
Declarative Data Flow in a
Graph-Based Distributed
Memory Runtime

Fabian Knorr

HLPP 2022

int main() {
 sycl::buffer<float, 2> buf{range<2>{1024, 1024}};
 sycl::queue{}.submit([&](handler &chg) {
 sycl::accessor a{buf, cgh, write_only, no_init};
 cgh.parallel_for(range<2>{1024, 1024}, [=](item<2> it) {
 a[it] = sin(it[0] / 100) * sin(it[1] / 100);
 });
 });
}

SYCL is an established C++ DSL for accelerator programming with a high-level dataflow API.

① Buffers manage host and device allocations
② Accessors restrict buffer access to inside ③ kernels and enable dependency tracking
⟹ SYCL runtime automates data migration and scheduling based on dependency information

③

①

②

int main() {
 celerity::buffer<float, 2> buf{range<2>{1024, 1024}};
 celerity::distr_queue{}.submit([&](handler &chg) {
 celerity::accessor a{buf, cgh, write_only, celerity::one_to_one{}, no_init};
 cgh.parallel_for(range<2>{1024, 1024}, [=](item<2> it) {
 a[it] = sin(it[0] / 100) * sin(it[1] / 100);
 });
 });
}

Kernels are transparently distributed onto MPI ranks by splitting ① execution ranges.

Switching to the ② Celerity API requires augmenting accessors with ③ Range Mappers.
They inform Celerity which buffer subrange is accessed by which chunk of the iteration space.
From this, the runtime generates MPI data transfers to satisfy data requirements.

①

③

②

Accelerators

node 0
master

node 1
worker

node 2
worker

node 3
worker

JobJobJob

JobJobJob

JobJobJob

JobJobJob

C
C

C

C
C

C

Command GraphSource

T
T

T

T
T

T

T
T

T

T
T

T

Task Graph

Command Graph

node 0 node 1

Task Graph

Example with 4 kernels:

distr_queue q;
buffer<float, 2> A, B, C;
buffer<bool> ok;

q.submit([=](handler &cgh) {
 diag(cgh, A, 2); });
q.submit([=](handler &cgh) {
 diag(cgh, B, 3); });
q.submit([=](handler &cgh) {
 mul(cgh, A, B, C); });
q.submit([=](handler &cgh) {
 is_diag(cgh, C, 6, ok); });

return /* ok[0] is true */;

int main() {
 bool host_ok;
 {
 distr_queue q;
 // ...
 buffer<bool> ok{1};
 q.submit([=](handler& cgh) { is_diag(cgh, C, ok); });

 q.submit(allow_by_ref, [=, &host_ok](handler& cgh) {
 accessor passed_acc{ok, cgh, access::all{},
 read_only_host_task};
 cgh.host_task(on_master_node, [=, &host_ok] {
 host_ok = passed_acc[0];
 });
 });
 }
 return host_ok ? EXIT_SUCCESS : EXIT_FAILURE;
}

copy value to outer scope
(bug-prone reference capture)②

implicitly synchronize
on queue shutdown③

compute value in kernel①

use value in
main thread④

Runtime-managed data lives in an
asynchronous execution context,
requires manual synchronization
with the main thread

distr_queue q;
buffer<float, 2> A, B, C;
buffer<bool> ok;

q.submit([=](handler &cgh) {
 diag(cgh, A, 2); });
q.submit([=](handler &cgh) {
 diag(cgh, B, 3); });
q.submit([=](handler &cgh) {
 mul(cgh, A, B, C); });
q.submit([=](handler &cgh) {
 is_diag(cgh, C, 6, ok); });

return q.drain(capture{ok})[0];

Epochs serialize execution and
carry data requirements like any
other graph node:

class distr_queue {
 template <typename T> typename capture<T>::value_type
 drain(const capture<T>& cap);
 template <typename... Ts> std::tuple<capture<Ts>::value_type...>
 drain(const std::tuple<capture<Ts>...>& caps);
};

Synchronization function
extracting data for one or

more captures

Descriptor for capture of a
single buffer subrange

template <typename T, int Dims>
class capture<buffer<T, Dims>> {
 using value_type = buffer_data<T, Dims>;
 explicit capture(buffer<T, Dims> buf);
};

Free-standing buffer
data representation

template <typename T, int Dims>
class buffer_data {
 decltype(auto) operator[](size_t idx);
};

Problem: Effects on global resources or reference-captured objects do not generate dependencies

Celerity will regard Task 1 and Task 2 are concurrent, yet there exists a dataflow dependency
⟹ Data Race / Undefined Behavior!

task 1

task 2

int main() {
 distr_queue q;
 std::ofstream ofs("file.txt");
 q.submit(allow_by_ref, [&](handler& cgh) {
 cgh.host_task(on_master_node, [&] { ofs << "Hello "; });
 });
 q.submit(allow_by_ref, [&](handler& cgh) {
 cgh.host_task(on_master_node, [&] { ofs << "world!"; });
 });
}

int main() {
 distr_queue q;
 host_object<std::ofstream> ofs("file.txt");
 q.submit([=](handler &cgh) {
 side_effect e{ofs, cgh};
 cgh.host_task(on_master_node, [=] { *e << "Hello "; });
 });
 q.submit([=](handler &cgh) {
 side_effect e{ofs, cgh, sequential_order};
 cgh.host_task(on_master_node, [=] { *e << "world!"; });
 });
}

Wrap shared resource in a
host object, transferring
ownership to the runtime

① Capture host-objects
in host tasks by value②

Obtain access inside a host
task through a side effect,
specifying side-effect order

③

task 1

task 2

①

② ③

enum class side_effect_order { relaxed, exclusive, sequential };Concurrency constraint

Buffer-like container
for a user-defined type

template <typename T>
class host_object {
 host_object(T&& obj);
};

Accessor-like reference
to a host object

template <typename T, side_effect_order Order = sequential>
class side_effect {
 side_effect(const host_object<T>& object, handler& cgh,
 order_tag<Order> = {} /* for deduction only */);
 T& operator*() const;
 T* operator->() const;
};

CTAD deduction tags
constexpr order_tag<side_effect_order::relaxed> relaxed_order;
constexpr order_tag<side_effect_order::relaxed> exclusive_order;
constexpr order_tag<side_effect_order::relaxed> sequential_order;

Conflict Graph for one host object H

side effect order concurrency reordering

sequential

exclusive

relaxed

Similar to read-write access modes on buffers, we
can increase potential concurrency by specifying
synchronization requirements on host objects:

Concurrency restrictions add undirected edges
to task and command graphs, which become mixed
conflict graphs.

In pure Directed Acyclic Graphs (only dependency edges):
• Greedily start executing all eligible commands as soon as possible.

Commands are streamed to worker nodes, no future commands are known at scheduling time.
A command is eligible if all its dependencies are met.

• Solve for the Maximum Independent Set with regard to conflict egdes.
NP-complete ⟹ approximate by backtracking with a limited the number of steps.

In mixed Conflict Graphs (directed dependency edges + undirected conflict edges):
• find the largest subset where no command has a conflict with

a) any other command in the same subset
b) any currently executing command

For extremely broad graphs
(soup), dependency
generation for an epoch has
measurable additional cost.
For long dependency chains
(chain and wave_sim),
overhead is much less
pronounced.

The number of backtracking steps must be limited to mitigate the exponential runtime behavior.
With 40 eligible commands and 20 conflicts:

Epoch-based synchronization has
measurable overhead, but is
intended to be used scarcely.

In this chart, slow_full_sync() is
a queue barrier operation similar
to drain(), but allows the
program to resume afterwards.

Barriers (blue) are too coarse to
achieve good performance for fine-
grained synchronization. Side
effects on the other hand have
negligible overhead.

Here, slow_full_sync() is the
baseline used internally for timing
both implementation candidates.

This project has received funding from the
European High Performance Computing Joint Undertaking (JU)

under grant agreement No 956137.

Check out Celerity: https://celerity.github.io

Contact me: fabian.knorr@uibk.ac.at

https://celerity.github.io
mailto:fabian.knorr@uibk.ac.at

