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Abstract
Collective communication APIs equip MPI vendors with the necessary context
to optimize cluster-wide operations on the basis of theoretical complexity models
and characteristics of the involved interconnects.
Modern HPC runtime systems with a programmability focus can perform depen-
dency analysis to eliminate the need for manual communication entirely. Profiting
from optimized collective routines in this context often requires global analysis
of the implicit point-to-point communication pattern or tight constrains on the
data access patterns allowed inside kernels.
The Celerity API provides a high degree of freedom for both runtime implemen-
tors and application developers by tieing transparent work assignment to data
access patterns through user-defined range-mapper functions. Canonically, data
dependencies are resolved through an intra-node coherence model and inter-node
point-to-point communication.
This paper presents Collective Pattern Discovery (CPD), a fully distributed,
coordination-free method for detecting collective communication patterns on
parallelized task graphs. Through extensive scheduling and communication
microbenchmarks as well as a strong scaling experiment on a compute-intensive
application, we demonstrate that CPD can achieve substantial performance gains
in the Celerity model.
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1 Introduction
As we enter the Exascale era with ever increasing parallelism and heterogeneity in
clusters, a growing number of HPC applications become bound primarily by memory
and communication bottlenecks. Efficiently managing communication between mem-
ory hierarchies is now of the utmost importance for scaling any application beyond a
small number of compute nodes.

With traditional HPC software stacks – i.e. MPI+X – these hardware developments
necessitate an increasing level of expertise in parallelization and distributed software
optimization on part of the application programmer. However, as the actual domain of
the computations performed on HPC systems is generally some other physical science,
such expertise is only available to large projects consortia, or by leveraging existing
domain-specific software packages.

This state of the art hampers the development of new algorithms and science, as
there is a clear trade-off: experiment with new algorithmic and scientific approaches
while restricted to smaller-scale or less efficient computation; or accept the limits of
existing software packages, but scale more easily to larger systems and problem sizes.

One approach towards bridging this gap between a focus on allowing relatively
straightforward implementation of domain science on the one hand and the com-
plexities of large heterogeneous distributed memory clusters on the other hand are
HPC runtime systems which seek to automate aspects like data distribution. While
systems like Celerity [14] can greatly reduce the burden on the application program-
mer, meeting the high degree of freedom necessary to target the vast cosmos of data
access patterns found in scientific computing will require a communication model built
around point-to-point primitives in the general case.

For communication patterns involving a large number of cluster nodes however,
collective communication primitives as found in MPI can outperform point-to-point
cascades in network latency and throughput while also reducing tracking overhead in
the runtime. In this paper, we suggest that the conflict in requirements between API
expressiveness, programmability and communication efficiency can best overcome by
automated pattern detection and optimization on an existing point-to-point model.

To substantiate this claim, we present Collective Pattern Discovery for the Celerity
model, a method which automates detection of data access patterns that map to
collective communication steps and inserts eager collective communication steps where
possible. Our approach is deterministic and fully distributed without coordination
between participating nodes and exhibits low overhead. It neither requires training,
observation of previous communication nor guidance from the application developer.

1.1 MPI Collectives
The MPI Standard [10] defines five categories of non-mutating collective operations
that can replace equivalent, hand-rolled point-to-point communication cascades for
improved latency and throughput.

These collectives are either symmetric or revolve around one root node; and
transmitted data is either personalized (nodes receive disjoint buffer sub-ranges) or
non-personalized (every node receives the full buffer range).
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collective operation MPI function

broadcast non-personalized one-to-all MPI_Bcast, MPI_Ibcast
scatter personalized one-to-all MPI_Scatter[v], MPI_Iscatter[v]
gather all-to-one MPI_Gather[v], MPI_Igather[v]
all-gather non-personalized all-to-all MPI_Allgather[v], MPI_Iallgather[v]
all-to-all personalized all-to-all MPI_Alltoall[vw], MPI_Ialltoall[vw]

Table 1 Non-mutating collective operations provided by MPI

The significance of efficient collectives for MPI application performance becomes
apparent in the extensive library of research on optimizing these operations in popular
implementations [9, 13]. Accurate theoretical models allow latency- and throughput-
optimized implementations to select optimal communication patterns depending on
cluster topology [5] and problem size [11].

1.2 Celerity
Celerity is a high-level C++ runtime system for accelerator clusters, focusing on
programmability in the complex environment of distributed-memory accelerator com-
puting [14]. It provides developers with a dataflow-based parallelism model reminiscent
of single-GPU programming while transparently distributing computation across com-
pute nodes. In order to ease adoption and leverage existing standards as far as possible,
its programming interface is closely related to the established SYCL API, with minimal
extensions required for operation on distributed memory [6].

Celerity is built around fully distributed and asynchronous task and command
graph generation, which has previously been shown to scale up to 128 GPUs for
compute-intensive algorithms [12]. However, prior to this work, Celerity’s implicit
communication model was exclusively implemented through asynchronous MPI point-
to-point operations.

1.3 Case Study: Direct N -Body Simulation
To familiarize the reader with the Celerity model and demonstrate the perfor-
mance impact of collective communication later in this paper, we showcase the
implementation of a direct gravitational N -body simulation as defined by

vi,t+1 := vi,t +
∑
j ̸=i

Gmj(pj − pi)

∥pj − pi∥3
∆t, pi,t+1 := pi,t + vi,t+1∆t, (1)

where p are 3-dimensional body positions, v their velocities, m their masses, G the
gravitational constant and t are time steps of length ∆t.

The abbreviated Celerity program in listing 1 represents this system in two virtu-
alized buffers P and V . In a loop, it submits two kernels per time step: time_step
computes vi,t+1 from vi,t by integrating over the entirety of P for each work item i;
then update_p updates pi,t+1 in-place from pi,t and vi,t+1.
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1 using namespace celerity;
2

3 buffer<double3, 1> P(N);
4 buffer<double3, 1> V(N);
5 const double M = 1.0 /* kg */ ;
6

7 distr_queue q;
8 for (double t = 0.0f; t < T; t += dt) {
9 q.submit([&](handler &cgh) {

10 accessor p(P, cgh, access::all(), read_only);
11 accessor v(V, cgh, access::one_to_one(), read_write);
12 cgh.parallel_for<class time_step>(range<1>(N), [=](item<1> i) {
13 double F = 0.0;
14 for (size_t j = 0; j < N; ++j) { F += gravity(p[i], p[j]); }
15 v[j] += M * F * dt;
16 });
17 });
18 q.submit([&](handler &cgh) {
19 accessor v(V, cgh, access::one_to_one(), read_only);
20 accessor p(P, cgh, access::one_to_one(), read_write);
21 cgh.parallel_for<class update_p>(range<1>(N),
22 [=](item<1> i) { p[i] += v[i] * dt; });
23 });
24 }

Listing 1 Simplified implementation of direct N -body simulation in Celerity.

Each kernel is submitted as part of an asynchronous command group, which ties
the kernel function to an execution geometry (lines 12 and 21) and any number of
buffer accessors (lines 10–11 and 19–20).

The execution geometry describes parallelization through a dimensionality (here
1), an execution range (here N), a work item offset (implicitly 0 here) and a work-group
size (implicit and implementation-defined here).

Through lambda captures, accessors inject device-buffer pointers into the kernel
while providing the scheduler with metadata in the form of an access mode (here
read_only, read_write) and a range mapper (here all and one_to_one).

1.4 Range Mappers
Range mappers are an essential concept of the Celerity model, mapping sub-ranges
of the execution range to sub-ranges of the buffer in an accessor. This enables the
discovery of data requirements after arbitrary work assignment.

Given an execution range E, a range mapper r : P(E) → P(E) is any pure
function that forms a homomorphism over the union of execution sub-ranges:

r(E1 ∪ E2) = r(E1) ∪ r(E2) ∀E1, E2 ⊂ E (2)

Any range mapper r that is used in a writing access is further required to be
non-overlapping to allow tracking of the unique producer for any buffer item:

E1 ∩ E2 = ∅ ⇒ r(E1) ∩ r(E2) = ∅ ∀E1, E2 ⊂ E (3)
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Celerity ships a selection of built-in range mapper functions. Relevant to the fol-
lowing discussion are one_to_one (the identity function, requires equal kernel and
buffer dimensions), all (constant, accessing the entire buffer range) and transposed
(an isomorphic shuffling of dimensions). Out of these, one_to_one and transposed
exhibit the non-overlapping property, while all does not.

1.5 Graph-Based Scheduling
Celerity’s parallel schedule is derived from the flow of command group submissions
in two steps: The high level task graph, constructed synchronously on all participat-
ing nodes, describes execution on a cluster-wide level. From this task graph, each
rank generates an individual command graph that models the kernel launches and
communication steps performed within the node.

Work is assigned to accelerators by splitting the global execution range into near-
equally-sized sub-ranges while observing any constraints imposed by the execution
geometry. As one Celerity process usually drives all accelerators of a cluster node,
scheduling will produce multiple execution sub-ranges locally. The graph generation
process itself does not involve communication.

State-of-the-art Celerity resolves data-flow dependencies between nodes to point-
to-point transfers. In this approach, each node tracks the buffer sub-ranges produced
by kernels within its address space through a combination of R-trees [3], from
which inbound communication sub-ranges (await-push commands) and outbound com-
munication targets (push commands) are derived. Lowered to MPI point-to-point
primitives, these commands satisfy any data access pattern that can be described
by the range-mapper model. We refer the reader to [12] for more details about how
Celerity implements its graph-based scheduling and dependency tracking.

Figure 1 shows an excerpt of the task and command graphs resulting from List-
ing 1. Here, as Celerity decides to assign the same execution sub-ranges to the same
nodes across kernels, only the all-read requirement of time_step necessitate com-
munication. The corresponding command graph contains M − 1 push commands and
one await-push command on every node out of M .

1.6 Multi-Device Execution and Memory Coherence
Each Celerity process generates and streams its command graph to its executor thread,
which drives all accelerators addressable by the node. The executor dynamically estab-
lishes memory coherence between host and device memories by tracking buffer writes
and replications in separate R-trees, issuing memory transfers before passing kernels
to the SYCL backend.

While this lazy-update approach effectively balances irregular workloads, missing
context about the higher-level operation each sequence of commands is part of can
lead to sup-optimal execution patterns at times. This holds especially true for the all-
gather pattern found in our N -body simulation, for which the executor will issue a
coherence update for every incoming transfer (M−1 for M nodes) instead of coalescing
them into a single transfer.
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time_step {1...N}
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time_step {1...N/2}
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push to N1
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read P {1...N}

read-write V (identity)

...

await-push

P {1...N/2}

push to N1

P {1...N/2}

push to N0

P {N/2...N}

node 0 commands node 1 commands

Fig. 1 Task graph (left) and command graphs (right) of a point-to-point communication schedule for
direct N -body simulation from listing 1 on M = 2 nodes. We show tasks up to the second time_step
kernel submission and hint at the additional push commands (grey) that would be required for a
command graph on M > 2 nodes.

2 Related Work
Uncovering and exploiting opportunities for collective communication in user programs
has been examined from different angles in recent literature.

These approaches can be broadly categorized into bottom-up schemes discovering
collective patterns through centralized analysis of existing point-to-point programs,
and top-down methods which derive these patterns from high-level cluster-wide
representations and can frequently be coordination-free.

Knüpfer et al. [7] perform post-hoc, bottom-up analysis of application traces with
MPI point-to-point communication, hinting potential sites for collective communica-
tion to the application developer help manual refactoring.

Hoefler et al. [4] use compiler transformations to replace point-to-point opera-
tions with library function calls that build a communication DAG at runtime. In a
centralized bottom-up analysis pass, this approach reliably detects all regular (i.e.
non-MPI_*[vw]) collective patterns. By re-using optimized schedules across program
iterations, the authors are able to amortize the overhead of their optimization.

libWater [2] is an OpenCL-based runtime that dynamically offloads work from a
designated root node to devices attached to other MPI processes. In a bottom-up
scheme, it detects gather, scatter and broadcast patterns among the point-to-point
commands generated as part of data redistribution pass and inserts MPI collective
operations accordingly.

Denis et al. [1] extend the PaRSEC runtime to opportunistically discover broad-
cast patterns bottom-up during task graph build time. To avoid the synchronization
penalty from orchestrating a call to MPI_Bcast from otherwise independent schedulers,
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the sending node initiates a binomial-tree broadcast through point-to-point messages
which are forwarded by intermediate nodes.

In a top-down approach, the cluster backend of SkePU [8] leverages MPI collec-
tives to exchange data between operations where applicable. The rigid skeleton model
significantly eases the modelling of global data movement and computational patterns
when compared to Celerity, which must allow near-arbitrary non-overlapping writes
based on range mappers.

Collective Pattern Discovery as presented in the remainder of this document falls
into the top-down category, analyzing data requirements of a parallelized task-graph
through a distributed and coordination-free algorithm.

3 Collective Pattern Discovery
Collective Pattern Discovery (CPD) is a novel, deterministic, synchronization- and
coordination-free method for detecting instances of all five collective data exchange
patterns found in section 1.1. In two phases, CPD transforms both the replicated task
graph and the per-node individual command graph to identify dataflow edges that
can profit from eager collective communication.

By guaranteeing that all nodes generate collective commands in identical order
regardless of individual work assignment, it satisfies the MPI requirement that all
ranks in a communicator participate in every collective operation.

3.1 Forward Task Generation
The first step in Collective Pattern Discovery (CPD) locates potential edges in task
graph, where an eager collective operation may preempt later point-to-point buffer
updates that would be inserted lazily on command generation.

Although the task graph is oblivious to communication and fully independent of
the underlying cluster configuration (including the number of participating nodes),
it must still keep track of collectives to guarantee that all nodes participate in the
same operations. This also avoids inadvertently exchanging buffer ranges multiple
times, as the task graph will reveal whether a dataflow dependency terminates at the
original data producer or whether there are intermediate tasks for which the data has
potentially been exchanged before.

CPD thus inserts a forward task whenever a read-requirement of task c (the
consumer) would introduce the first task-level dependency on the original writer task
p (the producer) for the accessed region (algorithm 1).

To maximize the number of forward tasks that result in non-trivial collective
communication after work assignment, CPD ignores any task edges it deems to be
communication-free by assuming that tasks which share an execution geometry will
receive identical work assignment in the scheduler.
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Rt,B := read-set of task t on buffer B
Wt,B := write-set of task t on buffer B
W ∗

t,B := subset of Wt,B not overwritten by any subsequent task
At(F ) := {r | r is a range mapper in t ∧ r(Et) ∩ F ̸= ∅}

procedure IsCommunicationFree(p, c, F )
{Assume tasks of identical geometry will have identical work assignment}
if F = ∅ then return True
else if either p or c is a forward task then return False
else if p and c have different execution geometry then return False
else if Ap(F,write) = Ac(F, read) then return True
else return False

procedure GenerateForwardTasks(t)
for each buffer B with Rt,B ̸= ∅ do

for each previous task p ̸= t with W ∗
p,B ∩Rt,B ̸= ∅ do

F ←W ∗
t,B ∩Rt,B

for each task c /∈ {t, p} dependent on p do
if not IsCommunicationFree(p, c, W ∗

p,B ∩Rc,B) then
F ← F \Rc,B

if not IsCommunicationFree(p, t, F ) then
insert forward-task f with dependencies p→ f → t
Rf,B ←Wf,B ← F

Algorithm 1 Forward-task generation for a command-group task t

3.2 Eager Collective Command Generation
In the Celerity model, work assignment and thus the number of nodes participating in
a task is a function of the execution geometry and the number of nodes and accelerators
in the system. This ensures that command graph generation, while distributed, agrees
on a single global schedule. Our implementation guarantees this through fully-static
scheduling. Dynamic scheduling methods remain compatible with CPD, provided that
their schedules are deterministic and reproducible around forward tasks.

After work assignment, the second step of CPD materializes forwards between pro-
ducer and consumer tasks as collective commands if they match one of the patterns

collective producer
nodes

consumer
nodes

producer
range mappers

consumer
range mappers

gather M 1 non-overlapping any
all-gather M M non-overlapping constant
broadcast 1 M non-overlapping constant
scatter 1 M non-overlapping non-overlapping
all-to-all M M — non-trivial transposition —

Table 2 Discovery patterns for collective operations on M > 1 nodes
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read P {N/2...N}

write P {1...N}

time_step {N/2...N}

read P {1...N}

read-write V (identity)

...

node 0 commands node 1 commands

Fig. 2 Task graph (left) and command graphs (right) of a direct N -body simulation with Collective
Pattern Discovery. The forward task on P materializes as a all-gather operation, replacing the push-
await cascade seen in figure 1.

found in table 2. Any non-matching forward task is dropped, and communication will
proceed through the generic point-to-point algorithm.

The pattern matching approach is independent of the exact buffer regions each
node accesses, rather, the collective operation is determined in constant time from
the number producer and consumer commands and range-mapper metadata. The
non-overlapping property of producer (writer) range mappers is assumed to hold by
definition (see section 1.4). Our implementation detects constant and non-overlapping
consumer range mappers as well as transpositions through meta-programming on the
range-mapper functions.

The common gather, all-gather, scatter and broadcast patterns are identified by
analyzing read- and write range mappers in separation.

The all-to-all communication pattern is identified through a consumer access that
forms a non-trivial transposition of the corresponding producer, i.e. one that is not
communication-free after work assignment:

1. Producer task p has exactly one write range mapper w; consumer task c exactly
one read range mapper r participating in the forwarded region F

2. It holds that w(Ep) = r(Ec) = F
3. For any dimension d, all mappings of nodes i to produced buffer ranges wd(Ep,i)

and rd(Ec,i) are either constant or the identity function
4. There exists d such that wd(Ep,i) is constant while rd(Ec,i) is the identity
5. There exists d such that wd(Ep,i) is the identity while rd(Ec,i) is constant.

Figure 2 visualizes the effects of Collective Pattern Discovery on command-graph
generation for the N -body simulation in listing 1.

Collective Pattern Discovery first analyzes the data flow between the initial
time_step and update_p tasks. Since producer and consumer both access buffer
V through the same identity range mapper and the tasks have identical execution
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geometry, the edge is considered to be communication-free and no forward task is
generated.

The read of P{1 . . . N} by the second time_step kernel however applies a different
range mapper than the producer update_p. As the buffer has not been read by any
task since, CPD inserts a forward task on P{1 . . . N}.

After work assignment, the producer–consumer relationship around P connects an
M -node non-overlapping producer to a M -node constant consumer, matching the all-
gather pattern of table 2. Celerity thus inserts an all-gather command on each node,
which becomes the new writer of P{1 . . . N}.

Since all data requirements of the second time_step are now fulfilled, no additional
push-await pairs are generated during dependency analysis.

3.3 Collective Command Execution
Celerity lowers all collective commands to their non-blocking MPI counterparts (e.g.
MPI_Iallgatherv). As required by the standard, these operations are initiated in-
order, but can overlap for the remainder of their execution time.

Since each process potentially drives multiple accelerators, the runtime compiles
larger device-to-device collectives from the host-to-host MPI operations by issuing
local memory transfers before and after the MPI invocation.

Knowledge about the cluster-wide collective operation provides optimization
potential beyond the lazy coherence update mechanism (section 1.6) employed for
point-to-point transfers: Celerity will issue a parallel device broadcast to update all
accelerator memories after completing an MPI collective operation with receiver-
broadcast semantics (broadcast and all-gather patterns).

4 Evaluation
To assess the performance characteristics of Collective Pattern Discovery in iso-
lation, we implement a set of synthetic benchmarking applications that require
communication between device memories (table 3).

benchmark step kernel reads writes

all-gather N B ← {1 . . . N} B′ ← identity

gather-scatter 1. 1 B ← {1 . . . N} B ← {1 . . . N}
2. N B ← identity B′ ← identity

gather-bcast 1. 1 B ← {1 . . . N} B ← {1 . . . N}
2. N B ← {1 . . . N} B′ ← identity

all-to-all N×N B ← transpose(0, 1) B′ ← identity

stencil (control) N×N B ← neighborhood(1, 1) B′ ← identity

Table 3 Access patterns of the synthetic benchmarks examined in this section. Executing
the steps of each program in a loop generates detectable collective communication
patterns (except stencil). After each iteration, buffers B and B′ are swapped.
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Fig. 3 Scheduler throughput for each program listed in table 3 (higher is better). Reported is median
of 100 benchmarks together with minima and maxima.

Where applicable, one-to-all communication is paired with an all-to-one operation
to maintain meaningful dataflow throughout the programs. As control we study the
overhead of CPD on a stencil-like program with a neighborhood exchange pattern that
does not benefit from collective communication.

All benchmarks in this section were run on the Marconi-100 supercomputer in
Bologna, Italy, rank 26 of the TOP500 list as of June 20231. It is a cluster of 980 IBM
Power AC922 nodes with four Nvidia Volta V100 GPUs each, intra-node NVLink 2.0,
and dual Infiniband EDR system interconnect.

Celerity was built using Clang 12.0.1 and OpenSYCL 0.9.22 with -O3 optimization,
linking against CUDA 11.7 and IBM Spectrum MPI 10.4.0. All binaries were executed
with mimalloc 2.0.93 replacing the system allocator.

4.1 Scheduling Microbenchmarks
Celerity generates task- and command graphs concurrently with kernel execution
and data transfers. Scheduling latency can thus usually be hidden after startup, but
applications with very short-running device kernels may become throughput-limited.

By isolating the scheduling process, we can analyze scheduler throughput as a
function of node count. Each node must compute the work assignment of every other
node in the system to detect potential non-collective data requirements. The num-
ber of communication commands tracked however remains constant with CPD while
increasing linearly with point-to-point communication.

Figure 3 demonstrates that all patterns except gather-scatter greatly profit from
CPD’s reduction in tracking complexity, with all-gather achieving a more than 3×
throughput increase for 256 nodes. For small node counts, the constant-time overhead
of forward-task generation yields a visible drop in scheduler performance, both for

1https://www.top500.org/lists/top500/list/2023/06/
2https://github.com/OpenSYCL/OpenSYCL/releases/tag/v0.9.2
3https://github.com/microsoft/mimalloc/releases/tag/v2.0.9
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Fig. 4 Throughput of communication-only system benchmarks from table 3 with kernel execution
disabled (higher is better). Shown is a mixed bar-box plot containing the median, center quartiles
and minima / maxima over 20 runs on varying node configurations. Each measurement is the mean
over 20 iterations.

collective and non-collective patterns. As we will show in section 4.2, this reduction
in throughput is negligible for large-scale runs.

4.2 Communication-Only System Benchmarks
As Celerity is structured around accelerator computation, we benchmark device-to-
device transfer performance specifically by executing the synthetic benchmarks from
table 3 with and without CPD while disabling kernel execution.

Figure 4 visualizes the communication throughput achieved as benchmark itera-
tions per second. All collective patterns profit massively from reduced overheads on
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Fig. 5 Strong-scaling speedup of 20
time steps of the direct N -body sim-
ulation for N = 1,048,576 in double
precision. We report the median, cen-
ter quartiles and minima / maxima
over 20 benchmark runs allocated to
varying node configurations by the
workload manager.

small buffer sizes, and all except gather-scatter can consistently take advantage of
reduced bandwidth requirements on larger-sized buffers.

For large node counts, we can observe a high variance in the performance of MPI
collective communication, which is caused by process scheduling differences on part of
the SLURM workload manager.

The non-collective stencil program shows no difference in communication times
between enabling or disabling CPD, demonstrating that the increase in scheduler
latency seen in figure 3 can be fully hidden.

4.3 Strong Scaling Experiment: Direct N -Body Simulation
To evaluate the efficacy of CPD on a full application, we implement and optimize
the direct N -body simulation from section 1.3 as a Celerity application. Compared
to the simplified listing 1, we use an array-of-struct (AOS) to struct-of-array (SOA)
transformation on P and V , increase parallelism in time_step by writing one item
in V per 32 threads and reduce the required global-memory bandwidth in the same
kernel by shared-memory tiling the read of V .

We choose a strong-scaling experiment specifically to showcase the effects of tran-
sitioning from a compute-bound to a communication-bound problem as the node
count increases. Figure 5 shows the speedup attained from a varying number of GPUs
participating in the simulation of N = 1,048,576 bodies.

Up to 64 GPUs (16 nodes), both point-to-point and collective communication scale
equally. Increasing beyond 128 GPUs yields no additional speedup for the point-to-
point configuration, but does so significantly when Collective Pattern Discovery is
enabled.

Profiling reveals that scalability in this case is limited primarily by latency of small
host-to-device copies for every incoming message, which CPD can effectively reduce
through the use of a device broadcast (section 3.3).

5 Conclusion
This work introduces Collective Pattern Discovery (CPD), a novel, deterministic,
distributed and coordination-free method for reliably identifying opportunities for
collective communication in the parallelized task graphs of the Celerity model.
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In a two-stage approach, CPD identifies task graph edges suitable for eager commu-
nication in the form of forward tasks and matches the concrete data exchange pattern
after work assignment to generate per-node collective commands. This transforms a
large class of distributed-memory interactions into collective operations while reliably
avoiding duplicated communication.

Through synthetic scheduling and communication benchmarks, we demonstrated
how CPD reduces tracking overhead of large runs in the runtime system by replac-
ing a linear number of point-to-point communication pairs with singular collective
operations. On large transfers, this transformation allow us to profit from decades of
research on MPI collective optimization.

In a strong-scaling experiment, we were able to prove sizable gains in scala-
bility over the point-to-point model, effectively scaling a direct N -body simulation
implemented in Celerity to 256 GPUs for the first time.

5.1 Limitations and Future Work
While demonstrably highly efficient in common settings, the graph transformations
performed by Collective Pattern Discovery (CPD) cannot claim algorithmic optimal-
ity in the general case. For example, the eager generation of forward tasks masks the
original producer task of the forwarded buffer sub-region: if the forward is not mate-
rialized, or later tasks would benefit from a superset of the generated collective (e.g.
a logical all-gather access following a simple gather), an opportunity for collective
communication will be missed. Future work could be able to improve CPD in these
situations through a lookahead scheme analyzing longer sequences of tasks at once.

Applicability to other Frameworks

As evident from the technical descriptions in this paper, Collective Pattern Discovery
is specialized for the execution model of Celerity. It assumes parallelized task graphs
that are user-annotated with range mappers to express fine-grained data dependencies.

Other systems that wish to implement CPD will need their own method to stati-
cally discover eligible read- and write operations in the distributed program, equivalent
to table 2. This task is easiest for an API that is explicit about data access patterns,
as has already been demonstrated by the successful incorporation of MPI collective
operations in skeleton libraries [8].
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