchroniza-
tion primitives (95% confidence inter-
vals). slow_full_sync (blue and or-
ange curves) has additional communi-
cation cost compared to the MPI base-
line (green curve). Epoch-based syn-
chronization (blue curve) further adds
a constant overhead for graph genera-
tion that is amortized for higher node
counts.

1 2 4 8 16 32 64
processes

10 5

10 4

10 3

10 2

10 1

tim
e 

[s
]

global, with slow_full_sync
local, with side effects
slow_full_sync

Fig. 6: Efficiency gains from replac-
ing global barrier synchronization (blue
curve) with side-effect dependencies
(orange curve) to serialize a chain of
10 host tasks (95% confidence inter-
vals). The local method does not require
communication between worker nodes.
Timings are measured using a single
slow_full_sync barrier per run, which
is included as a baseline (green curve).

backend choice. For the following evaluation, we compiled against the most
recent development version of hipSYCL3 on with Clang 12.0.1 as the host
compiler and IBM Spectrum MPI 10.4.0 as recommended on Marconi 100.

For all multi-process benchmarks, we allocated 4 Celerity processes per
cluster node through SLURM except for the 1- and 2-process case, where all
processes were mapped to a single node. Since Celerity currently requires one
process per compute device, this matches the typical configuration on a system
with 4 GPUs per node. Each measurement was repeated 10 times.

Figure 5 compares the latency of Celerity’s slow_full_sync synchroniza-
tion primitive against a synchronous MPI_Barrier. The latency of the Celerity
implementation is elevated compared to the explicit MPI call as the broadcast-
synchronization command or epoch command has to be sent to each worker
before they can initiate their own MPI_barriers,. The epoch-based version is
additionally delayed by graph generation overhead with a polynomial factor.

Figure 6 compares the overhead of serializing host tasks through barrier
synchronization (the necessary workaround in stable Celerity) to the novel,
local method using side effects. The benchmark measures a chain of 10 empty
host tasks, serialized either through calls to slow_full_sync or side effects on
a common host object. The local method, which only requires the introduction
of scheduling dependencies, has much lower latency than the global barrier
method, which introduces unnecessary synchronization between nodes.

Figure 7 shows the performance implications of introducing shutdown epochs
on graph generation in the master node. We measured the time required to
construct task and command graphs for 4 synthetic topologies: chain, an arti-
ficial chain of command groups that require all-to-all communication between

3 https://github.com/illuhad/hipSYCL/commit/1046a787

https://github.com/illuhad/hipSYCL/commit/1046a787


18 Fabian Knorr et al.

0.0 0.5 1.0 1.5 2.0
time [ms]

chain
soup

jacobi
wave_sim

task graph

0.0 0.5 1.0 1.5 2.0
time [ms]

command graph for 1 node

0 5 10 15 20
time [ms]

chain
soup

jacobi
wave_sim

command graph for 4 nodes

baseline with shutdown epoch

0 100 200 300 400 500
time [ms]

command graph for 16 nodes

Fig. 7: Isolated time measurements for task and command graph generation on the master
node. Introducing a shutdown epoch requires forward serialization dependencies which cause
measurable overhead if the execution front is large. This is pronounced for the artificial and
degenerate soup topology of a set of disconnected tasks.

worker nodes; soup, an artificial, loose collection of disconnected tasks; jacobi,
the task chain resulting from a 2D Jacobian solver; and wave_sim, the graph
of a wave propagation stencil.

While accepting the extra work of generating a shutdown epoch will in-
crease runtime unconditionally, this is especially pronounced for graphs with
a large execution front, such as the artificial and degenerate soup topology.
As expected, generating a forward serialization dependency from each task in
the execution front and subsequently updating tracking structures has a mea-
surable overhead. Graphs that more closely resemble real-world applications,
which typically manifest as a chain of time steps, have a much smaller execu-
tion front and are therefore affected to a much smaller degree. As the number
of nodes increases, scheduling is dominated by satisfying data dependencies
instead. For adverse patterns such as the all-to-all communication required by
the chain topology, this increase can be superlinear.

The approach to finding an optimal schedule on conflict graphs introduced
in 4.4 has a worst-case runtime dependent on the number of allowed back-
tracking candidates. We measure the effect of this limit on synthetic conflict
graphs which are generated by adding uniformly-sampled conflict edges to a
set of disconnected command nodes. Figure 8 visualizes the effects of varying
the candidate limit, which confirms our choice of 100 as a reasonable trade-off.

To summarize, the introduction of declarative side effects has a net-positive
performance impact, which will help overall system performance as we expect
their use to arise repeatedly during application life cycle. As data extraction
from runtime-managed structures is usually only relevant on shutdown, we
argue that the demonstrated increase in synchronization latency has minimal
impact on overall runtime and is justified by the improved programmability.



Declarative Data Flow in a Graph-Based Distributed Memory Runtime System 19

100 102 104 106

candidate limit

5

10

15

20

25

in
de

pe
nd

en
t s

et
 si

ze
10 commands, 5 conflicts
10 commands, 10 conflicts

40 commands, 20 conflicts
40 commands, 80 conflicts

100 102 104 106

candidate limit

101

103

105

107

ev
al

ua
te

d 
ca

nd
id

at
es

100 102 104 106

candidate limit

10 5

10 4

10 3

10 2

10 1

ru
nt

im
e 

[s
]

Fig. 8: Backtracking search for the largest conflict-free command set has exponential run-
time behavior which must be cut short to cap scheduling latency in the executor. For a
wide range of conflict-graph configurations, a limit of 100 backtracking candidates reduces
worst-case execution time to the order of tens of microseconds, while backtracking beyond
that limit will only yield diminishing returns in independent set size.

7 Conclusion

In this work, we have investigated how a graph-based distributed-memory run-
time system can be extended with safe, declarative APIs to track dependencies
on opaque node-local objects and transfer runtime-managed data back to the
application thread to ease porting of legacy applications.

Specifically, we added the concept of host objects and side effects to the
Celerity runtime system, a declarative mechanism for guarding access to and
generating scheduling constraints around arbitrary node-local objects.

We further introduced the captures mechanism that allows observing snap-
shots of Celerity-managed data in the application thread without introducing
unnecessary stalls in the asynchronous execution flow. In order to model the
required data movements, existing synchronization points were fully integrated
into the task and command graphs as epochs, which allow the expression of
captured ranges as ordinary dependencies.

Experimentally, we confirmed that declarative node-local side effects are
much more efficient than the previously necessary workaround employing bar-
rier synchronization. While the epoch-based execution model required for data
extraction can incur measurable overhead for command generation, this time
is quickly amortized in a highly parallel setting.

Since evaluation was performed purely on synthetic benchmarks, the prac-
tical effects of the proposed extensions on programming effort and runtime
performance of real-world applications remain to be seen.

7.1 Future Work

There is further potential in exploring the design space of the captures and side
effects APIs. A mechanism to capture different buffer subranges on different
nodes would allow a non-Celerity portion of the user program to continue
operating in a distributed-memory fashion. Further, side effects are currently



20 Fabian Knorr et al.

node-local by definition, but an application might also introduce cluster-wide
side effects as well by writing to a parallel file system. Such global side effects
should introduce edges in the Celerity graph model as well.

Acknowledgement

This research is supported by the European High-Performance Computing
Joint Undertaking (JU) project LIGATE under grant agreement No 956137.

References

1. Alpay, A., Heuveline, V.: SYCL beyond OpenCL: The architecture, current state and
future direction of hipSYCL. In: International Workshop on OpenCL, pp. 1–1 (2020)

2. Baker, B.S., Coffman Jr, E.G.: Mutual exclusion scheduling. Theoretical Computer
Science 162(2), 225–243 (1996)

3. Bauer, M., Treichler, S., Slaughter, E., Aiken, A.: Legion: Expressing locality and inde-
pendence with logical regions. In: SC’12: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. IEEE (2012)

4. Bodlaender, H.L., Jansen, K.: On the complexity of scheduling incompatible jobs with
unit-times. In: International Symposium on Mathematical Foundations of Computer
Science, pp. 291–300. Springer (1993)

5. Edwards, H.C., Trott, C.R., Sunderland, D.: Kokkos: Enabling manycore performance
portability through polymorphic memory access patterns. Journal of parallel and dis-
tributed computing 74(12), 3202–3216 (2014)

6. Ernstsson, A., Ahlqvist, J., Zouzoula, S., Kessler, C.: Skepu 3: Portable high-level pro-
gramming of heterogeneous systems and hpc clusters. International Journal of Parallel
Programming 49(6), 846–866 (2021)

7. Ernstsson, A., Li, L., Kessler, C.: Skepu 2: Flexible and type-safe skeleton program-
ming for heterogeneous parallel systems. International Journal of Parallel Programming
46(1), 62–80 (2018)

8. Golomb, S.W., Baumert, L.D.: Backtrack programming. Journal of the ACM (JACM)
12(4), 516–524 (1965)

9. Gschwandtner, P., Kissmann, R., Huber, D., et al.: Porting Real-World Applications to
GPU Clusters: A Celerity and Cronos Case Study. In: 2021 IEEE 17th International
Conference on eScience (eScience), pp. 90–98. IEEE (2021)

10. Keryell, R., Yu, L.Y.: Early experiments using SYCL single-source modern C++ on
Xilinx FPGA: Extended abstract of technical presentation. In: Proceedings of the In-
ternational Workshop on OpenCL, pp. 1–8 (2018)

11. Khronos Group: SYCL™ 2020 Specification (revision 4). https://www.khronos.org/
registry/SYCL/specs/sycl-2020/html/sycl-2020.html (2021)

12. Robson, J.M.: Algorithms for maximum independent sets. Journal of Algorithms 7(3),
425–440 (1986)

13. Thoman, P., Jordan, H., et al.: CELERITY: Towards an Effective Programming Inter-
face for GPU Clusters. In: Euromicro International Conference on Parallel, Distributed,
and Network-Based Processing (PDP), pp. 18–28 (2018)

14. Thoman, P., Salzmann, P., Cosenza, B., Fahringer, T.: Celerity: High-Level C++ for
Accelerator Clusters. In: European Conference on Parallel Processing, pp. 291–303.
Springer (2019)

15. Thoman, P., Tischler, F., et al.: The Celerity High-level API: C++20 for Accelerator
Clusters. International Journal of Parallel Programming (accepted, to appear in 2022)

16. Trott, C.R., Lebrun-Grandié, D., Arndt, D., Ciesko, J., et al.: Kokkos 3: Programming
model extensions for the exascale era. IEEE Transactions on Parallel and Distributed
Systems 33(4), 805–817 (2022). DOI 10.1109/TPDS.2021.3097283

17. Xiao, M., Nagamochi, H.: Exact algorithms for maximum independent set. Information
and Computation 255, 126–146 (2017)

https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html
https://www.khronos.org/registry/SYCL/specs/sycl-2020/html/sycl-2020.html

	Introduction
	Related Work
	The Celerity Runtime System
	Modeling Node-Local Side Effects
	Data Extraction from Runtime-Managed Structures
	Evaluation
	Conclusion

