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ABSTRACT
The open SYCL standard has established itself as a cross-vendor,
cross-platform means to develop software which benefits from
GPU and accelerator parallelism. Inherent difficulties in portability
between and debuggability of programs for these targets remain.
However, as we demonstrate, the SYCL specification lends itself
to be implemented purely in software in a manner that is acces-
sible to debuggers and which can be employed to simulate the
characteristics of different hardware targets.

We introduce SimSYCL, a novel library-only SYCL implemen-
tation with extensive simulation and verification capabilities. By
executing all SYCL commands synchronously on the host CPU, it
is able to diagnose various manifestations of undefined behavior
within kernels, and grants developers the ability to step into kernels
with an ordinary debugger to discover other logic errors.

We demonstrate that the reduced complexity of this approach,
combined with an implementation focus on fast compilation, con-
siderably speeds up the edit-compile-debug cycle compared to other
SYCL implementations while maintaining reasonable runtime per-
formance. Furthermore, we show how SimSYCL’s simulation capa-
bilities allow unit-testing user code for cross-platform portability,
and that its comprehensive validation detects and reports several
classes of user errors which remain undiagnosed by performance-
focused implementations.
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1 INTRODUCTION
In the recent history of computing, high-performance hardware
across various computational domains has increasingly tended to-
wards heterogeneity and accelerators as a means of extracting the
highest possible performance at a given power budget. This pro-
liferation of hardware architectures lead to rising difficulties in
programmability, and as a result an equally large proliferation of
programming models [7, 30] were proposed in the research com-
munity.

Compared to high-performance hardware, large-scale software is
long-lived, and application developers and institutions expect long-
term support as well as a wealth of readily available and reliable
development tools [34]. In accelerator computing, the only platform
which has truly managed to reach mainstream adoption is Nvidia
CUDA. Initially released in 2006, and with comprehensive resources
widely available by 2011 [8], CUDA had a first-mover advantage,
but also benefits from a broad and growing range of development
tools [5, 26].

However, CUDA is limited to one hardware vendor, and focused
on a particular type of accelerator hardware. The Khronos SYCL
standard [29] provides a royalty-free, vendor-agnostic single-source
C++ API for targeting various parallel hardware architectures. Orig-
inally envisioned as a layer which builds on the prior Khronos
OpenCL standard [15], the SYCL 2020 specification enables SYCL im-
plementations to directly target an even larger set of hardware [3].

As we will detail in section 1.1, the current SYCL ecosystem
offers a large number of independent implementations, with at
least two broadly supported production-quality options. However,
the vast majority of engineering efforts within this ecosystem are
currently directed at improving performance and broadening sup-
port for different target hardware. This is a natural direction given
the overall goals of SYCL, however, other aspects of the software
development life cycle also need to be addressed to further improve
the utility, usability and appeal of SYCL.

To this end, we present SimSYCL, a SYCL implementation target-
ing development, debugging, simulation, verification and confor-
mance use cases. SimSYCL favors strict compliance with the SYCL
specification, comprehensive checking of prerequisites, simplicity
in regards to debugging, compatibility with existing development
tools, and fast compilation over runtime performance. It implements
synchronous, sequential execution wherever possible, minimizes
external dependencies, and enables the simulation of various hard-
ware architectures in terms of their SYCL device specifications.
Figure 1 provides an overview of how SimSYCL fits into SYCL ap-
plication development as a debugging, testing and verification tool,
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Figure 1: Overview of the intended use cases of SimSYCL in SYCL application development

while leaving actual production work to other implementations
more suitable for this purpose.

The core contributions of this work include:
• A new SYCL implementation, SimSYCL, optimized for devel-
opment aspects that are harder to accomodate in implemen-
tations designed to maximize execution speed.

• A detailed discussion of the use cases SimSYCL targets, how
they informed the goals of its design, and how the current
implementation achieves these goals.

• An evaluation of the debugging and verification capabilities,
the compile-time performance and the execution speed of
SimSYCL compared to existing SYCL implementations.

The remainder of this paper is structured as follows. Sections
1.1 and 1.2 provide more detailed background information on the
current SYCL ecosystem and how SimSYCL complements it, while
section 1.3 embeds this research into the broader field of related
work. Section 2 outlines the design and intended use cases for
SimSYCL, distilling a set of goals from this analysis. The most
relevant core implementation aspects are discussed in section 3.
Section 4 provides an evaluation of various aspects of SimSYCL: its
ability to aid debugging and verification, its simulation capabilities,
and compile-time as well as runtime performance. The current state
of and future directions for SimSYCL are discussed in section 5.

1.1 The Current SYCL Ecosystem
As of the end of 2023, there are two major, widely-used SYCL imple-
mentations which both support a variety of hardware: Data-Parallel
C++ and AdaptiveCpp.

Data-Parallel C++ (DPC++) [4] is an open source implementation
included in Intel’s OneAPI initiative which is built on top of the
LLVM/Clang compilation infrastructure [18], with an intention to
upstream SYCL support to mainline Clang in the future. It fully
supports CPUs and Intel GPUs, with more experimental backends
for Nvidia CUDA and AMD ROCm.

AdaptiveCpp [3] (ACpp, previously known as hipSYCL and
Open SYCL) is an implementation with a background in academia.
It features multiple compilation flows targeting arbitrary CPUs
with OpenMP, Nvidia and AMD GPUs each with respective vendor-
specific backends, and a generic single-pass LLVM-based compila-
tion flow with a JIT compilation phase for device code.

In addition to these two implementations with broad hardware
support, Codeplay’s ComputeCpp played a significant role over
the history of SYCL, however, its development was discontinued

in 2023 [22], with Codeplay focusing on contributing to the open-
source DPC++ implementation.

Beyond these mainstream options, there is a large variety of ex-
perimental SYCL implementations with either an academic research
or vendor-specific background. NeoSYCL [14] is an implementa-
tion designed for the NEC SX-Aurora TSUBASA supercomputer.
TriSYCL [10] provides an experimental implementation of SYCL
for FPGA hardware. The Sylkan [31] proof-of-concept prototype
demonstrated that SYCL programs can be compiled for hardware
supporting Vulkan [27] compute shaders. In a similar vein, the
SYCLops [25] converter translates SYCL-specific LLVM IR to MLIR.

Some related projects are not directly SYCL implementations,
but aim to extend the ecosystem in similar ways. The Celerity [23]
runtime system provides an API very close to SYCL, but extends its
applicability to clusters of accelerators with automatic work and
data distribution. Other projects seek to expand the capabilities of
existing implementations to support additional hardware, such as
the Huawei Ascend AI chipset [9].

1.2 The Case for SimSYCL as a Dedicated SYCL
Implementation

As we outlined above, there is a healthy and growing ecosystem
of SYCL implementations. However, they are largely targeted at
achieving high performance, supporting specific classes of hard-
ware, or enabling experimentation towards these goals. While these
are of primary importance for a technology aimed squarely at ef-
fectively leveraging modern parallel high-performance hardware,
these goals also frequently conflict with other use cases, and specif-
ically with some of the goals of SimSYCL.

For example, supporting a variety of hardware will generally
introduce a larger set of dependencies, reducing portability and
increasing the barrier to entry. Similarly, aiming to achieve optimal
performance enforces design decisions which increase the com-
plexity of the code base, increasing compile times and potentially
making debugging more difficult. As such, while it is tempting to
believe that all the features of SimSYCL could be integrated into
one of the existing implementations with less overall effort, the
outcome would be very unlikely to match a dedicated implementa-
tion in terms of ease-of-access, portability, and overall utility for
development use cases.

By dropping all requirements associated with supporting ex-
otic hardware or achieving maximum production performance,
SimSYCL can not only enable portable and low-barrier-of-entry
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development and debugging with quick iteration cycles, but the
implementation can also be focused towards other use cases that
are critical when building, maintaining and testing SYCL software.
These include rigorous verification, as well as the ability to simu-
late various target hardware platforms and their properties – such
as local memory limits or sub-group sizes – without physically
accessing them. This ability is particularly useful for enabling the
continuous integration testing of SYCL applications and frame-
works built on top of SYCL without setting up complex dedicated
testing infrastructure featuring various target hardware devices.

Finally, due to the relative simplicity of its library-only imple-
mentation, and its very strict adherence to the specification, we
hope that SimSYCL can serve as an "executable specification": if
future proposed additions to the SYCL API are first implemented
in SimSYCL – potentially in addition to some implementation pro-
posed by e.g. an independent hardware vendor – then this ensures
that they can be implemented in a library-only framework, and
gives a baseline indication of the effort involved at the interface
level. In this way, the standardization process could also move closer
towards the model adopted by ISO C++, preferring proposals for
which implementation experience has been demonstrated within
multiple independent frameworks and platforms.

1.3 Further Related Work
While the current SYCL ecosystem forms the primary backdrop
of SimSYCL, some additional, relevant related work exists in the
broader spectrum of development, simulation and debugging tools
for accelerator hardware.

There is a rich history of powerful GPU simulation frameworks
which can simulate various hardware configurations [20, 33]. These
types of simulators are generally designed to provide very accurate,
low-level simulation in order to study performance and energy
characteristics [6]. Conversely, SimSYCL is an API-level implemen-
tation of SYCL designed to aid development, testing and functional
verification of SYCL programs, and has no ambitions to simulate
the performance characteristics of specific hardware. This allows for
minimal compile-time and execution overhead compared to more
heavy-weight low-level hardware simulation.

Focusing specifically on debugging, there has been substantial
work in allowing more convenient access and insight into device-
side code in various programming frameworks [11], including
for the OpenCL execution model [21] and, specifically, SYCL [2].
Knobloch and Mohr provide a comprehensive overview on debug-
ging and analysis tools in their survey [16].

On the hardware architecture level, research has looked into
reducing or eliminating non-determinism in GPUs in order to im-
prove debuggability and correctness testing [13]. Unlike these ap-
proaches, which seek to improve the debugging experience directly
on hardware devices, SimSYCL aims to replicate the device environ-
ment as much as possible within a standard host program, allowing
developers to leverage a wealth of existing debugging tools.

Recently, Patel et al. presented a virtual GPU device designed
specifically for OpenMP offloading [19]. In terms of goals and use
cases, this is quite similar to SimSYCL, and the authors point out
several advantages of this approach which match our own motiva-
tions. However, due to the adherence of the SYCL spec to the C++

standard, SimSYCL can be provided as a library-only solution, and
as such the practical design and implementation is fundamentally
different from an OpenMP compilation environment.

2 DESIGN AND USE CASES
This section outlines the primary intended use cases for SimSYCL,
and explains how they influenced its design and feature set. From
each use case, we distill a small set of core design aspects or features
which the implementation of SimSYCL needs to accommodate.

2.1 Use Case 1: Development
Improving the overall development experience for programmers
using SYCL in their applications is of the utmost importance in
order to ensure its sustained growth and viability as a platform.

A core aspect of any platform or programming language which
influences developer productivity and satisfaction is build latency,
i.e. the amount of time it takes to go from implementing a change
to running a test or debugging the resulting application. Software
engineering research indicates that any incremental improvement
to build latency increases the likelihood for developers to be able
to stay focused on a given task [12], in turn affecting overall pro-
ductivity and satisfaction with their development environment.

In this context, the heavy reliance of SYCL on C++ templates
presents some difficulty, as common strategies for reducing build
latency such as moving the majority of the implementation to
separate translation units can not be applied universally. Addition-
ally, the requirement of potentially compiling for multiple target
architectures leads to some implementations adopting expensive
multi-pass compilation schemes. These factors compound, and pre-
vious work has show that various SYCL compilation infrastructures
suffer from relatively long build latencies [32].

For SimSYCL, this motivates the decision to accept the necessity
for small increases in complexity or layering of the design if they
allow the implementation to remove larger dependencies from the
public header surface. Constraining the use of such dependencies
to smaller, separate translation units means they will not affect the
compile times of projects using SimSYCL.

Another highly important feature for ease of development is
portability. When evaluating and designing for this aspect, we need
not only consider the baseline fact that a given implementation
can in principle work on a given target platform, but also the ease
with which it can be accessed. For SimSYCL, this aspect provides
a motivation to keep external dependencies as limited as possible,
and maintain portability to all major operating systems used in
development, and all widely-used C++ compilers: Clang and GCC
on Linux and macOS, as well as MSVC on Windows. Existing SYCL
implementations often lack full support across all of these operating
systems and compilers, as they are rarely used in production when
targeting actual accelerators.

In summary, to maximize the utility of SimSYCL as a devel-
opment platform, the design needs to focus on minimizing build
latency and enabling broad and barrier-free portability. We will
evaluate the success of the current SimSYCL implementation in
regards to these goals in section 4.4.
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2.2 Use Case 2: Debugging
The debugging of parallel applications and frameworks is widely
recognized as highly challenging, and successful platforms provide
a wealth of tools to support this task. As SimSYCL does not focus
on achieving high performance, it already has some inherent ad-
vantages for the debugging use case: the implementation can omit
any complexity which is not necessary to provide a conforming
execution. The resulting relative simplicity makes it easier for ap-
plication developers to understand the mechanics of the API where
necessary.

At the same time, a fundamental goal of SimSYCL is maintaining
compatibility with existing debugging and analysis tools. This is ac-
complished by providing a library-only implementation, which en-
ables compatibility with common debugging infrastructure across
platforms. As one example, SimSYCL allows developers to easily
step into and out of kernel functions using standard debuggers. Fur-
thermore, SimSYCL directly enables low-friction access to address
sanitizers [24] as a build-time option, which is always enabled in
its own unit tests. This generally allows identifying any memory-
related errors much more rapidly.

Finally, the verification features outlined in section 2.4 can also
aid in debugging, in case errors are introduced in an application by
a non-conforming use of the SYCL API which may not be checked
for or sufficiently reported by other SYCL implementations.

We will evaluate how these SimSYCL features support debugging
SYCL applications in section 4.2.

2.3 Use Case 3: Simulation
SYCL is explicitly designed to support a wide variety of target
hardware with varying capabilities, features, and execution behav-
ior. In fact, the info::device structure prescribed by the SYCL 2020
specification [29] enumerates more than 70 individual aspects and
capabilities of a SYCL device which can vary across target hardware.
As such, in order to test the compatibility of a given application
across a large set of potential target platforms, a complex testing
setup and access to all targeted hardware is necessary.

As SimSYCL focuses on simulation rather than high-performance
execution, the relationship between the platform and the applica-
tion developer or their testing infrastructure can be inverted: rather
than the SYCL implementation informing the application of a given
hardware device’s features and capabilities, SimSYCL can be pro-
vided with a hardware profile which instructs it to perform the
program execution as-if a given target platform was used.

This enables testing various aspects of platform compatibility
without access to any specialized hardware. Combinedwith a design
focused on broad operating system and compiler support and few
external dependencies as outlined in section 2.1, this also enables
much more straightforward integration of SimSYCL within the
pipelines of a standard e.g. cloud-based CI infrastructure.

We explore some of the hardware and platform aspects which
SimSYCL can simulate, and how this supports cross-platform com-
patibility testing, in section 4.3.

2.4 Use Case 4: Verification
For many of the operations possible in SYCL, the SYCL 2020 stan-
dard specifies an exhaustive set of constraints and preconditions.

Some of these are relatively easy to verify and check, while others
require tracking of additional information which might incur a
compile-time and/or runtime execution time and memory usage
penalty. Therefore, in most cases, SYCL implementations are not
required to report if any of these preconditions are violated, and
may instead fail silently.

SimSYCL, on the other hand, aims to provide full verification
of all of these constraints and preconditions. Wherever possible,
this verification occurs at compile time, as detailed in section 3.2.
When compile-time verification is not viable, either due to the
standard requiring specific template type definitions, or due to
runtime behavior needing to be checked, SimSYCL will track all the
information necessary to perform a complete validation at runtime.

In addition to checking the validity of API calls in terms of their
constraints and preconditions, SimSYCL also provides a different
kind of verification. Its design and implementation takes special
care not to offer functionality in the SYCL namespace or within
the public interface of any SYCL class which is not specified by the
SYCL standard. Common SYCL implementations frequently offer
additional features that are not currently standardized. While larger
and more involved features are generally marked as experimental
or non-standard, there can also be smaller additions such as some
extra member functions which are not. These are often useful and
can therefore easily slip into a codebase, but they reduce portability
of code which makes use of them.

As the goal of SimSYCL is for any program that works in it to
also work in any other standards-compliant SYCL implementation,
it aims to only include specifically the functionality required by the
standard. As such, compiling with SimSYCL can serve as a simple
test to verify that no implementation-specific functionality was
inadvertently used.

2.5 Use Case 5: Executable Specification
This close adherence to the standard also enables the fifth and
final use case we envision for SimSYCL: serving as an "executable
specification" of the SYCL standard. While the standard includes
the declaration of the SYCL interface and some example code, it
is not actually fully formalized and frequently relies on prose to
describe the intended behavior.

On the other hand, existing implementations are of course fully
specified as working code, but, due to their different and complex
goals regarding performance and hardware support (as outlined in
section 1.2), they introduce a lot of complexity that is not inherent
to the specification. As such, they are less suitable for serving as a
relatively easily understood baseline code version of the standard.

Conversely, SimSYCL aims to be the simplest possible confor-
mant SYCL implementation. It is designed to only introduce com-
plexity when it is in service of debugging, verification or simulation,
and can therefore serve as a vehicle for exploration and prototyping
of API changes, at a level more involved and formalized than a prose
document, but less complex than an implementation in one of the
full SYCL platforms aimed at production-quality performance and
accelerator hardware support.



SimSYCL: A SYCL Implementation Targeting Development, Debugging, Simulation and Conformance IWOCL ’24, April 08–11, 2024, Chicago, IL, USA

sycl::queue q;
auto cpy = // CPY
q.memcpy(bufA, bufB, sz);

auto set = // SET
q.memset(bufC, 0, sz);

q.wait();
auto a = // {A}
q.single_task([]() { });

auto b = // {B}
q.single_task([]() { });

// {C}
q.wait();
// {D}

CPY SET

{A} {B} {C}

{D}

DAG SimSYCL Execution

CPY

SET

{A}

{B}

{C}

{D}

Figure 2: SimSYCL enforces synchronous, in-order execution for queue operations

3 IMPLEMENTATION
In this section we will briefly outline some of the more fundamental
implementation choices behind SimSYCL, and how they serve to
further the important goals of the design which result from the use
cases identified in section 2.

SimSYCL is an open source project available on GitHub1 under
the MIT license. Its continuous integration testing verifies compati-
bility across three compilers (GCC, Clang, andMSVC) and operating
systems (Linux, Windows, and macOS).

3.1 Synchronous Execution
A core principle of SimSYCL which is fundamentally distinct from
all SYCL implementations which aim at runtime performance is syn-
chronous execution of commands. SYCL queues, by default, provide
an inherently asynchronous and potentially parallel API, gener-
ally requiring implementations to build and maintain an execution
graph (DAG) at runtime which encodes and enforces the depen-
dency relationship between commands. However, asynchronicity is
not required to conform with the vast majority of the SYCL specifi-
cation, outside of some edge cases which we outline in section 5.1.

In SimSYCL, all commands execute in program order. The SYCL
API does not provide the means to construct backward dependency
edges between commands, so this is guaranteed to implicitly ful-
fill all buffer- and event dependencies between command groups.
The resulting simplicity aids in debugging and development, as all
errors and exceptions can be reported synchronously, and makes
reasoning over the execution more feasible. This approach also
enables more seamless integration with development tools that are
ill-equipped to deal with asynchronous parallel code.

However, the choice of synchronous execution is not without
its drawbacks: as a result, while SimSYCL offers simulation tools to
verify kernel execution across distinct parallel configurations and
execution orders, the same is not possible between commands that
would be concurrent in a DAG-based implementation.

Figure 2 illustrates the effect of this implementation decision.
The SYCL code excerpt depicted on the left implies the DAG shown
in the center of the image. As the in_order property is not set on
q, any execution order of the set of boxes on each line is correct, e.g.
SET→CPY→B→C→A→D would be a valid execution strat-
egy. However, in SimSYCL the execution will always be fixed and
synchronous, as per the sequence shown to the right of fig. 2.

1https://github.com/celerity/SimSYCL

3.2 Compile-time Validation
As outlined in section 2.4, SimSYCL aims to verify prerequisites
and conditions specified by the standard at compile time, wherever
this is possible in a library-only setting without any changes to
the types and their public interface. At the implementation level,
a concern with this is how it interacts with the goal of low build
latency. C++17-style compile-time verification relies on template
metaprogramming [1], which often necessitates that the compiler
constructs and instantiates a large number of structures unrelated
to the actual execution.

As such, we chose to leverage C++20 concepts wherever possible
to formalize and implement constraints which are expressed as
prose in the current version of the SYCL standard.

1 template<typename T>

2 concept SyclFloat =

3 std::is_same_v<T, float>

4 || std::is_same_v<T, double>

5 || std::is_same_v<T, sycl::half>;

6

7 template<typename T>

8 concept GenFloat =

9 SyclFloat<T> ||

10 ( (Swizzle<T> || Vec<T> || MArray<T>)

11 && SyclFloat<typename T::element_type> );

12

13 template<GenFloat T1, GenFloat T2>

14 requires( std::same_as<T1,T2>

15 || MatchingVec<T1,T2> )

16 auto max(T1 x, T2 y) { ... }

Listing 1: Basic SimSYCL concepts for math operations

Listing 1 provides an example of this approach. It contains the
SimSYCL specification for GenFloat on lines 7–11, describing the
generic floating point type as used in the SYCL standard section
4.17.8. It depends on some other previously-defined concepts which
are omitted for brevity, but illustrates how concepts allow formu-
lating these constraints in a succinct, readable and precise fashion.
Based on such concepts, the constraints on mathematical opera-
tions can be easily expressed; an example for the max function is
provided on lines 13–16.

https://github.com/celerity/SimSYCL
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sycl::queue().submit([](sycl::handler &cgh) {
const auto range = sycl::nd_range<1>{8, 4};
cgh.parallel_for(range, [](auto itm) {
const auto &g = itm.get_group();
const auto &sg = itm.get_sub_group();
// {A}
sycl::group_barrier(sg);
// {B}
sycl::group_barrier(g);
// {C}

});
});

SimSYCL Structures

nd_item contexts

sub_group storage

group storage

sg00 sg01 sg10 sg11

g0 g1

Execution of nd_item 0

{A}

sg00
yield to 
barrier for

{B}

g0
yield to 
barrier for

{C}

exit

2

1

3

4

5

6

Figure 3: Interleaved execution of nd_items in SimSYCL work groups

3.3 Interleaved Work Item Execution in Groups
While most potential queuing-related asynchronicity can be serial-
ized without losing core SYCL features or functionality, the same
does not apply to group- and sub-group-level parallelism. Using
any group operation defined in the SYCL standard outside of trivial
cases will lead to a kernel that can only complete successfully if
the execution of individual work items is interleaved.

Consider sycl::group_barrier as arguably the simplest group
operation: An implementation must guarantee that all work items
of the participating group execute until, but not beyond, the barrier.
Once all work items have done so, each must be resumed right after
the barrier with their local variables and stack intact.

This is a source of complexity which cannot be avoided by
SimSYCL whenever work groups are involved, in particular in ND-
range kernels. To keep all execution confined to a single operating
system thread, SimSYCL will create a separate execution context
for each work item, which maintains a copy of the processor’s reg-
ister set together with a separate stack to provide cooperative task
switching in user-space.

The scheduler loop, which is triggered as part of an ND-range
parallel-for invocation, will repeatedly yield control to the context
of each work item, either in round-robin or randomized order. Any
work item that arrives at a barrier or other construct will yield
control back to the context of the scheduler loop in order to then
resume the next eligible item.

The following operations must yield control:

• The group functions: group_broadcast and group_barrier

• All group algorithms, including all variations of any , all ,
none , shift , permute , select , reduce and scan .

• Atomic operations on data stored in global or local memory,
as it is feasible for applications to rely on the independent
forward progress of work items to build their own synchro-
nization mechanisms within a work group.

Note that while C++20 does provide stackless coroutines as a
core language feature, these cannot be used to implement context
switching in SimSYCL, as this would require the user to co_await

every call to a SYCL function that potentially yields.
Figure 3 illustrates the internal data structure and execution

principle for work items in a parallel_for over an nd_range

on a simulated device configured with a subgroup size of 2. As
per SimSYCL’s synchronous execution principle, the command
group is executed immediately. Before launching any kernel code,

it constructs both the surface-level SYCL API structures such as
sycl::nd_item s and sycl::group s as well as a set of required
internal data structures:

1○ a context associated with each nd_item that allows the
scheduler loop to resume any individual work item after it
has yielded control
2○ one storage object for each active sub-group, maintaining
state required to implement sub-group operations; this object
is internally referenced by each sycl::sub_group instance
received by the user
3○ an equivalent storage object associated with each active
sycl::group

The execution of individual work items is illustrated in fig. 3
on the right. For each item, the code in // {A} is executed, after
which the item will yield control in order to allow all other items
in the sub-group to arrive at the barrier 4○. After the sub-group
barrier has completed, the scheduler loop will at some point in
time return control to the same work item, which will execute any
code in // {B} before yielding once again in the group barrier
5○. After being resumed once more, // {C} runs and the work
item exits by yielding control one final time 6○. At this point, the
internal context information of this work item will indicate that it
has completed, and it will no longer be scheduled.

3.3.1 Group Operations. Group and sub-group operations and al-
gorithms are all implemented in this interleaved execution frame-
work based on a uniform structure designed to allow rigorously
verifying all aspects of the user program’s group interactions. For
each work item, the associated context tracks the number of group
and sub-group operations this item has encountered. Other than
referring to the correct one of these two counters, and using their
associated storage object, group and sub-group operations act equiv-
alently, so for the remainder of this description we will simply refer
to both as groups.

Each group storage object maintains a list of all group opera-
tions and algorithms which were performed on it, with each entry
tracking the operation type, its participants, and optionally any per-
operation information required for verifying its input and perform-
ing it. When a work item encounters a group operation, SimSYCL
queries the associated counter in the work item context, and the
list in the group’s storage. If the operation is newly encountered, all
required information is initialized and it is added to the list before
the work item yields.
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On the other hand, if an operation with this consecutive ID
already exists, SimSYCL verifies that the newly encountered opera-
tion on the current work item matches the existing group record. If
not, a detailed error is reported. Otherwise, any necessary per-item
information is added to the group structure before the item yields.
When execution returns to a given item, it checks whether all par-
ticipants have reached the current operation based on information
in the group storage. If not, it yields, otherwise it performs any
required operation and returns control to the user code.

By meticulously tracking the sequence of group operations and
all associated information provided by the user program, SimSYCL
is capable of detecting and reporting several classes of related errors,
as evaluated in section 4.2.

3.4 External Dependencies
As discussed in section 2.1, barrier-free and low-friction portability
and deployment are crucial for SimSYCL. As such, the implemen-
tation seeks to avoid external dependencies as much as possible.
Currently, SimSYCL only requires a standards-compliant C++20
compiler and the boost.context 2 library to be available on the tar-
get system. Libraries for dealing with JSON 3 and environment
variables 4 in the context of simulated system definition are auto-
matically fetched on build. Catch2 5 is used in SimSYCLs own unit
tests, but not required for deployment.

It is tempting to try to eliminate the boost dependency, but
this goal has to be weighed against the substantial complexity and
maintenance overhead of adding a portable and fully-featured cross-
platform cooperative multitasking implementation to SimSYCL. As
outlined in section 3.3, interleaved code execution is necessary in
order for SimSYCL to be able to provide meaningful nd_range

parallelism, simulation and debugging support.

4 EVALUATION
4.1 Experimental Setup
While evaluation of the debugging, verification and simulation
capabilities of SimSYCL is largely hardware-independent, the re-
sults for compilation and execution times in the latter parts of this
section do depend on the system configuration. Table 1 lists the
most crucial hardware information and versions of the relevant
software components of our testing platform. Note that no GPUs
or accelerators are used.

For all timing results (including compilation and benchmark
times) each experiment was repeated 5 times and the median value
is reported.

4.2 Debugging and Verification
In this section, we evaluate the debugging and verification capabil-
ities of SimSYCL, and in particular compare the handling of user
code that is in violation of prerequisites set forth in the SYCL speci-
fication to that of other implementations.

2https://www.boost.org/doc/libs/1_84_0/libs/context
3https://github.com/nlohmann/json
4https://github.com/ph3at/libenvpp
5https://github.com/catchorg/Catch2

Table 1: Hardware / Software stack for evaluation

Operating System Ubuntu 22.04.2 LTS
C++ Compiler Clang version 17.0.6

SYCL SimSYCL git revision aa0762efcb
implementations AdaptiveCpp git revision 3952b468c9

DPC++ git revision 25c3666dff
CPU 2x AMD EPYC 7763 64-Core

System Memory 16x Micron 3200 MT/s DDR4 64 GB
Mainboard Supermicro H12DSG-O-CPU

4.2.1 Group Operations. Group functions and algorithms as de-
fined by the SYCL specification feature a large set of constraints
and prerequisites for their correct use, violation of any of which
generally results in undefined behavior. This is necessary to allow
high-performance implementations of these functions which are
often crucial to kernel performance, but also introduces significant
potential for undetected user errors.

A general requirement across all of these operations is that they
must be encountered by all work items in a given group, in the
same order.

1 sycl::queue q;

2 q.submit([](sycl::handler& cgh) {

3 cgh.parallel_for(sycl::nd_range<1>(2,2),

4 [=](sycl::nd_item<1> item) {

5 auto id = item.get_global_id(0);

6 if(id == 0) {

7 sycl::group_barrier(item.get_group());

8 }

9 });

10 });

Listing 2: Minimal group divergence code sample

Listing 2 contains a minimal code sample of divergence in terms
of group operations encountered by items within a work group. In a
group of two work items, only item 0 executes the group_barrier ,
while item 1 exits the kernel.

For this input program, SimSYCL produces the following output:
SimSYCL check failed: id_equivalent

at simsycl/group_operation_impl.cc:37:5
group operation id mismatch:

group recorded operation "barrier",
but work item 1 is trying to perform "exit"

The exact behavior depends on how the SimSYCL debugging
and verification capabilities are configured. The default is to output
error reporting information as above and immediately abort. Al-
ternatively, SimSYCL can be configured (via SIMSYCL_CHECK_MODE )
to throw an exception, or simply log the error and try to continue
executing regardless.

For the simple test case in listing 2, the behavior of other SYCL
implementation varies as expected in case of undefined behavior.

https://www.boost.org/doc/libs/1_84_0/libs/context
https://github.com/nlohmann/json
https://github.com/ph3at/libenvpp
https://github.com/catchorg/Catch2
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The library-only ACpp backend stalls indefinitely, while on the
DPC++ CPU backend the program simply exits with error code 0.

1 sycl::queue q;

2 q.submit([](sycl::handler& cgh) {

3 cgh.parallel_for(sycl::nd_range<1>(2,2),

4 [=](sycl::nd_item<1> item) {

5 auto sg = item.get_sub_group();

6 auto delta = item.get_local_id(0) + 1;

7 auto r = sycl::shift_group_left(sg, 0, delta);

8 });

9 });

Listing 3: Code sample performing an invalid group shift

In addition to general aspects required for the validity of all
group operations, individual operations also specifiy additional
prerequisites, all of which SimSYCL validates. We have chosen
the shift_group_left operation as a representative in listing 3.
For this code sample, both ACpp and DPC++ execute the program
without complaint, while SimSYCL produces the following output:
SimSYCL check failed: per_op.delta == delta
at simsycl/sycl/group_algorithms.hh:158:69

group shift delta mismatch:
other group items specified delta 1,
but work item 1 is trying to specify 2

We believe that this type of verification can be very helpful
during development, but it also requires a level of bookkeeping
which can and should not be expected from performance-oriented
implementations.

4.2.2 Compile-time Validation. SimSYCL leverages C++20 con-
cepts to perform extensive compile-time validation, as outlined
in section 3.2. As a consequence, there are several errors which
are reported during the compilation process with SimSYCL which
other implementations may not catch. In terms of API surface,
vector swizzles are one of the more complex aspects of the SYCL
specification to fully support.

1 sycl::vec<double, 4> v;

2 v.xyww() = sycl::vec<double, 4>(42.0);

Listing 4: Invalid swizzle assignment

Listing 4 serves as an example of this behavior. In this code
snippet, an assignment is performed on the swizzle xyww of a 4-
component vector. This is invalid, as the specification states "that a
__swizzled_vec__ that is used in an l-value expression may not
contain any repeated element indexes".

Attempting to compile this code snippet with SimSYCL results
in the following (abbreviated) compiler output:
test.cpp:6:12: error: no viable overloaded '='

6 | v.xyww() = vec<double, 4>(42.0);
| ~~~~~~~~ ^ ~~~~~~~~~~~~~~~~~~~~

...

simsycl/sycl/vec.hh:232:19: note:
candidate function not viable: constraints not satisfied
232 | swizzled_vec &operator=(const value_type &rhs)

| ^
simsycl/sycl/vec.hh:233:18: note:

because 'allow_assign' evaluated to false
233 | requires(allow_assign)

| ^

Both DPC++ and ACpp compile this code without any errors or
warnings being issued.

4.2.3 Additional Automatic Validation. Due to space constraints,
we cannot detail all types of automatic validation SimSYCL per-
forms in this paper. Some further examples include verifying the
set of allowed operations in hierarchical parallelism, requirement
validation on memory operations, and accessor boundary checks.

4.2.4 Interactive Debugging. Since execution in SimSYCL happens
synchronously on the CPU, all user code can be inspected using an
interactive debugger such as GDB. This is true even for kernel code,
although execution flow within ND-range kernels can be hard to
follow as SimSYCL will perform a context switch between work
items at every yield point (see section 3.3) and the stack outside the
kernel invocation will be invisible to the debugger.

4.3 Simulation
SimSYCL allows application developers and users to describe the
simulated system either through the simsycl::configure_system()

API or by passing the system configuration as a JSON file via the
SIMSYCL_SYSTEM environment variable at runtime. A system con-
figuration consists of a set of platforms and set of devices, both of
which are defined in terms of all their sycl::info::platform and
sycl::info::device properties. An excerpt on such a configura-
tion in JSON format is shown in listing 5.

4.3.1 Configurable Properties. All properties specified are visi-
ble when querying them through sycl::platform::get_info and
sycl::device::get_info , and thus naturally influence SYCL de-
vice selectors. Some have additional effects on the runtime behavior
of SimSYCL:

• USM allocation functions will verify that the total allocated
size does not exhaust the global memory of the device.

• A kernel launch will check that the device is capable of
launching with the specified global and local ranges and that
the total amount of required local memory is within bounds.

• The number of compute units per device decides how many
work groups will be interleaved when executing ND-range
kernels.

• The size of sub-groups is chosen in accordance with the first
sub-group size configured in the target device.

The last point in particular allows developers to verify the cor-
rectness of their application across vendors, as e.g. Nvidia GPUs
have a fixed sub-group size of 32, while AMD cards have 32 or 64
work-items per sub-group depending on the hardware generation.

4.3.2 Detecting non-portability. Listing 6 shows a non-portable ker-
nel that uses sub-group cooperative functions to efficiently compact
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1 {

2 "devices": {

3 "SimSYCL RTX 2070 Super": {

4 "device_type": "gpu",

5 "max_work_item_sizes<1>": [1024],

6 "max_work_item_sizes<2>": [1024, 1024],

7 "max_work_item_sizes<3>": [64, 1024, 1024],

8 "local_mem_size": 65536,

9 "name": "SimSYCL virtual GPU",

10 "global_mem_size": 8589934592,

11 "sub_group_sizes": [32],

12 "vendor": "SimSYCL CUDA",

13 "version": "0.1"

14 }

15 },

16 "platforms": {

17 "SimSYCL CUDA": {

18 "name": "CUDA",

19 "vendor": "SimSYCL"

20 }

21 }

22 }

Listing 5: JSON specification for simulating a system with a
single Nvidia RTX 2070 Super GPU (excerpt)

a vector of 32-bit integers by stripping zero-words and indicating
their position in a bit map. The kernel implicitly assumes that the
sub-group size matches the bit-width of the words, which is only
true for a sub-group size of 32.

With SimSYCL, the application developer is able to detect the
non-portability of this code by unit-testing its output against the
known-correct result while switching between simulated device
configurations of different sub-group size, and without requiring
access to physical hardware with the evaluated properties.

4.4 Compile-time Performance & Build Latency
As outlined in section 2.1, fast compile times and thus low build
latency are an important factor in developer productivity, and
SimSYCL is specifically designed to reduce compilation times as
much as possible within the framework required by the SYCL spec-
ification. In this section, we evaluate the effectiveness of this ap-
proach by comparing the build latency of SYCL projects across
implementations and configurations.

For each project, the evaluation is performed by configuring
CMake6 to use the Ninja build system7, and either a "Release" or
"Debug" configuration. Additionally, themold linker8 is used tomin-
imize linking times. The reported results are the median of 5 overall
wall-clock time measurements of ninja , with a ninja clean be-
tween each. Despite this representing quite a complex internal

6https://cmake.org
7https://ninja-build.org
8https://github.com/rui314/mold

1 sycl::queue().parallel_for(

2 sycl::nd_range<1>(32 * num_blocks, 32 * num_blocks),

3 [in, out](sycl::nd_item<1> i)

4 {

5 sycl::sub_group sg = item.get_sub_group();

6 uint32_t word = in[i.get_global_linear_id()];

7 uint32_t non_zero_mask = uint32_t(word != 0)

8 << (31 - sg.get_local_linear_id());

9 uint32_t header = sycl::reduce_over_group(

10 sg, non_zero_mask, sycl::bit_or<>());

11

12 uint32_t out_words = sg.leader() + (word != 0);

13 uint32_t out_pos = sycl::exclusive_scan_over_group(

14 i.get_group(), out_words, sycl::plus<>());

15 if(sg.leader()) {

16 out[out_pos] = header;

17 out[out_pos + 1] = word;

18 } else {

19 out[out_pos] = word;

20 }

21 });

Listing 6: Non-portable kernel with implicit assumptions
about sub-group size

workflow with significant I/O and process-level parallelism, the
overall times are highly consistent.
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Figure 4: Build latency for SYCL-Bench

Figure 4 shows these total build times for the SYCL-Bench bench-
mark suite [17]. As generally expected, all release-mode builds take
longer to complete than the respective debug-mode builds as the
compiler performs more involved analysis and optimization. From
the SimSYCL productivity-focused perspective, we consider debug-
mode results more significant, as they represent the typical build
cycle during development and debugging.

On our test system, in debug mode, the entirety of SYCL-Bench
builds in under 4 seconds with SimSYCL. ACpp in library-only
mode takes roughly 14 seconds, and DPC++ is slightly slower still.
Note that for both alternative implementations we chose the fastest

https://cmake.org
https://ninja-build.org
https://github.com/rui314/mold
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available compilation mode: for ACpp, this is "OMP library-only"
among the available compilation flows, and for DPC++ this means
that only a single target platform is set via -fsycl-targets .
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Figure 5: Build latency for Celerity

The Celerity runtime system [23] is a significantly larger code
base than SYCL-Bench, and also features a different overall code
composition, with a larger portion of code that does not interact
with either the SYCL host API or device code at all. As such, it is
likely to be more representative of larger-scale projects using SYCL
only in part of their implementation. The build latency results for
this project are presented in fig. 5.

Likely as a result of this shift in code composition, the relative
advantage of SimSYCL over ACpp in debug build latency shrinks,
but is still very significant. In SYCL-Bench, the SimSYCL debug
build time is 27% of ACpp’s time, while for Celerity the SimSYCL
build takes 61% in the same comparison. DPC++ build times in
release mode are particularly protracted for this project on our test
system. Unlike the library-only ACpp version, it is not possible to
use the exact same compiler version for DPC++, so there could be
several discrepancies leading to this outcome.We tested all available
DPC++ targets, and the overall range of results is consistent across
all of them, as long as only a single backend is selected.

4.5 Runtime Performance
Achieving competitive runtime performance is explicitly not a goal
of SimSYCL. However, several of its use cases, such as development
and CI testing across a variety of simulated hardware configura-
tions, benefit from being able to run programs at an acceptable
performance level.

To evaluate whether this is the case, fig. 6 depicts the results
of running the basic Sycl-Bench [17] VectorAddition_fp64 bench-
mark across a range of vector data sizes from 1kB to 10GB. As a
point of comparison for SimSYCL, we chose the AdaptiveCpp pure
library-only OpenMP compilation flow, as it is the most similar in
its requirements and goals, as well as the DPC++ CPU backend. All
implementations are compiled in their respective Release configu-
rations, with the same compiler version (refer to table 1 for details).
Note that the scales on both axes in the chart are logarithmic.

When interpreting these results, we were initially taken aback
by the significant performance difference between AdaptiveCpp
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Figure 6: Runtime performance in the SYCL-Bench "Vec-
torAddition_fp64" benchmark

and SimSYCL at not only very small but also moderate problem
sizes, with SimSYCL outperforming the library-only configuration
of AdaptiveCpp by a factor of 152 at the smallest size of 1kB and
still by 10x at 1MB. At these sizes, the relative variance across runs
of the AdaptiveCpp implementation was also significant, while all
other results were very consistent.

We determined that this enormous discrepancy is due to the
large number of hardware threads on our test system (256), which
reduces the efficiency of a naive OpenMP-based implementation
for small problem sizes, with thread creation and management
dominating the execution time. To mitigate the impact of this factor,
the results marked as ACpp (lib-only) 1T were measured while
setting the environment variable OMP_NUM_THREADS=1 . In this case,
the difference between SimSYCL and AdaptiveCpp in its OMP-
library-only configuration shrinks to 44% at 10MB, and performance
at even larger sizes is almost identical.

However, even with one thread, for the very small sizes below
100kB of data, SimSYCL is still 34x faster than AdaptiveCpp in
its library-only configuration. We surmise that this is related to
the overhead required for queuing, scheduling etc. which is neces-
sary for a performance-focused SYCL implementation, and which
SimSYCL can omit due to its synchronous execution principle. At
large problem sizes, the N-thread OpenMP-based library-only ACpp
version outperforms SimSYCL (and 1T ACpp) by up to 3x in this
benchmark, and the more heavyweight DPC++ CPU backend is
slightly faster still at 3.25x.

To summarize, SimSYCL performs well at small problem sizes
due to its simple low-overhead design. This is particularly relevant
for development and functional testing, which is usually done on
reduced data sets and represents SimSYCL’s primary target use case.
At larger problem sizes performance drops off in a perfectly linear
fashion, as expected from a sequential implementation. The same
overall behavior can be observed across other benchmarks, with an
increasing gap in large problem sizes for more compute-intensive
workloads.
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4.6 Conformance to the SYCL Specification
The Khronos SYCL Conformance Test Suite (CTS) makes complete-
ness and correctness of SYCL implementations quantifiable [28].

Using a fork9 of the official code that adds build instructions
for SimSYCL and fixes minor bugs in the CTS itself and the SYCL
implementations listed in table 1, we evaluate what percentage of
CTS test cases successfully compile and how many of the compiled
tests pass at runtime. After disabling optional checks for the in-
completely implemented sycl::half type as well as the checks
for OpenCL interoperability (which we cannot possibly support)
and without activating the expensive full conformance mode, we
arrive at the coverage metrics summarized in table 2.

Table 2: Conformance with the SYCL CTS

Implementation TCs passed / compiled / total
SimSYCL 37 / 44 / 64
AdaptiveCpp (OMP backend) 12 / 29 / 64
DPC++ (OpenCL CPU backend) 60 / 63 / 64

Despite its early state of development, SimSYCL is able to pass
more than 50% of CTS cases, the remaining failures being primar-
ily caused by missing implementations for rarely-used features
such as images, sub-devices, and certain math functions, as well as
deprecated SYCL APIs.

The observation that the mature AdaptiveCpp performs much
worse than DPC++ in this metric is owed to the fact that CTS
and DPC++ are developed in tandem, while ACpp is currently not
regularly tested against the CTS to correct bugs in either codebase.

5 OUTLOOK AND FUTUREWORK
5.1 Limitations
While SimSYCL currently already implements a considerable share
of the SYCL standard and is able to diagnose many user errors that
other implementationsmight not, there are still principal limitations
that are either inherent to library-only CPU implementations or a
result of the trade-off between conformance and debuggability.

There are niche scenarios in which a SYCL program requires true
DAG-based asynchronicity between the host application and code
inside command groups. For instance, a command group with an
accessor that overlaps with the lifetime of a host accessor defined
before it in application scope would need to wait for the host acces-
sor to go out of scope before commencing execution. Furthermore,
a kernel may explicitly synchronize with subsequent host code
through the use of atomics on shared memory, or a host task might
do so through standard C++ threading primitives. SimSYCL detects
and reports overlapping accessors as unsupported but is currently
unable to spot explicit host-to-device communication patterns.

Furthermore, since all memory is allocated on the host, the user
will not observe access violations when accessing device-only mem-
ory from the host or vice versa, which can hinder the debugging
of USM-based applications to some extent. A future version of
SimSYCL might toggle virtual-memory permissions at the kernel
boundary through system APIs like mprotect to force a segmenta-
tion fault on an illegal access.
9https://github.com/fknorr/SYCL-CTS/releases/tag/simsycl-submission

The specification includes SYCL-specific C++ [[attributes]]

to supply compile-time arguments and requirements to the backend
device compiler. No library-only SYCL implementation can support
these features, and neither can SimSYCL in its current form.

Finally, due to SimSYCL’s runtime-configurable simulation fea-
ture, compile-time queries such as sycl::is_compatible cannot
provide exact answers.

5.2 Future Work
An accompanying, optional Clang compiler plugin could provide
SimSYCL with support for SYCL C++ attributes and compile-time
queries on kernels. It might further enforce requirements on types
captured within kernels (to deny value-capturing a sycl::buffer

for instance) and operations permitted, such as denying the throw-
ing of exceptions or calling of virtual functions. More advanced
compiler support might annotate local- and global-memory ac-
cesses and monitor their coincidence with synchronizing atomic
operations to detect data races at runtime.

An alternative, asynchronous DAG-based runtime for SimSYCL
might support programs that require true asynchronicity as laid out
in section 5.1. Such a feature should remain optional as it trades the
debuggability of synchronous execution for the support of rather
uncommon SYCL patterns.

6 CONCLUSIONS
In this paper we introduced SimSYCL, a novel, synchronous and
host-only implementation of the SYCL standard. It aids in quick
application development, portability testing, and debugging. The
abandonment of true asynchronicity paired with a focus on im-
plementation simplicity over runtime performance lead to a small
API footprint, speeding up the compilation of SYCL applications.
In debug mode, which is highly relevant during development, the
total build latency of SimSYCL for the SYCL-Bench suite is less
than one third of other mainstream SYCL implementations in their
fastest-building configurations.

SimSYCL aids in cross-platform CI and portability testing by al-
lowing both developers and users of an application to freely define
the characteristics of the executing platform and devices, enabling
applications built with SimSYCL to be tested for compatibility with-
out requiring access to the simulated physical hardware.

To facilitate debugging, SimSYCL extensively tracks the state
of various kernel operations in order to detect user errors that
constitute undefined behavior according to the standard, but cannot
be diagnosed explicitly by other implementations. For application
bugs that do not result from direct mis-use of SYCL APIs, SimSYCL
aids the developer by allowing them to step into kernel functions
with their ordinary host debugger.

Finally, its minimalism and strict adherence to the standard
uniquely position SimSYCL to potentially serve as an executable
specification of the SYCL standard in the future, enabling the pro-
totyping of new features ahead of standardization.

Despite this large supply of development and testing features,
SimSYCL is able to achieve sequential performance competitive
with other library-only, host-only implementations of the standard,
and computing mid-sized problems for the purpose of automatic
verification and continuous integration testing remains viable.

https://github.com/fknorr/SYCL-CTS/releases/tag/simsycl-submission
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