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Context

High-level C++ for Accelerator Clusters

Runtime system for GPU clusters

• Based on SYCL

• Purely declarative data flow

• Well-suited for multidimensional

algorithms on dense arrays

Current development goals:

• Transfer latency optimization

• Fast automatic checkpointing

. . . all without user intervention!
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Speeding up Data Transfers via Compression

1

Scientific applications

primarily work on

floating-point data

Compressor must be

effective on floats

2

For Celerity, operation

must be transparent

to the user

Compression

must be lossless

3

Primary goal is to

maximize throughput,

not minimize storage

Compressor must

be fast enough to

saturate the link
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Benefits of Compression on the GPU

Compressing data directly on the GPU will accelerate PCIe transfers and save CPU time.
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Depending on the hardware, compressing on the device allows direct GPU →PCIe NIC copy of

compressed data without going through system memory.
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Data Compression Challenges on GPU

Mutable Encoder / Decoder State

In general-purpose compression,

• compressor updates its probability

model with each symbol

• decompressor reconstructs the

model in the same way

Variable Length Encoding

In lossless compression,

• output stream positions are not

known ahead of time

• common encoders output symbols

with arbitrary bit-length

For high-throughput GPU compression, we explore

1. local decorrelation schemes with minimal state

2. an encoder that only requires coarse-granular addressing.
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The ndzip floating-Point Compressor

Subdivision Integer Lorenzo Transform
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ndzip[2]: Lossless block compressor for dense multi-dimensional floating-point data

• Model: Data is smooth locally in multiple dimensions

• Impressive single-core performance (2.2–3.0 GB/s on AMD Ryzen 9 3900X)

• So far CPU only, but designed for highly-parallel implementations
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Decorrelation: The Integer Lorenzo Transform

Compute residuals by replacing each data point with the difference to its predecessor.

In the multi-dimensional case, repeat along each axis. If data is smooth, residuals are small.
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Since this transform is not re-

versible in floating-point arith-

metic, it is approximated in

the integer domain.
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Integer Lorenzo Transform on GPU

Forward Transform

Each pass is fully parallel—assign threads to data points freely.

Inverse Transform

The inverse pass corresponds to a prefix sum per lane.

• 1D case: Use a parallel scan

• 2D/3D case: Sum up sequentially, parallelize over lanes

Memory Access Patterns are Performance Critical

• Keep block in fast GPU shared memory between passes

• Be careful about memory layout to avoid bank conflicts
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Residual Encoding: Vertical Bit Packing

In sign-magnitude representation, small integer residuals have many leading-zero bits.
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Hardware-friendly Vertical Bit Packing encoder:

1. Group into chunks of 32 32-bit (64 64-bit) integers

2. Transpose the chunk to obtain one 32-bit (64-bit) word for each bit position

3. Strip zero words, communicate which positions were eliminated through a header bitmap
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Vertical Bit Packing on GPUs
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Chunks are mapped onto warps in a round-robin fashion
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Fully Parallel Variable-Length Compression

Output positions are dependent on length of the previous blocks – use a scratch buffer:

worst-case compressed
chunk size
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Reference System

980 IBM POWER9 ACC922

nodes à 4× NVIDIA V100

Marconi-100 (Italy, TOP500 #14 in 2021-06)

Peak transfer rates in the system:

GPU memory NVIDIA HBM2 900 GB/s

Host memory 8-chan DDR4-2666 170 GB/s

GPU → CPU 3× NVLink 150 GB/s

GPU/CPU → NIC 2× PCIe 4.0 x8 32 GB/s

Network 2× Infiniband EDR 25 GB/s

For maximum inter-node throughput, software I/O should

be able to saturate the slowest link (25 GB/s).
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Test Data

Test Data from various scientific domains [1]:

dataset single double extent

msg sppm X X 34,874,483

msg sweep3d X X 15,716,403

snd thunder X 7,898,672

ts gas X 4,208,261

ts wesad X 4,588,553

hdr night X 8,192× 16,384

hdr palermo X 10,268× 20,536

hubble X 6,036× 6,014

rsim X X 2,048× 11,509

spitzer fls irac X 6,456× 6,389

spitzer fls vla X 8,192× 8,192

spitzer frontier X 3,874× 2,694

dataset single double extent

asteroid X 500× 500× 500

astro mhd X 128× 512× 1024

astro mhd X 130× 514× 1026

astro pt X X 512× 256× 640

flow X 16× 7,680× 1,0240

hurricane X 100× 500× 500

magrecon X 512× 512× 512

miranda X 1,024× 1,024× 1,024

redsea X X 50× 500× 500

sma disk X 301× 369× 369

turbulence X 256× 256× 256

wave X X 512× 512× 512
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Compression Performance on NVIDIA V100
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ndzip-gpu compress single-precision 0.565 135 GB/s

double-precision 0.500 216 GB/s
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Decompression Performance on NVIDIA V100
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ndzip-gpu decompress single-precision 0.565 196 GB/s

double-precision 0.500 235 GB/s
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Conclusion

On the reference hardware, ndzip-gpu outperforms

state-of-the art GPU compressors on floating-point data

both in throughput and compression ratio achieved.

Key takeaways

1. Local decorrelation allows efficient subdivision of the input space

2. In-place Integer Lorenzo Transform makes residual computation parallel

3. Vertical Bit Packing provides fast, word-alinged data reduction

4. A separate compaction kernel avoids synchronization on output positions
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Thank You!

Now for your questions, please!

Livestream (without captions): view video . . . or feel free to contact me any time at

fabian@dps.uibk.ac.at.

High-level C++ for Accelerator Clusters

ndzip-gpu is available at https://github.com/fknorr/ndzip.

Celerity is available at https://celerity.github.io.
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