
ndzip-gpu

Efficient Lossless Compression of
Scientific Floating-Point Data on GPUs

Fabian Knorr, Peter Thoman and Thomas Fahringer

University of Innsbruck, Austria



Context

High-level C++ for Accelerator Clusters

Runtime system for GPU clusters

• Based on SYCL

• Purely declarative data flow

• Well-suited for multidimensional

algorithms on dense arrays

Current development goals:

• Transfer latency optimization

• Fast automatic checkpointing

. . . all without user intervention!

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 1



Speeding up Data Transfers via Compression

1

Scientific applications

primarily work on

floating-point data

Compressor must be

effective on floats

2

For Celerity, operation

must be transparent

to the user

Compression

must be lossless

3

Primary goal is to

maximize throughput,

not minimize storage

Compressor must

be fast enough to

saturate the link

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 2



Benefits of Compression on the GPU

Compressing data directly on the GPU will accelerate PCIe transfers and save CPU time.

COMPUTEon CPU

None

on GPU

COPY COMPRESS SEND

COMPUTE COPYCOMPRESS SEND

COMPUTE COPY SEND

device PCIe host

time

Co
m

pr
es

si
on

Depending on the hardware, compressing on the device allows direct GPU →PCIe NIC copy of

compressed data without going through system memory.

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 3



Data Compression Challenges on GPU

Mutable Encoder / Decoder State

In general-purpose compression,

• compressor updates its probability

model with each symbol

• decompressor reconstructs the

model in the same way

Variable Length Encoding

In lossless compression,

• output stream positions are not

known ahead of time

• common encoders output symbols

with arbitrary bit-length

For high-throughput GPU compression, we explore

1. local decorrelation schemes with minimal state

2. an encoder that only requires coarse-granular addressing.

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 4



The ndzip floating-Point Compressor

Subdivision Integer Lorenzo Transform

n 
pa

ss
es

Si
gn

 B
it
 R

ot
at

io
n

T

Vertical Bit Packing

0 0 0 1 0 1
0 0 0 0 0 0
0 1 0 0 0 0
1 1 0 1 1 1
0 0 0 0 0 0
0 0 1 1 1 1

Header Bitmap

Non-Zero Rows

Compaction

101101

000101
010000
110111
001111

0 0 0 0 1 1
0 1 0 1 0 0
0 0 0 1 0 0
1 1 0 1 1 1
001011

000101
101000

101111
010111

T
o 

Si
gn

-M
ag

ni
tu

de

0 0 0 1 0 0
0 0 1 1 0 0
0 0 0 0 0 1
1 0 0 1 0 1
0 0 0 1 0 1
1 0 0 1 0 1

Chunking

ndzip[2]: Lossless block compressor for dense multi-dimensional floating-point data

• Model: Data is smooth locally in multiple dimensions

• Impressive single-core performance (2.2–3.0 GB/s on AMD Ryzen 9 3900X)

• So far CPU only, but designed for highly-parallel implementations

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 5



Decorrelation: The Integer Lorenzo Transform

Compute residuals by replacing each data point with the difference to its predecessor.

In the multi-dimensional case, repeat along each axis. If data is smooth, residuals are small.

1D

[
1 1

]

[
1 0

]

2D

[
1 2

3 4

]

[
1 1

2 0

]

3D

[
1 2

3 4

][
5 6

7 8

]

[
1 2

3 4

][
5 6

7 0

]

negative coefficient

positive coefficient

true value

Since this transform is not re-

versible in floating-point arith-

metic, it is approximated in

the integer domain.

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 6



Integer Lorenzo Transform on GPU

Forward Transform

Each pass is fully parallel—assign threads to data points freely.

Inverse Transform

The inverse pass corresponds to a prefix sum per lane.

• 1D case: Use a parallel scan

• 2D/3D case: Sum up sequentially, parallelize over lanes

Memory Access Patterns are Performance Critical

• Keep block in fast GPU shared memory between passes

• Be careful about memory layout to avoid bank conflicts

difference

(n
p

as
se

s)

prefix sum

(n
p

as
se

s)

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 7



Residual Encoding: Vertical Bit Packing

In sign-magnitude representation, small integer residuals have many leading-zero bits.

Word 0

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7



0 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0
1 0 0 0 0 1 1 1
1 0 0 0 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0



T

=



0 0 1 1 0 0 1 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0







1 0 0 0 1 1 1 1
0 0 1 1 0 0 1 0
1 0 0 0 1 0 0 0
0 0 1 0 1 0 0 1
1 0 1 0 0 0 1 0
1 0 1 0 0 1 0 0



Head

Bit 0

Bit 4

Bit 5

Bit 6

Bit 7

Hardware-friendly Vertical Bit Packing encoder:

1. Group into chunks of 32 32-bit (64 64-bit) integers

2. Transpose the chunk to obtain one 32-bit (64-bit) word for each bit position

3. Strip zero words, communicate which positions were eliminated through a header bitmap

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 8



Vertical Bit Packing on GPUs

W
ar

p 
0

Tr
an

sp
os

e

Co
m

pa
ct

Lo
ca

lly Store

Pr
efi

x 
Su

m

Store

W
ar

p 
1

Co
m

pa
ct

Lo
ca

lly Store

W
ar

p 
15

Th
re

ad
 B

lo
ck

Tr
an

sp
os

e

Pr
efi

x 
Su

m

Iteration 0
Iteration 1

Iteration 1

Iteration 1

Zero-chunks have
trivial encoding

Sh
or

t C
irc

ui
t

Divergence between chunks
allows tighter scheduling

Chunk 0

Chunk 1

Chunk 15

Chunks are mapped onto warps in a round-robin fashion

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 9



Fully Parallel Variable-Length Compression

Output positions are dependent on length of the previous blocks – use a scratch buffer:

worst-case compressed
chunk size

Block
0

Block
1

Block
2

Chunk 0 Chunk 1Chunk 1 Chunk 2

Chunk 1 Chunk 2Chunk 0O�sets

Scratch Buffer

Compressed Stream

Compression1

Compaction2

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 10



Reference System

980 IBM POWER9 ACC922

nodes à 4× NVIDIA V100

Marconi-100 (Italy, TOP500 #14 in 2021-06)

Peak transfer rates in the system:

GPU memory NVIDIA HBM2 900 GB/s

Host memory 8-chan DDR4-2666 170 GB/s

GPU → CPU 3× NVLink 150 GB/s

GPU/CPU → NIC 2× PCIe 4.0 x8 32 GB/s

Network 2× Infiniband EDR 25 GB/s

For maximum inter-node throughput, software I/O should

be able to saturate the slowest link (25 GB/s).

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 11



Test Data

Test Data from various scientific domains [1]:

dataset single double extent

msg sppm X X 34,874,483

msg sweep3d X X 15,716,403

snd thunder X 7,898,672

ts gas X 4,208,261

ts wesad X 4,588,553

hdr night X 8,192× 16,384

hdr palermo X 10,268× 20,536

hubble X 6,036× 6,014

rsim X X 2,048× 11,509

spitzer fls irac X 6,456× 6,389

spitzer fls vla X 8,192× 8,192

spitzer frontier X 3,874× 2,694

dataset single double extent

asteroid X 500× 500× 500

astro mhd X 128× 512× 1024

astro mhd X 130× 514× 1026

astro pt X X 512× 256× 640

flow X 16× 7,680× 1,0240

hurricane X 100× 500× 500

magrecon X 512× 512× 512

miranda X 1,024× 1,024× 1,024

redsea X X 50× 500× 500

sma disk X 301× 369× 369

turbulence X 256× 256× 256

wave X X 512× 512× 512

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 12



Compression Performance on NVIDIA V100

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

C
o

m
pr

es
si

o
n

ra
ti

o

single-precision

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

double-precision

ndzip-gpu

MPC [6]

GFC [4] (partial)

nvCOMP [3] LZ4

nvCOMP Cascaded

cudppCompress [5]

Ratio Throughput

ndzip-gpu compress single-precision 0.565 135 GB/s

double-precision 0.500 216 GB/s

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 13



Decompression Performance on NVIDIA V100

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

C
o

m
pr

es
si

o
n

ra
ti

o

single-precision

0.1 10 1000

0.4

0.6

0.8

1

Throughput [GB/s]

double-precision

ndzip-gpu

MPC

GFC

nvCOMP LZ4

nvCOMP Cascaded

Ratio Throughput

ndzip-gpu decompress single-precision 0.565 196 GB/s

double-precision 0.500 235 GB/s

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 14



Conclusion

On the reference hardware, ndzip-gpu outperforms

state-of-the art GPU compressors on floating-point data

both in throughput and compression ratio achieved.

Key takeaways

1. Local decorrelation allows efficient subdivision of the input space

2. In-place Integer Lorenzo Transform makes residual computation parallel

3. Vertical Bit Packing provides fast, word-alinged data reduction

4. A separate compaction kernel avoids synchronization on output positions

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 15



Thank You!

Now for your questions, please!

Livestream (without captions): view video . . . or feel free to contact me any time at

fabian@dps.uibk.ac.at.

High-level C++ for Accelerator Clusters

ndzip-gpu is available at https://github.com/fknorr/ndzip.

Celerity is available at https://celerity.github.io.

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 16

mailto:fabian@dps.uibk.ac.at
fabian@dps.uibk.ac.at
https://github.com/fknorr/ndzip
https://celerity.github.io


References i

F. Knorr, P. Thoman, and T. Fahringer.

Datasets for Benchmarking Floating-Point Compressors.

arXiv e-prints, page arXiv:2011.02849, Nov. 2020.

F. Knorr, P. Thoman, and T. Fahringer.

ndzip: A high-throughput parallel lossless compressor for scientific data.

In 2021 Data Compression Conference. IEEE, 2021.

NVIDIA.

NVCOMP – High Speed Data Compression Using NVIDIA GPUs.

https://developer.nvidia.com/nvcomp.

M. A. O’Neil and M. Burtscher.

Floating-point data compression at 75 Gb/s on a GPU.

In Proceedings of the Fourth Workshop on General Purpose Processing on Graphics

Processing Units, pages 1–7, 2011.

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 17

https://developer.nvidia.com/nvcomp


References ii

R. A. Patel, Y. Zhang, J. Mak, A. Davidson, and J. D. Owens.

Parallel lossless data compression on the GPU.

IEEE, 2012.

A. Yang, H. Mukka, F. Hesaaraki, and M. Burtscher.

MPC: a massively parallel compression algorithm for scientific data.

In 2015 IEEE International Conference on Cluster Computing, pages 381–389. IEEE, 2015.

ndzip-gpu: Efficient Lossless Compression of Scientific Floating-Point Data on GPUs 18


