

Pegasus 5.0 Workflows Workflow Management System

Karan Vahi, Ryan Tanaka

University of Southern California, School of Engineering Information Sciences Institute <u>vahi@isi.edu</u>, <u>tanaka@isi.edu</u>

1. Introduction

What are Scientific Workflows

- Conducts a series of computational tasks.
 - Resources distributed across Internet.
- ▲ Chaining (outputs become inputs) replaces manual hand-offs.
 - Accelerated creation of products.
- ▲ Ease of use gives non-developers access to sophisticated codes.
 - Resources distributed across Internet.
- Provides framework to host or assemble community set of applications.
 - Honors original codes. Allows for heterogeneous coding styles.
- Framework to define common formats or standards when useful.
 - Promotes exchange of data, products, codes. Community metadata.
- ▲ Multi-disciplinary workflows can promote even broader collaborations.
 - E.g., ground motions fed into simulation of building shaking.
- Certain rules or guidelines make it easier to add a code into a workflow.

Workflow Building Blocks

Slide Content Courtesy of David Okaya, SCEC, USC

Why Pegasus?

Automates Complex, Multi-stage Processing Pipelines

Enables Parallel, Distributed Computations

Automatically Executes Data Transfers

Reusable, Aids Reproducibility

Records How Data was Produced (Provenance)

Handles Failures with to Provide Reliability

Keeps Track of Data and Files

Ensures **Data Integrity** during workflow execution

NSF funded project since 2001, with close collaboration with HTCondor team

https://pegasus.isi.edu

Workflow Challenges Across Domains

- Describe complex workflows in a simple way
- Access distributed, heterogeneous data and resources (heterogeneous interfaces)
- Deal with resources/software that change over time
- Ease of use. Ability to debug and monitor large workflows

Our Focus

Separation between workflow description and workflow execution

Workflow planning and scheduling (scalability, performance)

Task execution (monitoring, fault tolerance, debugging, web dashboard)

Provide additional assurances that a scientific workflow is not accidentally or maliciously tampered with during its execution.

Key Pegasus Concepts

Pegasus WMS == Pegasus planner (mapper) + DAGMan workflow engine + HTCondor scheduler/broker

- Pegasus maps workflows to infrastructure
- DAGMan manages dependencies and reliability
- HTCondor is used as a broker to interface with different schedulers

Workflows are DAGs

- Nodes: jobs, edges: dependencies
- No while loops, no conditional branches
- Jobs are standalone executables
- Planning occurs ahead of execution

Planning converts an abstract workflow into a concrete, executable workflow

Planner is like a compiler

Input Workflow Specification YAML formatted

Logical Filename (LFN)

platform independent (abstraction)

Transformation

Executables (or programs) platform independent

Portable Description

Users do not worry about low level execution details

directed-acyclic graphs

ABSTRACT WORKFLOW

Pegasus

Output Workflow

Pegasus Deployment

Workflow Submit Node

- Pegasus WMS
- HTCondor

One or more Compute Sites

- Compute Clusters
- Cloud
- OSG

Input Sites

Host Input Data

Data Staging Site

Coordinate data movement for workflow

Output Site

USC Viterbi

> nformation Since Institut

- Where output data is placed

Pegasus-transfer

Pegasus' internal data transfer tool with support for a number of different protocols

Directory creation, file removal ()

If protocol can support it, also used for cleanup

Two stage transfers (🌒

• e.g., GridFTP to S3 = GridFTP to local file, local file to S3

Parallel transfers

Automatic retries

Credential management

Uses the appropriate credential for each site and each protocol (even 3rd party transfers)

https://pegasus.isi.edu

HTTP GridFTP Globus iRods Amazon S3 Storage SRM FDT Stashcp Rucio Ср ln -s

Show results for at a submit Host a Submit Directory a State Submitted On -							
Show 10 🖸	entries		Search				
	Submit Host ©	Submit Directory 0	State 0	Submitted On -			
split	workflow.isi.edu	/nfs/cog3/cog/home/pegtrain01/examples/split/pegtrain01/pegasus/split/run0006	Running	Fri, 23 Oct 2015 16:04:00			
split	workflow.isi.edu	/nfs/cog3/cog/home/pegtrain01/examples/split/pegtrain01/pegasus/split/run0004	Failed	Fri, 23 Oct 2015 15:56:01			
diamond	workflow.isi.edu	/nfs/cog3/cog/home/pegtrain01/examples/diamond/pegtrain01/pegasus/diamond/run0002	Successful	Fri, 23 Oct 2015 15:50:17			
split	workflow.isi.edu	/nfs/cog3/cog/home/pegtrain01/examples/split/pegtrain01/pegasus/split/un0003	Falled	Fri, 23 Oct 2015 15:41:15			
split	workflow.isi.edu	/nfs/ccg3/ccg/home/pegtrain01/iexamples/split/pegtrain01/pegasus/split/run0002	Successful	Fri, 23 Oct 2015 15:04:44			
process	workflow.isi.edu	/nfs/cog3/cog/home/pegtrain01/examples/process/pegtrain01/pegasus/process/un0001	Successful	Fri, 23 Oct 2015 15:00:38			
	workflow.isi.edu	/nfs/ccg3/ccg/home/pegtrain01/examples/pipeline/pegtrain01/pegasus/pipeline/run0001	Successful	Fri, 23 Oct 2015 15:00:28			
pipeline	worknow.isl.edu	una coña coñu pue baña eu o usar ubrez bibeu la beña eu o ubeñezea bibeu la reucos u					

PEGASUS DASHBOARD

web interface for monitoring and debugging workflows Statistics

Workflow Wall Time						12 mins 23 secs
Workflow Cumulative Job Wall Time						9 mins 34 secs
Cumulative Job Walltime as seen from Submit Side						9 mins 35 secs
Workflow Cumulative Badput Time						9 mins 23 secs
Cumulative Job Badput Walltime as seen from Submit Side						9 mins 20 secs
Workflow Retries						1
Workflow Statistic	•					
This Workflow						
Туре	Succeeded	Failed	Incomplete	Total	Retries	Total + Retries
Tasks	6	0	0	5	0	5
Jobs	16	0	0	16	2	18
Sub Workflows	0	0	0	0	0	0
Entire Workflow						
Type	Succeeded	Failed	Incomplete	Total	Retries	Total + Retries
Tasks	5	0	0	5	0	5
Jobs	16	0	0	16	2	18
Sub Workflows	0	0	0	0	0	0
Job Breakdown St	atistics					
Job Statistics						

Real-time **monitoring** of workflow executions. It shows the **status** of the workflows and jobs, job **characteristics, statistics** and **performance** metrics.

Provenance data is stored into a relational database.

https://pegasus.isi.edu

command-line...

UNRDY READY PRE IN_Q POST DONE FAIL %DONE STATE DAGNAME 14 0 0 1 0 2 0 11.8 Running *split-0.dag \$ pegasus-analyzer pegasus/examples/split/run0001
pegasus-analyzer: initializing...

'otal jobs : 7 (100.00%) ; jobs succeeded : 7 (100.00%) ; jobs failed : 0 (0.00%)

\$ pegasus-statistics -s all pegasus/examples/split/run0001

Туре	Succeeded	Failed	Incomplete	Total	Retries	Total+Retries	
Tasks	5	0	0	5	0	5	
Jobs		0	0		0		
Sub-Workflows	0	0	0	0	0	0	

Workflow wall time : 2 mins, 6 secs Workflow cumulative job wall time : 38 secs Cumulative job wall time as seen from submit side : 42 secs Workflow cumulative job badput wall time : Cumulative job badput wall time as seen from submit side : Provenance Data can be Summarized Pegasus-Statistics Or Used for Debugging Pegasus-Analyzer

And if a job fails?

Pegasus 5.0

HTC ondor Week 2020

- New and fresh Python3 API to compose, submit and monitor workflows, and configure catalogs
- New Catalog Formats
- Python 3 Support
 - All Pegasus tools are Python 3 compliant
 - Python PIP packages for workflow composition and monitoring
- Zero configuration required to submit to local HTCondor pool.
- Data Management Improvements
 - New output replica catalog that registers outputs including file metadata such as size and checksums
 - Improved support for hierarchical workflows
- Reworked Documentation and Tutorial

https://pegasus.isi.edu/documentation/

2. Hands on Exercises

Hands on Tutorial Exercises: Setup

It is the same (but hosted) as the self-guided tutorial available in the Pegasus documentation: <u>https://pegasus.isi.edu/documentation/user-guide/tutorial.html</u>

Please claim an instance by putting you name next to an unused instance in: <u>shorturl.at/oxIO6</u> (see Zoom chat for clickable link!)

Follow the link next to your name.

Docker Container / Jupyter Notebook

Container is for tutorial purposes - most production workflows have dedicated submit hosts

Jupyter is optional. You can choose to use just the workflow abstraction API, the full workflow management API, inside or outside Jupyter.

Docker Container / Jupyter Notebook

Docker Container / Jupyter Notebook

Development Setup

2.1 API

Key Pegasus Concepts

Pegasus WMS == Pegasus planner (mapper) + DAGMan workflow engine + HTCondor scheduler/broker

- Pegasus maps workflows to infrastructure
- DAGMan manages dependencies and reliability
- HTCondor is used as a broker to interface with different schedulers

Workflows are DAGs

- Nodes: jobs, edges: dependencies
- No while loops, no conditional branches
- Jobs are standalone executables
- Planning occurs ahead of execution
- Planning converts an abstract workflow into a concrete, executable workflow
 - Planner is like a compiler

2.2 Debugging

2.3 Command Line Tools

2.4 Summary

15 Minute Break

3. Advanced Topics

Data Staging Configurations

HTCondor I/O (HTCondor pools, OSG, ...)

- Worker nodes do not share a file system
- Data is pulled from / pushed to the submit host via HTCondor file transfers
- Staging site is the submit host

Non-shared File System (clouds, OSG, ...)

- Worker nodes do not share a file system
- Data is pulled / pushed from a staging site, possibly not co-located with the computation

Shared File System (HPC sites, XSEDE, Campus clusters, ...)

I/O is directly against the shared file system

High Performance Computing

There are several possible configurations...

Cloud Computing

Grid Computing

Local data management

Running fine-grained workflows on HPC systems...

Allows sub-graphs of a Pegasus workflow to be submitted as monolithic jobs to remote resources

Pegasus also handles large-scale workflows

And if a job fails?

USC Viterbi School of Engineerin Information Sciences Institute

Metadata

Can associate arbitrary key-value pairs with workflows, jobs, and files

Data Registration

Output files get tagged with metadata on registration in the workflow database

Static and Runtime Metadata

Static: application parameters Runtime: performance metrics

x-pegasus: apiLang: python createdBy: vahi createdOn: 12-08-20T10:08:48Z pegasus: "5.0" name: diamond metadata: experiment:"par_all27_prot_lipid" jobs: - type: "job" name: "namd" id: "ID0000001" arguments: ["equilibrate.conf"] uses: - 1fn: "Q42.psf" metadata: Select Data type: "psf" charge: "42" **Based on Metadata** type: "input" - lfn: "eq.restart.coord" type: "output" metadata: type: "coordinates" **Register Data** stageOut: true registerReplica: true With Metadata metadata: timesteps:500000 temperature:200 pressure:1.01353

Challenges to Scientific Data Integrity

Modern IT systems are not perfect - errors creep in.

At modern **"Big Data"** sizes we are starting to see checksums breaking down.

Plus there is the threat of intentional changes: *malicious attackers, insider threats, etc.*

User Perception: "Am I not already protected? I have heard about TCP checksums, encrypted transfers, checksum validation, RAID and erasure coding – is that not enough?"

Automatic Integrity Checking in Pegasus

Pegasus performs integrity checksums on input files right before a job starts on the remote node.

For raw inputs, **checksums specified in the input replica catalog** along with file locations

All **intermediate** and **output** files checksums are generated and tracked within the system.

Support for sha256 checksums

Job failure is triggered if checksums fail

Pegasus Container Support

Users can refer to **containers** in the **Transformation Catalog** with their executable preinstalled

Users can **refer** to a **container** they want to **use – Pegasus stages** their executables and containers to the node

- Useful if you want to use a site recommended/standard container image.
- Users are using generic image with executable staging.

Future Plans

- Users can **specify an image buildfile** for their jobs.
- Pegasus will build the Docker image as separate jobs in the executable workflow, export them as a tar file and ship them around

Contai	ners E	xecuti	on Model
Directory Setup		Host OS	
Dull ima			
Pull image			
Start conta	ainer		
\$PWD bind-	mounted	as/srv	Container Instance
	Р	ull worke (if nee	r package eded)
	S	et job en	vironment
		Stage in	inputs
	Exe	cute user	application
		Stage out	outputs
Stop conta	ainer		
↓ Cleanu	р		

Data Management for Containers

Containers are data too!

Pegasus treats containers as input data dependency

- Staged to compute node if not present
- Docker or Singularity Hub URL's
- Docker Image exported as a TAR file and available at a server, just like any other input dataset

Scaling up for larger workflows

- The image is pulled down as a tar file as part of data stage-in jobs in the workflow
- The exported tar file is then shipped with the workflow and made available to the jobs
- Pricing considerations. You are now charged if you exceed a certain rate of pulls from Hubs

Other Optimizations

- Symlink against existing images on shared file system such as CVMFS
- The exported tar file is then shipped with the workflow and made available to the jobs

Job Submissions

LOCAL

Submit Machine

Personal HTCondor

Local Campus Cluster accessible via Submit Machine **

HTCondor via BLAHP

** Both Glite and BOSCO build on HTCondor BLAHP

Currenty supported schedulers: SLURM SGE PBS MOAB

REMOTE

BOSCO + SSH**

Each node in executable workflow submitted via SSH connection to remote cluster

BOSCO based Glideins**

SSH based submission of glideins

PyGlidein

IceCube glidein service

OSG using glideinWMS

Infrastructure provisioned glideins

CREAMCE Uses CondorG

Globus GRAM

Uses CondorG

Credentials Management

Credentials required for two purposes

- Job Submission
- Data transfers to **stage-in** input and **stage-out** generated outputs when a job executes

Specifying Credentials

- Users can specify credentials in a generic credentials file on submit host
- Associate credentials with sites in site catalog

Approach

- Planner will automatically associate the required credentials with each job
- The credentials are transferred along with the job
- Usually available only for the duration of the job execution

Supported Credentials

- X.509 grid proxies
- Amazon AWS S3 keys,
- Google Cloud Platform OAuth token (.boto file),
- iRods password
- SSH keys
- Web Dav

Amazon AWS Batch

AWS Batch

Container based, dynamically scaled and efficient batch computing service

Automatically launches compute nodes in Amazon based on demand in the associated job queue

> Users can specify compute environment that dictates what type of VM's are launched

Pegasus will allow clusters of jobs to be run on Amazon EC2 using AWS Batch Service

New command line tool:

pegasus-aws-batch

Automates most of the batch setup programmatically

- Sets up and Deprovisions
 - Compute Environment
 - Job Queues
- Follows AWS Batch HTTP specification

Ensemble Manager

Allow users to submit a collection of workflows (ensembles)

Automatically spawn and manage collections of workflows

Trigger submission of workflows

│ │ †↓

Properties

Workflows within an ensemble may have different priorities

> Priorities can also be changed at runtime

Ensembles may limit the number of **concurrent** planned and running workflows

Additional Actions

Ensembles can be **paused**, **resumed**, **removed**, **re-planned**, and **re-executed** A **debugging** mechanism is also provided to investigate failures in workflow runs Actions can be performed both to ensembles and single workflows within ensembles

Ensemble Manager Triggers

Ō

Cron workflow trigger

Automatically submit workflows to the ensemble manager at regularly occurring time intervals

File pattern workflow trigger

Cron trigger functionality New **input files matching a given file pattern(s) will be passed** as input Ideal for **regular batch processing** of data as it arrives in one or more given directories

Ensemble Manager Overview

Ensemble Manager Overview

Ensemble Manager Overview

USC Viterbi School of Engineering

Information Sciences Institute

Pegasus

est. 2001

Automate, recover, and debug scientific computations.

Get Started

Pegasus Website

https://pegasus.isi.edu

USC Viterbi

hool of Engine

Users Mailing List

pegasus-users@isi.edu

Support

pegasus-support@isi.edu

Slack

Ask for an invite by trying to join pegasus-users.slack.com in the Slack app

Pegasus Online Office Hours

https://pegasus.isi.edu/blog/online-pegasus-office-hours/

https://pegasus.isi.edu

https://www.youtube.com/channel/UCwJQIn1CqBvTJqiNr9X9F1Q/ featured

Pegasus in 5 Minutes

51