
University of Innsbruck

Institute of

Computer Science

Research Group

Distributed and Parallel Systems

Master Thesis

A split connection PEP

in ns-2

Author

Philipp Gschwandtner

Supervisor

Dr. Michael Welzl

November 30, 2009

“The most exciting phrase to hear in science

— the one that heralds new discoveries —

is not ‘Eureka!’ but ‘That’s funny...’. ”

Isaac Asimov

Abstract

The TCP protocol has been defined over 25 years ago. Although there have
been updates that increase its performance in a variety of network scenarios,
there are still topologies in which standard TCP does not achieve the maximum
performance that is theoretically achievable. An example are network topologies
that consist of long fat pipes, i.e. links with a high bandwidth-delay product, like
satellite links or submarine cables that connect continents. Standard TCP can
suffer from underutilisation in such topologies. This thesis discusses the field of
performance enhancing proxies (PEPs) for TCP protocols. It describes several
techniques on increasing TCP’s performance along with a discussion of previously
proposed PEPs. Furthermore a survey of a split-connection PEP with different
protocol and queueing technique combinations is demonstrated. The results show
that a split connection PEP using a separate queue for buffering can increase the
performance of the overall system, depending on the queue sizes of the network.

5

Contents

Abstract 5

1 Introduction 9

1.1 Motivation . 9
1.2 Simulating with ns-2 . 11
1.3 Outline . 11

2 PEP Overview 13

2.1 Characteristics and Classification 13
2.2 Related Work . 16

2.2.1 Splitting the Connection 17
2.2.2 Other Approaches . 22

3 Theory 27

3.1 General . 27
3.1.1 Classification . 29

3.2 Flow Control . 32
3.3 Protocols . 33

3.3.1 TCP . 33
3.3.2 CUBIC . 35

3.4 Queuing . 36
3.4.1 Drop Tail . 38
3.4.2 RED . 39

4 Evaluation 45

4.1 Methodology and Simulation Setup 45

7

Contents

4.2 General . 47
4.3 FTP . 48
4.4 Pareto . 61

5 Implementation 69

5.1 Implementation in ns-2 . 69
5.1.1 SplitManager . 71
5.1.2 Modified TCP Source . 75
5.1.3 Modified TCP Sink . 78
5.1.4 Other Changes . 79

5.2 TCL Usage Examples . 80
5.2.1 Sample TCL Script split.tcl 82

5.3 ns-2 Resource Requirements and Limitations 84

6 Conclusion 87

List of Figures 89

List of Tables 93

Bibliography 95

Acknowledgements 98

8

Chapter 1

Introduction

1.1 Motivation

Today there are a great number of wireless networks with constantly increasing
bandwidths. Satellite links can be used for home Internet connections, down-
stream as well as upstream, often requiring no separate return path via a phone
line as it was custom in the past. These technologies provide services for a vast
number of end users and not just special institutions, requiring more than pro-
prietary protocols that cannot be deployed on a wide basis. Scientific progress
allows for a constant increase of bandwidth for almost all link types and trans-
port media, whereas the link delay is often reduced to little more than the signal
propagation delay, hence representing a fixed lower limit that is unchangeable.
For this reason, the so-called bandwidth-delay product, an important character-
istic of links that are used by TCP connections, also increases, especially for links
with high delays such as satellite links.

However TCP’s original draft is almost 30 years old, designed to meet the re-
quirements and resources of network topologies at that time. But network hard-
ware has evolved over time, leading to higher bandwidths and the widespread
usage of transport media that protocol designers did not consider then. Further-
more the usage of such topologies has changed, since today’s industry aims to
create technologies that can be used by end users more directly — the afore-
mentioned home Internet connections over satellite links or HSDPA-capable cell

9

Chapter 1 Introduction

phones are such an example. Of course the original design of TCP has been
extended many times, to overcome multiple design flaws and disadvantages, with
particular regard to new technologies. However, all these changes and modifica-
tions are limited by the very design principle of network traffic, namely protocol
fairness. New variants of TCP that are to be deployed on a wide basis need to
improve TCP’s performance in some area, while at the same time remain fair
regarding unmodified versions of TCP that are still being used — in short, mod-
ifications need to be backwards compatible with concurrent network traffic. A
new aggressive variant of TCP that is able to use all available resources is useless
if flows without this modification stall due to starvation.

Furthermore, there are network scenarios which require more than simple pro-
tocol extensions to increase the performance on a reasonable level. For these
reasons, a huge area of research has been done in the past (and will no doubt be
done in the future) regarding performance enhancing proxies (in short: PEPs).
Any single mechanism or complete system that increases the performance of net-
work applications could be regarded as a PEP, however usually — as the name
suggests — their tasks are carried out by network entities somewhere along a
path connecting end hosts, not by the end hosts themselves. Therefore, the main
idea is to enhance the performance by performing tasks inside the network, not
at the end points.

There are various approaches, ranging from simple one-way mechanisms that
re-transmit packets to complete systems that sever the TCP connections of end
hosts and use completely different, specially tuned protocols in the network to
transmit the application data that needs to be delivered.

This thesis aims to give an overview of existing PEP research, together with
an implementation of a simple split connection PEP system that can increase
the performance of TCP connections over satellite links. This PEP system is
evaluated and compared to standard network scenarios that use unmodified TCP
flows (see section 1.3 for a more detailed outline of the thesis and its contents).

10

1.2 Simulating with ns-2

1.2 Simulating with ns-2

The performance enhancing proxy discussed in this thesis was implemented and
evaluated in the discrete network simulator ns-21. This project, originally a vari-
ant of the REAL network simulator, has been developed by multiple organisations
including the University of Southern Carolina since 1996 and provides a variety
of resources with which to simulate network scenarios, spanning from multiple
routing techniques over multicast implementations to wireless and multimedia
protocols. While there can be drawbacks of doing simulations with network
topologies that include special components or characteristics such as satellite
connections (further explained in chapter 5), it is still the main choice to eval-
uate new network systems. It supports many of today’s protocols that are also
used in real life, together with an implementation design that allows new proto-
cols to be added or existing mechanisms to be modified easily, while remaining
very precise in its resemblance of reality.

1.3 Outline

The thesis is structured as follows: Chapter 2 will give an overview of perfor-
mance enhancing proxy mechanisms, how to categorise and classify them, explain
advantages and disadvantages together with security implications and discuss re-
lated work in the field of performance enhancing proxies. Chapter 3 explains
the theory behind the PEP mechanism of this thesis in detail and how it works.
Furthermore the protocols and queuing techniques that are used are discussed
and compared. In addition an explanation of the means of flow control is given
(i.e. how to control sending rates). Chapter 4 deals with the simulation results
obtained in the ns-2 network simulator. The topology of the simulation setup
is illustrated and measurement results are presented and discussed for various
scenarios. Chapter 5 deals with the actual implementation of the PEP in the
ns-2 simulator and describes the modifications and new configurable parameters.

1http://www.isi.edu/nsnam/ns/

11

Chapter 1 Introduction

Moreover it shows how the PEP can be used in TCL simulation scripts and of-
fers a short documentation of the sample script that is provided with this thesis
and that was used for obtaining the measurement results discussed in chapter
4. Finally chapter 6 concludes with the findings of this thesis, summarises the
measurement results obtained and provides an outlook for future work on the
topic of performance enhancing proxies.

12

Chapter 2

PEP Overview

This chapter gives an overview of current performance enhancing proxy mech-
anisms. Section 2.1 explains the different characteristics by which to classify
PEPs in general and their effects. Afterwards, existing research and experiments
regarding performance enhancing proxies will be discussed in section 2.2.

2.1 Characteristics and Classification

There are several ways of implementing mechanisms which increase the perfor-
mance of TCP in certain situations without modifying the protocol to a point of
incompatibility with existing implementations. These mechanisms can be classi-
fied by the following characteristics as discussed in [9].

Layers

Generally, a performance enhancing proxy may operate at any number of lay-
ers, however usually their function is restricted to one or two layers. Most of
them modify the standard behaviour at the transport level or application level.
Nevertheless lower-level PEPs that are working at the link layer — as discussed
in [29] — are also possible and in use (e.g. ARQ, FEC, etc.), although they
can also worsen the behaviour of TCP. On the transportation layer — for TCP,
these PEPs are sometimes called TCP PEPs — one may perform various tasks

13

Chapter 2 PEP Overview

like ACK spacing (the modification of the time delay between multiple ACK
packets to reduce burst behaviour). On the application layer, a great variety
of performance enhancements is in place like web caches or mail transfer agents
(MTAs).

Although PEPs situated at the transportation layer or below usually do not
modify the payload data of TCP segments, they can still violate the end-to-end
argument. The end-to-end argument — one of the main principles of the Internet
— states that certain end functions can only be correctly performed by the end
systems and not inside the network [31]. This is one of the main reasons why
performance enhancing proxies are put only in special network scenarios and not
recommended for general use.

Distribution

Another characteristic of PEPs is the distribution fashion. PEPs may work at a
single node or they may be distributed among multiple nodes. An example for a
single node distribution would be a conversion point between different physical
media, e.g. an implementation providing impedance matching between a wired
and a wireless link. A possible application for distributed PEPs might be at each
end of a link with certain characteristics (e.g. a satellite link).

Symmetry

Furthermore, one can classify PEP implementations as either symmetric or asym-
metric. Symmetric PEPs work in both directions, i.e. they apply the same per-
formance enhancing mechanism for packets, regardless of the interface on which
they were received or their destination. Asymmetric PEPs act differently, de-
pending on the direction of the packet. The direction can be derived from the
receiving interface or from the protocol itself (e.g. the direction of a TCP flow,
also called TCP data channel or the direction of the ACK flow, often called TCP
ACK channel). Asymmetric PEPs are usually in use where the protocol traffic

14

2.1 Characteristics and Classification

is asymmetric, or at network points where the link characteristics change (e.g. a
node where wired and wireless links meet).

Transparency

The degree of transparency is another quality by which PEPs can be charac-
terised. A performance enhancing proxy may be fully transparent, i.e. end
nodes do not notice the PEP and therefore do not require any modification at
any layer in order for the performance enhancement to take effect. Moreover this
way, the compatibility with the current network is fully preserved. PEPs with
less transparency may require changes at one or both end nodes at one or more
protocol layers.

Disadvantages and security implications

Despite the fact that PEPs may enhance the performance of the network, there
are also some negative implications that come with their use. In addition to
the aforementioned end-to-end violation, there is the principle of fate sharing
which is also violated [14, 21]. Normally state information about the connection
between two endpoints is only stored at those endpoints, not within the network.
This allows for the state information to be separated from the connection path
and for a fast protocol recovery. If the connection breaks down, both end-points
will be aware of it. However, if certain PEPs are in use at some intermediate
node, they may also hold information about the connection. For example if a
split-connection PEP is in place, there will be two connections, each between one
endpoint and the intermediate node. If one connection for end node A breaks
down, end node B still has an open, working connection to the midpoint and may
not notice that the path of data delivery has been severed. For this reason, the
principle of fate sharing is broken. Moreover if the PEP midpoint breaks down,
the connection is also severed, while packets can simply be rerouted upon failure
of a node if no split-connection PEP is used.

15

Chapter 2 PEP Overview

Furthermore one must consider that a PEP implementation must be able to
read information from a packet’s header or possibly even modify it. If this is the
case for a lower-layer PEP, it does not pose a problem. However some PEPs base
their performance enhancing decisions of some layer on the information inside
a higher-layer header (e.g. prioritisation of certain protocols for multimedia
purposes). For those and for PEPs that generally work at a higher layer, end-to-
end security protocols like IPSec that work with encrypted payloads render the
PEP useless and must therefore be avoided. If the PEP is not transparent, it is
possible to maintain two encrypted connections, however the data will still needs
to be decrypted and re-encrypted at the PEP node. This is not only less secure
than end-to-end security, it implies that the end users trust the network in terms
of security which generally is not the case. Moreover if the two connections
are negotiated with different levels of security, end users may act on the false
assumption that they know the level of security for the entire end-to-end path.
Naturally a PEP can force the same level of encryption for both connections,
however — apart from the less security provided, compared to real end-to-end
security — this increases the complexity of its implementation [9].

2.2 Related Work

TCP was first standardised in RFC 793 in 1981, providing a number of fea-
tures to facilitate the use of networks. It supports connection-oriented, stateful
communication, reliable and ordered transport of data, the ability to cope with
network congestion and it aims to utilise the available network bandwidth to
the best of its abilities. But despite the fact that there have been a number of
updates to TCP, most of which changed the congestion control or acknowledge-
ment behaviour, there are many use cases and network topologies that emerged
from scientific progress, in which TCP’s performance is far from the theoretically
achievable maximum concerning network utilisation and throughput.

Since changing the basic behaviour of TCP would have either required com-
pletely replacing the original or affected TCP friendliness in mixed protocol situ-

16

2.2 Related Work

ations, it was not an option. Therefore other means of increasing its performance
— without changing the standard — have been investigated.

2.2.1 Splitting the Connection

One of the first performance enhancing proxies is described in [5]. Bakre and
Badrinath point out the problem of TCP not addressing “the distinctive features
of wireless mobile computing”. They suggested a new protocol, indirect-TCP
or I-TCP, to increase both the performance on wireless networks as well as the
support of the mobility of end hosts. Normally, a fixed end host communicating
with a mobile device (also called mobile host) pertains a direct connection to it.
The problem that arises with such a setup is the fact that TCP assumes packet
loss to be an effect of congestion, although there can be other causes (e.g. packet
dropping due to wireless cell handovers or corruption). When I-TCP is used,
this connection is split in two, with a mobile support router (MSR) in the middle
(which connects to the fixed host on behalf of the mobile host, e.g. the fixed host
is unaware of the MSR). Their testbed to simulate this modification includes three
hosts connected via a 2 Mbit/s wireless radio connection. Their performance
evaluation shows a 7% increase of throughput compared to regular TCP for their
simulation in local area networks. In wide area networks — with a higher number
of hops and thus a longer connection delay — the performance increase is almost
100% over normal TCP. Moreover this performance increase in WANs is tripled if
they include cell switching, which presents the second advantage of this system:
If the mobile host moves, only the connection on the path to the MSR must be
re-established to a new MSR, which gets the complete connection state from the
old MSR and resumes the connection to the fixed host. Therefore the fixed host
is unaware of such handovers since it keeps communicating with what it believes
to be the mobile host. The connection between the MSR and the mobile host
can be tuned to the specifics of the wireless medium in use, therefore maximising
the performance. In addition, the fixed end host does not need any modification
since I-TCP is implemented only at the mobile support routers. The mobile
host however needs to be aware of this modification. Furthermore, it should be

17

Chapter 2 PEP Overview

mentioned that this approach — as any split connection mechanism — violates
the end-to-end principle (see section 2.1).

However, there are two ways of splitting a connection. The approach of Bakre
and Badrinath presented in [5] separates the original connection in two, with one
intermediate station, since the link characteristics (or in their example, even the
transport media) are different for the sender and the receiver. Nevertheless there
are situations where the end nodes are situated in similar networks (regarding
the link characteristics), but the connection between them uses one or more links
with different characteristics or transport media. Hence, the sender and receiver
are subject to the same network conditions and it might be counterproductive
to use different protocols for them. For this reason, the performance enhancing
proxy can be distributed among more nodes than just one, enabling the use of
different protocols between the performance enhancing nodes while the protocols
at the end nodes remain unaltered.

Durst, Miller and Travis suggest a complete protocol suite with this approach
in [15] for space communication, called Space Communications Protocol Stan-
dards (SCPS), with four parts — namely a file transfer, transport, security and
a network protocol. The transport protocol SCPS-TP they developed is a mod-
ification of TCP “to improve the operation in the space environment”. For this,
they investigated the problems that arise with communication between terrestrial
endpoints and those on spacecrafts. Standard TCP assumes that packet loss is
an effect of congestion, not corruption. But some degree of packet corruption is
usual and expected on wireless links. As a result upon receiving three duplicate
acknowledgements (DUPACKs) it reduces the congestion window and thereby
drops its sending rate. Their solution for this problem distinguishes between
congestion and corruption. For former situations, standard TCP Vegas is used
as a congestion algorithm. However if corruption is detected — with lower-layer
mechanisms measuring the number of packets that were received but corrupted
— the receiver sends ICMP messages holding a corruption experienced flag as
well as acknowledgements with the same option. During this phase, TCP will
not back off due to the alleged congestion but keeps sending at its current rate.

18

2.2 Related Work

If packet loss is still indicated by DUPACKs without the option set, SCPS-TP
switches to TCP Vegas’ congestion control. If no congestion is encountered or
congestion is experienced (indicated by the arrival of DUPACKs) but without the
corruption experienced information, SCPS-TP behaves like normal TCP Vegas.
A performance evaluation of the modifications was done by simulating a link with
a bandwidth of 1.5 Mbit/s and delays of 50 and 100 ms together with bit error
rates between 10−5 and 10−8. The results indicate an increasing throughput ad-
vantage of SCPS-TP over TCP when increasing the error rate. While SCPS-TP
manages to keep a performance of roughly 90% when increasing the error rate
by a factor of 10−3, TCP drops its performance by a factor of 10. Furthermore,
doubling the delay from 50 to 100 ms has very little impact on SCPS-TP, but
costs standard TCP 25% of its throughput. Their results indicate that the main
reason for TCP’s poor behaviour in error prone environments is its false assump-
tion that packet loss is always caused by congestion. In addition, they suggest
that non space-related wireless and mobile links might also benefit from their
modifications.

Moreover there are split connection approaches that offer more complex en-
hancements than just separating a TCP connection into two or three connections.
The approach proposed in [16] by Ehsan et al., for example, uses two split con-
nections and works on the application layer. An HTTP server is connected to
an intermediate node via the Internet, and this node is connected via a one-way
satellite link to a node sending HTTP requests over a phone line return path.
However, contrary to the split connection approaches priorly discussed, the au-
thors included an application level cache at the intermediate node (in their case, a
web cache). They suggest that in topologies that include long fat pipes with com-
paratively high channel error rates such as satellite links, TCP often suffers from
high sensitivity to random packet losses, even with a split connection mechanism
in use. To mitigate this effect, they install a cache on the intermediate node. If
a sender establishes a connection to the cache and transmits an HTTP request
and the requested document is present in the cache (cache hit), it is directly
transmitted to the sender without involving the server. However if the requested
document is not present or outdated (cache miss), the intermediate node will

19

Chapter 2 PEP Overview

establish a connection to the server, fetch the requested document, cache it and
transmit it to the sender. Therefore the connection is not only split at the trans-
port layer, but also at the application layer, since the HTTP requests from the
sender are explicitly sent to the cache, not just intercepted by it. Likewise, the
server gets incoming connections and requests explicitly from the cache. Mea-
surements were taken using a commercial satellite connection of up to 24 Mbit/s
downstream and a regular phone line return channel of 56 Kbit/s upstream. The
results show various performance increases regarding throughput ranging from
40% up to 140% for cache misses and up to 170% for cache hits. In addition,
larger files show a higher benefit gain. Measurements regarding the number of si-
multaneous connections between the requesting node and the cache show smaller
performance gains for increasing number of connections, however for any number
of connections the PEP proposal of Ehsan et al. still offers performance gains
compared to using a single connection without any cache involved.

Caini et al. evaluate the performance of PEPsal, a transparent connection
splitting TCP PEP designed for satellite connections, in [13]. PEPsal is open
source and according to the authors in use by a commercial satellite Internet
provider. Their topology of interest consists of two senders connected via a link
with a short RTT to a midpoint node, which is again connected to a satellite re-
ceiver via a link with a long RTT and a wired receiver via a link with a small RTT.
One of the senders transmits data to the satellite receiver, one transmits data
to the wired receiver, therefore the link between the senders and the midpoint
node is their common bottleneck. The PEP they propose transparently splits the
TCP connection from the sender to the satellite receiver and uses TCP Hybla, an
enhanced TCP variant for satellite links developed by the authors, as the trans-
port protocol between the midpoint and the satellite receiver. TCP Hybla was
first proposed in [12] and grants connections with a large RTT the instantaneous
transmission rates of comparatively fast reference connections. Furthermore they
investigated the effect of congestion on the link that connects the senders and
the midpoint node, which has the same bandwidth as the satellite connection.
They compared this proposal to using non-split NewReno/SACK TCP and TCP
Hybla connections, together with simply splitting a SACK TCP connection (i.e.

20

2.2 Related Work

without the use of TCP Hybla for the connection to the satellite receiver) for
various round trip times between 50 ms and 600 ms. Their results regarding
throughput show that without any errors on the satellite channel, a non-split
NewReno/SACK TCP connection deteriorates by a factor of up to 10 times with
increasing RTTs in the presence of congestion on the bottleneck link. According
to the authors, the main reason for this degradation is the fact that standard TCP
congestion control is only fair regarding bandwidth utilisation, if all competing
flows have roughly the same round trip time. Since having background traffic
from a sender to the wired receiver with a very small RTT compared to the RTT
of the connection using the satellite, this fairness is no longer given. Introducing
errors on the satellite channel leads to even worse performance of NewReno/-
SACK and also decreases the performance of using split connections with SACK
TCP, while both PEPsal and Hybla TCP are only marginally affected. When
encountering congestion in addition to random losses due to errors, TCP Hybla’s
performance also decreases slightly for RTTs higher than 400 ms while PEPsal
is able to maintain its throughput.

There has been some more research pertaining to satellite connections. RFC
2488 [4] and RFC 2760 [3] discuss not the technique of splitting connections
but rather the parameters of an actual TCP connection over a satellite link or
links with high bandwidth-delay products in general. They suggest modifica-
tions for the start-up phase like eliminating the delay caused by TCPs three-way
handshake. Further proposals include values for initial window sizes or disabling
delayed ACKs since they decrease the growth rate of TCPs congestion window
(although resulting in a higher utilisation of the return path). But changes with a
much higher impact are the use of timestamps [23] together with TCPs sequence
numbers to allow very high bandwidths and the introduction of the TCP window
scaling option as discussed in [27]. First of all, since the maximum lifetime of
an IP packet was originally assumed to be 120 seconds, a TCP sequence num-
ber cannot be reused for this time frame to ensure that no two segments with
the same sequence number are present in the network. Since sequence numbers
are represented by 32 bits in the TCP header, spreading them over 120 seconds
gives a maximum data rate of only 286 Mbit/s. Using timestamps in conjunction

21

Chapter 2 PEP Overview

with sequence numbers to identify a segment, this limitation is removed. Second,
standard TCP window sizes cannot exceed 64 KBytes, which limits TCP’s effec-
tive throughput to about 1 Mbit/s (assuming a round-trip-time of 0.5 seconds
for GEO stationary satellites) [26]. Further research includes new start-up and
congestion control mechanisms that use low priority dummy segments to probe
satellite network conditions even if there is no actual data transfer [2], or using
the Packet Pair algorithm to monitor link utilisation and reflect it in the ad-
vertised windows for TCP senders using the PEP [32]. In [25], Marchese et al.
proposed PETRA, a PEP transport architecture for satellite communications,
which uses a special transport protocol (STPP) for satellite links while keeping
standard TCP interfaces at the ends of those links for transparency. In addition
PETRA divides the transport layer into two sublayers to separate flow control
and the maintenance of the end-to-end semantics of TCP connections. Their
results show performance increases between 20% and 400%, depending on the
channel error rate and network conditions.

Also PEP research pertaining to different fields of application than satellite
communication has increased over the last few years, due to the spread of tech-
nologies like UMTS, WLAN and Bluetooth. Fiorenzi et al. suggest in [17] that
the lack of knowledge of HSDPA link characteristics is one of the main perfor-
mance concerns for TCP in such topologies. They propose a split connection
approach together with cross-layer signalling, to inform a proxy that relays the
TCP payload of a sender of the wireless network conditions and let TCP reflect
them in its scheduling and sending rate decisions. Their experiments in ns-2 for
an HSDPA link with a mean maximum bandwidth of about 1.3 Mbit/s show
a well-increased throughput compared to unmodified Reno TCP connections,
which can occasionally break down to a sending rate of 0 Kbit/s while their PEP
is able to maintain an average throughput of about 1.1 Mbit/s.

2.2.2 Other Approaches

However splitting connections (whether done in combination with additional en-
hancement mechanisms or not) is not the only option to improve TCP’s per-

22

2.2 Related Work

formance over links with distinct characteristics. Since splitting the connection
practically always violates the end-to-end principle, no matter the measures taken
to mitigate this problem, further research has been done in the field of PEPs that
use other means to improve performance.

Balakrishnan et al. reach similar results in [7] as Bakre and Badrinath did
with I-TCP in [5], but comply with the end-to-end argument because they do
not split the TCP connection. Instead their approach, called snoop, relies on
local retransmission. Their topology of interest consists of a fixed host which is
connected to a wireless base station via Ethernet. The base station in turn is
connected wirelessly to a mobile host via an AT&T WaveLan card supporting
2 Mbit/s. The snoop mechanism introduces a data cache sitting at the wireless
base station. It maintains copies of TCP segments coming from the fixed host
while routing the original segments normally to the mobile host. But in case
of a duplicate acknowledgement or a timeout (i.e. no acknowledgement arriving
within a certain time frame), segments from the cache can be re-sent without
involving the original sender. This is completely transparent from the sending
host’s point of view and hides possible packet loss on the wireless link. Perfor-
mance evaluations were done with the REAL1 network simulator, with a wireless
bandwidth of 2 Mbps and a cache size of 20 packets. The results show that the
caching and retransmission of segments either can increase the throughput by
a factor of up to 20 with wireless bit error rates ranging between 5 ∗ 10−7 (one
erroneous bit every 2 megabit) and 1.5 ∗ 10−5 (one bit error every 64 kilobit), or
it can cope with up to 20 times higher error rates compared to normal TCP.

The advantage of this approach compared to that of I-TCP is the decreased
complexity of packet processing required at the midpoint. I-TCP needs to ac-
knowledge a segment, re-pack the payload in a new packet and transmit the new
packet, whereas the protocol proposed by Balakrishnan et. al. in [7] only needs to
copy the segment to a cache and possibly retransmit it without any further pro-
cessing. They also compare it with established retransmission mechanisms such
as the fast-retransmit technique discussed in [11] and find that fast-retransmit is

1http://www.cs.cornell.edu/skeshav/real/

23

Chapter 2 PEP Overview

less effective since it only deals with wireless handovers, not error characteristics
of wireless links. Another reason is the need for the packets to be re-sent from
the source and not some point closer to the error prone wireless link, introducing
unnecessary delay. Furthermore they suggest that the use of link-level retrans-
missions in parallel with end-to-end retransmission protocols can greatly decrease
performance on links with higher error rates if they are not highly coordinated.

PEP research other than split connections and local transmission include sim-
ple scheduling modifications. In [8], Pravin Bhagwat et al. also study packet
burst errors in wireless LANs and their effect on the performance of TCP. They
point out that when a wireless channel that is used for transmitting data is in a
burst error state, lower layer protocols may try to retransmit lost frames multiple
times, resulting in poor link utilisation (since immediate retransmissions during
a burst error period are very likely to fail again). To illustrate this phenomenon,
one of their experiments included a file transfer of approximately 600 Kilobytes
between two machines, both connected to an intermediate station via infrared
wireless LAN and Ethernet respectively. Under normal, no-loss conditions the
file transfer took approximately 10.5 seconds, resulting in a throughput of 0.508
Mb/s. In their simulations including packet loss, the wireless channel switches
to burst error mode 3 times (at 4.3, 5.8 and 12.8 seconds). This yields in a
decreased throughput of 0.321 Mb/s, which is almost 40% less. They found the
main problem source to be TCP’s long delay when sending retransmissions and
resuming slow start, for cases in which lower level retransmissions fail during
burst error periods. As a result, TCP reacts by exponentially backing off its
higher level retransmission, therefore resulting in the poor utilisation mentioned
above.

Contrary to using split connections however, they suggest the use of a new
packet scheduling mechanism to mitigate this problem. Their scheduler includes
the state and characteristics of the wireless channel in its packet scheduling and
dispatching decisions. For radio-based wireless LANs, their channel state depen-
dent packet (CSDP) scheduler maintains queues for each wireless destination.
When packet loss occurs due to bad wireless channel conditions, retransmissions

24

2.2 Related Work

of lost packets are delayed until the conditions return to normal. However while
packets to this destination are delayed, packets to other destinations can be
transmitted during this period, since they found that wireless channels to differ-
ent destinations are statistically independent. Their experiments with the new
CSDP scheduler show an overall approximate performance increase of 15%.

A different approach to enhance the performance of TCP is called Ack Con-
gestion Control (ACC). In [6], Balakrishnan et al. proposed a congestion control
mechanism for acknowledgement segments in their discussion of the performance
of asymmetric TCP connections. An example for an asymmetric connection
would be a home Internet connection that uses a satellite for its downstream
path, but a dial-up modem for the upstream path. This is quite frequent for
home satellite connections since the sending equipment is expensive compared to
the dial-up modem solution which requires just a phone line. The bandwidths
of the directions could differ as much as 10 Mbit/s and 28.8 Kbit/s. The au-
thors define a bandwidth ratio k between the ratio of the bandwidths of both
directions (forward for data, reverse for acknowledgements) and the ratio of the
packet sizes (e.g. 1000 Bytes for data segments, 40 Bytes for ACKs). For ex-
ample a downstream/upstream bandwidth ratio of 100 and a packet size ratio of
25 would result in k = 4. This means that more than one ACK every 4 packets
would lead to congestion on the reverse path, which in turn limits the growth of
the sender’s congestion window.

One method of mitigating this effect is header compression. It can reduce
the size of ACKs considerably (assuming they do not carry payload data) and
free up bandwidth. Another way of solving the problem is called ACK filtering,
which is similar to a split connection approach. The two nodes at each end of
the bottleneck link could group enqueued ACKs of the same connection together
and delete the original ACKs, therefore acknowledging more data with a single
ACK. Upon arrival of such a cumulative ACK, the second node reconstructs the
original ACKs and forwards them to the sender. This way the required bandwidth
decreases. The third solution proposal — designed for two-way TCP flows (i.e.
the ACKs for the reverse path also carry payload data) — is simple but effective.

25

Chapter 2 PEP Overview

The authors suggest that congestion control should be used for these ACKs as
well, similar to the standard congestion control of TCP senders to reduce burst
effects. Simulations were done with a bottleneck link that supports 10 Mbit/s
upstream and 9.6 Kbit/s or 28.8 Kbit/s downstream. Their results generally
show throughput performance increases between 4% and 300%. Without header
compression, the use of ACC can double the achieved throughput. Ack filtering
provides even higher performance increases with a factor ranging between 2 and
4. Header compression itself also greatly increases the achievable throughput, up
to a factor of 4. However either systems used in conjunction (ACC + compression
or filtering + compression) only double the performance compared to the single
enhancement or show almost no performance increase at all. Generally speaking,
the topology with the slower 9.8 Kbit/s return path shows higher benefits from
the enhancements compared to the faster 28.8 Kbit/s setup.

26

Chapter 3

Theory

This chapter discusses the theory behind the performance enhancing proxy im-
plemented during the course of thesis. Section 3.1 gives a basic explanation of its
operation and characterises the PEP. Afterwards section 3.2 gives an understand-
ing of the flow control mechanism. Finally section 3.3 discusses the protocols and
section 3.4 the queues that are used.

3.1 General

The PEP implementation of this thesis is intended for enhancing the perfor-
mance of TCP connections that share a common bottleneck link with a high
bandwidth-delay product. An extreme example for such a link would be a satel-
lite connection. Geostationary satellites, as used for TV broadcasts and global
communications in general, orbit the Earth at an altitude of approximately 36.000
km. The main advantage of this GEO (Geostationary Earth Orbit) is a constant
and relatively large field of coverage, hence eliminating the need for protocols
that can cope with connection breaks. The coverage of satellites on a lower orbit
(e.g. GPS, satellite phone systems, etc.) changes with their position, a fact that
needs to be taken into account when designing and deploying protocols for them
(e.g. handovers).

In addition, GEO satellites do not need to be tracked by antennas or dishes
since they appear to remain in a fixed position when viewed from Earth (hence

27

Chapter 3 Theory

greatly reducing costs for Earth-based communication equipment). The disad-
vantages of GEO satellites are their increased transmit power requirements (and
more sensitive receiver equipment) due to the large distances involved. How-
ever low-level factors like error characteristics, modulation techniques or power
requirements — because of having little or none impact on the transport or ap-
plication level — would go beyond the scope of this thesis and are therefore
neglected.

Another problem that arises with connections that span over such large dis-
tances is the delay. The signal propagation delay that covers the distance from
a ground station directly below to a GEO satellite and back is at best 240 ms
(assuming the speed of light in vacuum as the propagation speed and an overall
distance of 72.000 km) — neglecting any processing time needed by the satellite
to perform tasks like error correction. Usually, one can assume propagation de-
lays of 250–280 ms, resulting in a round trip time of up to 600 ms for bidirectional
satellite links [1]. Such high delays and RTTs have a considerable impact on the
convergence of protocols which use a congestion response that depends on the
RTT, like TCP (see section 3.3).

split end node TCP receiversplit start nodeTCP sender

Figure 3.1: The topology shows connection splitting performed by the two split
nodes.

28

3.1 General

The main technique of the PEP presented in this thesis to increase the per-
formance over such a link is based on the split connection approach. Instead of
a TCP flow spanning from the end sender to the end receiver, the connection is
split into three separate connections (as illustrated in figure 3.1) when the PEP
is in use. The sender sends its packets to the split start node, which — aside
from immediately acknowledging the data — extracts the payload data. This
data is then retransmitted like normal application data from the split start node
to the split end node. The split end node again acknowledges the segment and
forwards the payload in a new packet to the end receiver. To be able to determine
the original destination of the data at the split end node, the source address of
incoming packets is saved into the PEP id table. When the data is ready to
be transmitted at the split start node, the id is removed and saved in a header
field of the outgoing packet. Hence the split end node can determine its intended
target. This forwarding mechanism is illustrated in figure 3.2. Furthermore it
should be mentioned that regardless of the number of connections held by the
senders and receivers, the PEP always uses a single TCP connection over the
satellite link.

3.1.1 Classification

According to the classification provided in section 2.1, the PEP acts on the trans-
port layer, it is distributed, asymmetrical, and non-transparent for the following
reasons:

Both split nodes take incoming packets, extract the payload data and forward
it without any further modification or processing. Thereby the PEP operates
at the transport layer only — although the payload is copied at the application
layer, there is no modification or further performance enhancement done and
therefore this layer can be neglected. Since the approach splits the original TCP
connections in three and both end senders and receivers are unaware of any packet
processing by the split nodes, the PEP might be extended in the future to support
further tasks and enhancements at the application layer (e.g. compression).

29

Chapter 3 Theory

Figure 3.2: The main packet forwarding behaviour of the split start node.

Since the connection is split and the split start node immediately sends ACKs
to the TCP sender upon the reception of packets, the split start node is respon-
sible for the delivery of the data. While the general approach can be realised
in a transparent or a non-transparent manner, the TCP senders of this ns-2 im-
plementation of the PEP connect explicitly to the performance enhancing proxy,
therefore the implementation of the PEP is not transparent. But nevertheless the
sender has no information about the successful delivery of its data since it gets
acknowledgements for the reception of payload that has not reached its intended
destination yet. For this reason the PEP (more precisely the nodes at which the
PEP is situated) must ensure safe data transport, which is guaranteed by TCP
itself. Hence there is no need for additional measures to ensure guaranteed data
delivery.

Still, as mentioned in subsection 2.2.1, this approach violates the end-to-end
argument since the responsibility of guaranteed data transport is no longer car-
ried by the end nodes alone. Furthermore the principle of fate sharing is also
broken since splitting a TCP connection also results in storing state information

30

3.1 General

about the connections inside the network, not just the end nodes. For exam-
ple the connections between the TCP senders and the split start node could be
severed but the connections between the split end node and the end receivers
are still valid. Despite the fact there is no more data arriving in such a case,
the end receivers have no further information about the state of their respec-
tive sender’s connections (which would not be the case for unsplit connections
spanning between the senders and receivers).

The end nodes do not need any modification regarding their protocols. Since
the connection is split in three, the protocol used between the two split nodes does
not necessarily need to be the same as the one used by the end nodes. Due to the
fact that the payload data at the split nodes is extracted and re-enveloped into
new packets, the protocol on the split link can be exchanged for some other that
meets the specific requirements of a link with a high bandwidth-delay product
(or, for other applications, links with other special requirements). This will be
further discussed in section 3.3.

The approach itself is asymmetrical, since it only deals with one-way flows
regarding the transport of data. However there is no restriction that precludes
installing the PEP twice, one for each direction. Since TCP connections are
fully isolated from each other on the TCP stack of a network device, two PEPs
installed for opposite data directions can be used in parallel and should not
interact.

Finally, the PEP is distributed since it must be deployed on two nodes, at
each side of the bottleneck. Non-distributed PEPs that use two split connections
have been discussed in 2.2.1, however they are mostly used in network scenarios
where error-prone links pose the main problem regarding performance. However
transmission errors are not a concern for the scope of this thesis and are assumed
to be dealt with by lower-layer mechanisms not requiring retransmissions (e.g.
forward error correction). By this reason and due to the fact that a split connec-
tion approach resulting in two separate connections instead of three requires a
protocol change either at the sender or at the receiver, those techniques are not
an option for the scenario discussed in this thesis.

31

Chapter 3 Theory

3.2 Flow Control

Explicit flow control of the PEP is realised only at the split start node, since
the split end node simply forwards the data to the end receivers and the split
link is considered to be the bottleneck. Also because the split link is the main
concern regarding link utilisation and the split start node is the point of merging
the data of multiple flows into a single TCP flow, only the split start node needs
an additional local queue to buffer data. This queue is logically placed in front
of the split start node and enqueues packets before they are received by the
receiving TCP stack of the split start node. If flow conditions allow it, packets
are dequeued and processed by the receiving stack. The queue drops packets
according to its mechanism (depending on the queue type, e.g. drop tail, RED,
etc.). However this setup still lacks a form of control to regulate the rate of
packets that are dequeued (since there is no physical link). To control the packet
rate that is accepted at the split start node, the sender of the satellite connection
needs to be involved since we need information on when to send how much data
— if any.

For this reason, the TCP sender of the split start node holds a value buffer
which is similar to a receiver window. Whenever the sender transmits data,
buffer is increased by the number of bytes that have been sent. If there are
packets in the local queue, and buffer is at least the size of one packet, packets
can be dequeued and handed to the receiving TCP stack of the split start node
while buffer is decreased by the size of each packet that has been dequeued. If
buffer is smaller than the size of one packet, the sender waits a predefined time
interval (see chapter 5) — by default 1 ms — and checks again. When packets
are handed to the receiving stack, they are processed and acknowledged without
any modification (i.e. standard TCP behaviour). Hence, buffer approximately
represents how much data can still be taken into the buffer of the TCP stack of
the split start node.

This mechanism basically relies on TCP to determine how much data can be
processed. If the split start node is able to send more data, then in turn more data

32

3.3 Protocols

can be accepted. If the sending rate on the split link decreases — for whatever
reason — the number of packets accepted for forwarding at the split start node
is also decreased. Since this is realised by a simple queue that drops packets,
the TCP end senders will encounter packet loss and adjust their sending rates
accordingly (independent of the actual queuing mechanism in use). Therefore,
the system is self-regulating, depending only on the data flow rate on the split
link.

3.3 Protocols

An important factor that affects the performance of a PEP deployed under ex-
treme network conditions (like a satellite connection) is the protocol that is being
used. Since it can easily be exchanged on the middle link without modification
on the end-to-end nodes, it stands to reason to compare protocols regarding
their performance on long delay links with high bandwidth. In the following
subsections, Standard TCP and CUBIC are explained and compared with each
other.

3.3.1 TCP

Standard TCP uses two thresholds by which it limits its sending rate — the
advertised window of the receiver and the congestion window cwnd. The first
is disclosed in the acknowledgements sent back to the sender. The second is
maintained by the sender itself, representing the network conditions as stated
below. Hence, the maximum sending rate is the minimum of those two thresholds.

To increase its sending rate, TCP uses two mechanisms, depending on the sit-
uation (for the purpose of this discussion, we assume that the advertised window
is very high and thus not a limiting factor). When a TCP flow starts sending
application data (after the three-way handshake), standard TCP uses slow start.
As packets are sent, the sender receives ACKs acknowledging them. For each
ACK received, the sender sends two packets — therefore, despite the name of

33

Chapter 3 Theory

the mechanism, the growth rate is exponential. This continues until a threshold
ssthresh (usually 64 KB) is reached, after which the growth rate slows to the
congestion avoidance phase.

During congestion avoidance, TCP increases its sending rate by determining a
new cwnd value as follows:

cwnd = cwnd + MSS ∗ MSS

cwnd

MMS denotes the maximum segment size. The equation shows that the growth
rate is linear and dependent on the round trip time (cwnd is approximately
increased by one packet every RTT). However, as soon as packets are dropped (i.e.
duplicate acknowledgements (DUPACKs) arrive or the sender’s retransmission
timer expires), cwnd is reset to 1, sstresh to half the window size and TCP falls
back to slow start again.

Since this means that TCP effectively performs a restart and starts probing
for network resources. However arriving DUPACKs indicate that — although at
least one segment was lost — segments are arriving at the receiver. Therefore, a
new variant called Reno uses this information. It sets sstresh and cwnd to half of
the bytes in flight (i.e. travelling on the path), immediately retransmits the lost
segment and increases cwnd for every arriving DUPACK (including the three
DUPACKs that indicated packet loss in the first place) since a DUPACK means
that a segment has left the network. Upon arrival of a normal ACK (acknowledg-
ing the receiver’s reception of a packet previously transmitted), the congestion
window is set to sstresh and Reno continues with its congestion avoidance phase.
Figure 3.3 illustrates that behaviour (note: since the advertised receiver window
is very high and not a limiting factor, slow start is not visible).

Since congestion is indicated by DUPACKs or expiring timers, the round trip
time (and its determination) is crucial. For smaller RTTs compared to larger
ones, the retransmission timer can also be lower, resulting in a faster detection
and recovery from packet loss (meaning the opposite effect for larger RTTs).
However high round trip times limit TCP’s progress even further, since the send-

34

3.3 Protocols

ing rate is a function which is time-dependent on the reception of ACKs. Since
the arrival of ACKs is delayed with higher RTTs (since the delivery of both data
segments and their ACKs takes longer for higher delays), the rate increase of
TCP is effectively slowed.

To improve the performance of TCP over links with high bandwidth and long
delay, a new mechanism called SACK was introduced in RFC2018 [18]. It basi-
cally provides TCP receivers with the means of notifying senders of the arrival
of specific segments, thus allowing the senders to keep a so-called scoreboard of
which specific segments have arrived — compared to the old variant where only
the last successfully received segment was known. Furthermore it holds an ex-
plicit variable for estimating the number of bytes in flight. These changes allow
TCP senders to transmit more than just one missing segment per RTT (as TCP
Reno does), therefore clearly providing benefits for long fat pipes. For this rea-
son, it is used as the standard TCP variant for all the performance measurements
done in this thesis.

3.3.2 CUBIC

To mitigate the fact that TCPs achievable throughput is greatly affected by the
round trip time, new means of controlling the sending rate have been discussed.
CUBIC is such an example, since its window growth is a function of the maximum
window size (explained below) and the time of the last packet loss — not the
round trip time [30].

The growth rate function of CUBIC — as the name suggests — is a cubic
function, as illustrated by figure 3.3. The basic idea is to probe the network
bandwidth and upon packet loss to remember the maximum window size w max
during that event. Later on, when increasing its rate, CUBIC approaches this
limit with a decreasing growth until w max is reached (in figure 3.3 just below
500). Above that, CUBIC increases its growth rate again. The slow growth when
cwnd < w max ensures the stability of the protocol, the fast growth for higher
values ensures the scalability and utilisation of available bandwidth.

35

Chapter 3 Theory

 0

 100

 200

 300

 400

 500

 600

 0 5 10 15 20 25 30 35 40

cw
nd

time

CUBIC vs. Reno TCP

reno
cubic

Figure 3.3: The congestion window of CUBIC and Reno TCP over time.

3.4 Queuing

Queues are means of the network topology and its entities to deal with the
unsteadiness of today’s traffic or more specific, “to compensate for sudden traffic
bursts” [33]. The Internet provides the user with a best-effort strategy — if
there are enough resources on a link to accommodate a packet, it is forwarded on
this link. However when the resources do not suffice, the packet must be either
buffered or dropped. Since immediately dropping the packet would basically
mean that we can only cope with single packet traffic bursts and that it would
ultimately result in very small link utilisation, packets are generally buffered in
queues (based on a first-in-first-out strategy). By reason that a good portion
of Internet traffic is usually based on spikes (e.g. an HTTP request followed
by the transfer of an HTML web page), queues enable routers or other packet
forwarding entities to achieve a better link utilisation and compensate for traffic
bursts. During traffic spikes, the packets can be buffered and during phases in
which the link would normally be underutilised, these packets can be forwarded.

36

3.4 Queuing

However there has been a great deal of research in the area of queues sizes and
what mechanisms and strategies to use.

The right queue size has been a topic of research for some time. Ordinarily,
the alleged solution is simple: Since using queues results in better link utilisation
together with a more smooth form of traffic, the queue size should be as long
as possible. However the issue is more complex. Naturally it is impossible for
queue sizes to be infinite due to hardware constraints. But even very long queues
that can buffer an extreme amount of packets are not a good idea. Apart from
hardware costs of the memory needed inside routers, there are several network
implications as discussed in [33]:

First of all, queues introduce delay. Depending on the length of a queue,
packets may be delayed long enough for it to have an impact on the performance
of the end applications (e.g. real-time traffic of a video conference). For this
reason, the queue length should rather be shorter than longer — however the
limits depend on the link the queue is used for as well as the complete path of
the connection. A queuing time of 10 ms may be relatively huge for a link with a
delay of 1µs, however if the complete path of the TCP flow has a one way delay
of 100 ms, it might be acceptable.

Second, the queue will be filled by TCP senders up to its limit in any case,
no matter how long the queue is. Since protocols like TCP use packet loss as an
indicator for congestion, they will increase their sending rate until that point is
reached. Furthermore since queues delay the effect of congestion (i.e. it is pos-
sible to increase the sending rate over the link’s bandwidth without congestion
for a limited period of time since the queue can buffer these additional packets),
the convergence time of TCP flows (e.g. the time it takes for a flow to adjust
its sending rate to a point where the link utilisation is acceptable) increases
in proportion to the length of the queue. Furthermore if the aforementioned
increase of the delay of the path is high enough it will slow the speed of conver-
gence even further (since the sending rate of TCP is a function of the arrival of
acknowledgements and therefore of the round trip time). While suggestions in
the past were to set the queue size to some value between the bandwidth-delay

37

Chapter 3 Theory

product and twice the bandwidth-delay product (which should approximately be
the bandwidth-RTT product), these guidelines may not be applicable for today’s
links that pose similar signal propagation delays as in the past, but provide a
much higher bandwidth — therefore leading to comparatively large queue sizes.
Therefore, various suggestions have been made to reduce the queue size to smaller
values. This is one of the reasons why this thesis investigates queue sizes up to
the bandwidth-delay product [33].

3.4.1 Drop Tail

Apart from the length of the queue, the dropping strategy is another major field of
research. The simplest form is the standard first-in-first-out approach that drops
new packets when the queue has reached its limit. Such queuing strategies are
called “drop tail” or “tail drop”. While they are easy to implement and execute,
it is not always a good idea to use this simple approach since there are two main
drawbacks: Firstly, it is possible for one or more flows to exclusively utilise the
queue which leads to starvation of other flows. This phenomenon is caused by
the synchronisation of flows or other timing effects. The second disadvantage is
also the main point of the strategy: Arriving packets are dropped if the queue is
already full. However due to the bursty nature of some traffic (e.g. web traffic),
this can lead to the loss of multiple packets in a row. In turn, the sender will
back off only to increase its rate later on when the queue is emptied. This again
leads to a burst behaviour of the sender and furthermore to a synchronisation of
multiple flows regarding their traffic spikes. The result can be an underutilised
link, which is the exact opposite of the intended effect of using a queue [10].

In [24], Kevin et al. have done some research regarding the length of a drop tail
queue. Their experiments include a dumbbell topology testbed with a 10 Mbit/s
bottleneck on which queuing has been investigated. All nodes on one side of the
bottleneck act as HTTP request generators, therefore simulating web browsing by
users, the nodes on the other side of the bottleneck act as web servers, generating
and sending HTTP responses. They calculated the bandwidth-delay product of
the bottleneck to be approximately 96 packets, and used queue sizes between 30

38

3.4 Queuing

and 240 together with network loads between 80% and 110%. They measured the
cumulative response probability in relation to the response time (i.e. how many
requests completed within intervals between 0 and x milliseconds). Their results
show that there is very little difference between the queue sizes at 80% load. But
for example at 98% load, the queue size with the highest number of successful
responses under 500 ms was 30, the lowest setting (approximately one third of the
bandwidth-delay product). Increasing it only increases the number of successful
responses for higher intervals than up to 500 ms, at which point 190 seems to
be the best queue size (approximately 2 times the bandwidth-delay product).
However for 110% load, setting the queue size to 60 (approx. two thirds of the
bandwidth-delay product) seems to achieve the best results. Overall the highest
performance gains (regarding the number of successful responses within a certain
time interval) are about 20%.

3.4.2 RED

To mitigate these problems and allow queuing that achieves better throughput
and fairness results, a more sophisticated solution is necessary. Random Early
Detection (RED), proposed in RFC2309 [10], is such a queuing mechanism since
its decision is not based on a binary state (i.e. “queue is full” or “queue is not
full”) but rather on a probability function. The basic idea behind the system is
to drop more packets as the queue length increases. This behaviour is illustrated
in figure 3.4.

As long as the queue length is shorter than min thresh, no packets are dropped.
If the queue length is larger than min thresh but still shorter than the limit
represented by max thresh, packets are dropped with the probability p. As figure
3.4 shows, p increases as the queue length increases, up to a maximum packet
dropping probability of max p. If the queue length is longer than max thresh,
p is 1 and therefore every incoming packet is dropped until the queue length
decreases below that limit.

39

Chapter 3 Theory

Figure 3.4: The dropping strategy of RED. p denotes the probability of dropping
a packet, min thresh and max thresh represent queue length limits for
the mechanism.

However it is important to note that RED does not use the instantaneous
queue length for its decision making but rather an average queue length that
has been determined over a time interval. Thus, if the queue has been almost
empty in the past, RED does not immediately drop packets if max thresh has
been reached. This also means that max thresh should represent a value that is
smaller than and not equal to the maximum queue size to still allow some packets
to be enqueued in such cases.

One of the most challenging problems of RED queues is setting the parameters.
As discussed for the drop tail mechanism, the queue size is an important setting
that can affect the performance. And since RED is more sophisticated and more
complex, there are more parameters that can or must be configured properly to
achieve good performance. Table 3.1 lists the most important RED parameters.
The following suggestions for setting these parameters are documented in [19].
The authors recommend default values, but the optimal values are widely un-
known since it depends on the topology and traffic characteristics of the specific
scenario. Therefore the RED implementation in ns-2 allows for an automatic
configuration of its parameters (the use of which is recommended in [19]) with
respect to the given link characteristics (bandwidth and delay) and a specified
target queue delay (by default 0.005 seconds).

40

3.4 Queuing

Table 3.1: Configurable parameters of RED.

Name Description
length The maximum length of the RED queue

min thresh Threshold above which packets are dropped probabilistically
max thresh Threshold above which every packet is dropped

q w Weight factor for calculating the average queue length
max p Maximum probability of dropping packets
gentle Toggles gentle mode of RED (boolean)

The optimal value for min tresh depends on the link properties. Generally set-
ting it to something very small like one or two packets is not suggested since it will
lead to very early dropping, opposes burst traffic (which should be smoothened
instead) and can lead to low link utilisation. When using RED’s automatic
configuration, it is set to five packets unless the target delay of the queue and
the bandwidth of the link require a higher value, by performing the following
calculation:

min tresh = max

(
5,

target delay ∗ ptc

2

)
ptc is a constant packet count value, which resembles the maximum number

of packets that can be placed on a link with a given bandwidth per second.
target delay denotes the desired queueing delay for packets and is set to 5 ms by
default. Therefore, using links with higher bandwidths or working with longer
queueing delays increases the average queue size of RED queues. The suggestion
for the maximum threshold value is max thresh = 3∗min tresh and should also
only be changed if the queuing delay is non-trivial. Moreover the default setting
for max p should be 0.1 according to [19], since investigations have shown that
end-to-end packet drop rates range somewhere above 5%. A higher value is not
suggested, by reason that a general packet drop rate above 10% might suggest to
end systems that it is a result of network problems rather than just active queue

41

Chapter 3 Theory

management. Finally w q was originally suggested to be 0.002, however RED’s
automatic configuration also determines this parameter by evaluating

rtt = 3 ∗
(

link delay +
1

ptc

)

w q = 1− e

(
− 1

10 ∗ rtt ∗ ptc

)

where ptc again denotes the packet count value as described above and link delay
is the one-way delay of the link. If the chosen value for w q is too small, the
queue will react too slowly on changing traffic conditions. If it is too large, the
computed average queue length will converge to the instantaneous queue length,
therefore possibly reacting too sensitive to traffic bursts. By letting RED auto-
matically configure w q, the mechanism ensures a feasible queue weighting with
regard to the link’s throughput, meaning a slower adaptation for links with high
bandwidths and/or delays.

In [24], Kevin et al. also compared RED with drop tail using the testbed priorly
described. They simulated work loads at 90%, 98% and 110% together with
queue sizes of 120 and 190 for drop tail and 120 and 480 for RED with varying
parameters for w q, max p, min thresh and max thresh. Their results show that
using RED leads to a higher number of successful responses in every simulation,
regardless of the time frame for which successful responses were counted or the
queue sizes.

Another option of RED that should be mentioned is RED’s gentle mode. Nor-
mally, as illustrated by figure 3.4, if the average queue length exceeds max thresh,
every packet is dropped (p = 1). In gentle mode, RED does not immediately jump
to p = 1 but rather increases p slowly up to 1 as the average queue length ap-
proaches 2 ∗max thresh. While this does not increase the maximum achievable
performance of RED, it increases its performance on average since it makes RED
more robust against suboptimal parameter settings [20].

42

3.4 Queuing

Using RED is generally suggested, even with suboptimal parameters. Since
it is partly based on random decisions, it eliminates the traffic synchronisation
phase effects mentioned in subsection 3.4.1. RED keeps the average queue length
short, which results in short queuing delays, but can still cope with short bursts
of traffic without packet loss. Moreover as a side-effect, it provides some degree
of quality of service, since the probability of dropping a packet from a sender is
roughly proportional to its sending rate. Therefore, RED penalises senders with
high rates.

43

Chapter 4

Evaluation

The effect of using the PEP proposed in this thesis (cf. chapter 3 for the the-
oretical architecture and chapter 5 for the implementation in ns-2) has been
thoroughly examined. This chapter will discuss and illustrate the results of the
measurements that have been taken.

4.1 Methodology and Simulation Setup

To measure the effect of using the PEP and compare the performance between
enabling and disabling it under a variety of network conditions, 450 simulations
were done in ns-2 with the sample TCL script provided on CD (see section 5.2.1
for a description of the parameters and figure 3.1 for an illustration of the topol-
ogy). The script creates a dumbbell topology, with a specifiable number of nodes
that act as TCP senders. They are connected to the split start node via Ethernet
links with a delay of 5 ms and a specifiable bandwidth (100 Mbit/s unless speci-
fied otherwise). The split start node is connected to the split end node via a link
with a bandwidth of 100 Mbit/s and a fixed delay of 250 ms, representing a link
over a geostationary satellite [1]. The split end node is connected via Ethernet
links to a number of nodes acting as TCP receivers, again with the bandwidth
specified and a fixed delay of 5 ms. The number of TCP senders and TCP re-
ceivers is equal, as are the characteristics of their links to the split start and split
end nodes respectively. The queues for all links except for the satellite link are

45

Chapter 4 Evaluation

Table 4.1: Parameters for RED when the (recommended) automatic configura-
tion is used, for a link with a bandwidth of 100 Mbit/s and a delay of
250 ms.

Name Value
min thresh 62.5
max thresh 187.5

max p 0.1
q w 0.000005

DropTail queues with a maximum length set to 100 packets, which equals to 1.5
times the bandwidth-delay product for 100 Mbit/s and 5 ms. As explained in
section 3.1, the error rate on all links is 0 by definition and the only cause for
packet loss is packet dropping in queues.

The queue size used by the split start node is given for each experiment. If the
PEP is disabled, this size is simply the queue size for the split link. If the PEP is
enabled, the queue size stated in the discussion and figure descriptions represents
the size of the local queue used by the PEP on the split start node — in this case,
the size for the split link queue is set to 500. The only additionally configurable
DropTail parameter, head dropping, is disabled. For RED queuing, the standard
parameter suggestions of Sally Floyd as stated in [20, 19] were used, with the
gentle mode enabled. These standard settings cause the ns-2 implementation of
RED to automatically configure its parameters, the values of which are listed in
table 4.1.

The simulations run with the PEP disabled use end-to-end SACK TCP flows.
With the PEP enabled, the end senders and receivers still use SACK TCP, but
the TCP connection between the split nodes is either using SACK or CUBIC, as
stated.

The applications used for producing traffic by the end hosts are FTP connec-
tions with an unlimited sending rate (i.e. the sending rate is only limited by
TCP, not the application), and simulated web traffic by use of a standard Pareto

46

4.2 General

distribution. Every sending node has exactly one application installed. Therefore
every application transmits its data over a separate link and queue, which min-
imises any undesired delay and phase effects and drops on the links that connect
the end nodes with the split nodes, since it might affect simulation results. The
receiver window is set very high as not to be a limiting factor. The payload size
for all packets is 1000 bytes, which — together with an additional 20 bytes for
the TCP header and 20 bytes for the IP header — results in a total packet size
of 1040 bytes. This leads to a bandwidth-delay product on the satellite link of
3250 packets.

4.2 General

The PEP system presented in this thesis has been evaluated with both TCP
SACK and CUBIC as protocols used between the split nodes. However, as illus-
trated by figure 4.1, TCP SACK exhibits poor behaviour for long fat pipes such
as satellite connections. The huge delay coupled with the relatively large band-
width leads to a slow convergence rate of TCP SACK, which is also the main
reason to investigate the usage of a PEP. In the example illustrated by figure
4.1, the first back-off of TCP happens at approximately 5.500 seconds. It takes
over 2.500 seconds (approximately 42 minutes) for TCP’s AIMD mechanism to
reach full link utilisation again. Therefore, although all measurements have also
been done with TCP SACK as the split link protocol, the results of these simu-
lations are neglected from the evaluation discussion since it does not provide any
performance improvements. Furthermore the first few seconds of the evaluation
graphs are omitted from the discussion since they represent the initial start-up
phase of the system, not the steady state behaviour that is of more interest (see
section 5.3 for a more detailed explanation).

47

Chapter 4 Evaluation

 0

 20

 40

 60

 80

 100

 120

 0 1000 2000 3000 4000 5000 6000 7000 8000

ut
ili

sa
tio

n

time

split link utilisation, 50 FTP flows, queue size 1500

PEP enabled, CUBIC
PEP enabled, SACK

Figure 4.1: A comparison of the link utilisation of the PEP system with TCP
SACK and CUBIC as protocol in use. The figure shows TCP SACKs
poor behaviour upon packet loss over links with high bandwidth-delay
products.

4.3 FTP

The measurements with simulated FTP traffic show a performance increase re-
garding both end-to-end throughput and link utilisation with decreasing queue
sizes. As an example, an illustration and discussion of a scenario involving 50
FTP flows is given. Later on, this scenario will be compared with others where
a varying number of flows was used. For relatively large queue sizes, the queue
is able to mitigate the effect of multiple TCP flows fighting over the available
bandwidth as expected. Since the max thresh limit for RED is 187.5 packets
(see table 4.1), the limit for p = 1 (i.e. dropping every packet) is 375 packets
in gentle mode. Hence, on average, the queue can hold up to 2625 additional
packets during traffic peaks.

However when the overall queue size is decreased, this ability is reduced, which
is illustrated by figure 4.2. When the PEP is not in use, as the queue size
decreases, the burstiness of the TCP flows leads to multiple flows backing off
either simultaneously or within a small interval (the former should only happen
by accident since traffic synchronisation effects should be eliminated by RED).
Therefore, in the following few seconds, the link is underutilised (represented

48

4.3 FTP

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 50 FTP flows, queue size 3000

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 50 FTP flows, queue size 1500

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 50 FTP flows, queue size 1000

PEP enabled
PEP disabled

Figure 4.2: Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with FTP traffic using 50 SACK flows with the PEP dis-
abled, and the PEP enabled with CUBIC as the transport protocol.
The figures show an increasing performance improvement, when the
PEP is used, for decreasing queue sizes.

49

Chapter 4 Evaluation

by the valleys in the figure). However this is not the case for the scenario with
the PEP in use, since there is only a single TCP flow that can utilise all the
available bandwidth. Hence, for smaller queue sizes, the network can greatly
benefit from using the PEP. The average split link utilisation of the PEP system
is 94.2 Mbit/s, almost independent on the size of the local queue. The scenarios
without the PEP in use show an average split link utilisation of approximately
95 Mbit/s, 88.9 Mbit/s and 87.9 Mbit/s for queue sizes 3000, 1500 and 1000
respectively.

As the utilisation shows, it should be mentioned that due to CUBIC’s band-
width probing behaviour, the average and the maximum bandwidth for limited
time frames can be smaller compared to that of SACK TCP flows, as visible in
figure 4.2 for a queue size of 3000. Since enabling the PEP means a link queue
size of 500, CUBIC’s bandwidth probing behaviour cannot be smoothened as
much as would be possible with larger queue sizes. Therefore, for very large
queue sizes, separate SACK flows can still outperform the PEP system in some
cases, which is also visible in the throughput figure 4.3. This figure shows the
average throughput received at the end nodes with both the PEP system enabled
and disabled. First of all, the graph illustrating the throughput with a queue size
of 3000 shows that the bandwidth of CUBIC periodically drops down, which is
a result of CUBIC’s previously discussed bandwidth probing function. As a re-
sult, the average end-to-end throughput is only 1.8 Mbit/s when using the PEP,
compared to 1.92 Mbit/s without the PEP.

However also the system without the PEP in use shows some drops when
using a queue size of 3000 (e.g. at approximately 1075 seconds). This effect
grows stronger for smaller queue sizes, as illustrated by the second graph, which
represents the same simulation for a queue size of 600. Here, the PEP system
outperforms the non-PEP system, since the PEP system remains at its 1.8 Mbit/s
whereas the average throughput of the non-PEP system drops to 1.68 Mbit/s.
Figure 4.3 also shows how the performance of single flows is affected, as illustrated
by the third graph. With the PEP disabled, flows try to gain bandwidth until
packet loss occurs — after which they fall back. Therefore, there are intervals

50

4.3 FTP

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

average throughput, 50 FTP flows, queue size 3000

PEP enabled
PEP disabled

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

average throughput, 50 FTP flows, queue size 600

PEP enabled
PEP disabled

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

single flow throughput, 50 FTP flows, queue size 600

PEP enabled
PEP disabled

Figure 4.3: Average throughput and throughput for a single randomly selected
flow for RED queueing with queue sizes 3000 and 600 with 50 FTP
traffic flows. The figures show that the average throughput of the
scenario without PEP is higher for a queue size of 3000. The third
illustration shows the throughput of a single flow (no. 23) for both
variants, with and without PEP in use.

51

Chapter 4 Evaluation

where the throughput bandwidth borders at 0.0 Mbit/s, leading to a practically
non-existent minimum bandwidth. The scenario with the PEP in use however
shows that the flow only occasionally falls below 1 Mbit/s, but stays averagely at
2 Mbit/s (which is exactly a fiftieth part of 100 Mbit/s, the total bandwidth of
the split link). Therefore the PEP system with a local RED queue in use seems
to distribute the bandwidth more evenly between the flows compared to using
50 flows and without the PEP in use.

Changing the local queue of the PEP system to a DropTail queue has no ef-
fect regarding the link utilisation, since the 50 flows always provide enough data
to saturate the link whether active queue management is used or not (i.e. the
queue is never empty). Therefore the illustration of the link utilisation for RED
as a local queue also applies for DropTail. The throughput as seen by the end
receivers however differs, hence the illustration is given in figure 4.4. The average
throughput shows almost no difference compared to the throughput when using
RED, however this is also expected since the queueing mechanism — over long
intervals — only differs in which packets are accepted at the split start node, not
their general number (which is rather limited by the available bandwidth on the
split link and the PEP’s flow control, not the queueing mechanism). However the
queueing mechanisms differ in the distribution of the bandwidth, as indicated by
the third graph of figure 4.4. Like the measurements with RED, the bandwidth
is — although with random spikes — overall more controlled compared to the
scenario without the PEP in use, however one can see higher peaks of up to 5
Mbit/s. Therefore we can deduce that RED introduces a more evenly distributed
random fashion than DropTail, which results in a smoother end-to-end through-
put. In addition, RED provides more fairness between competing flows than
DropTail. Using the latter can lead to phase effects and even starvation of single
flows. Since RED’s dropping decision is partly random-based, it introduces a
random component into the network that effectively eliminates phasing effects.
This leads to a higher level of fairness.

The performance gain is also increasing with increasing flow numbers, as in-
dicated by figure 4.5. The measurements were taken in a scenario with 500

52

4.3 FTP

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

average throughput, 50 FTP flows, queue size 3000

PEP enabled
PEP disabled

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

average throughput, 50 FTP flows, queue size 600

PEP enabled
PEP disabled

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4
 4.5

 5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

single flow throughput, 50 FTP flows, queue size 600

PEP enabled
PEP disabled

Figure 4.4: Average throughput and throughput for a single randomly selected
flow for DropTail queueing with queue sizes 3000 and 600 with 50
flows transporting FTP traffic. The figures show that the average
throughput of the scenario without PEP is higher for a queue size
of 3000. The third illustration shows the throughput of a single flow
(no. 23) for both variants, with and without PEP in use.

53

Chapter 4 Evaluation

FTP traffic flows. Even for standard queue sizes like 3000 (approximately the
bandwidth-delay product of the split link), the PEP system is able to provide
a minimum utilisation of roughly 90 Mbit/s, whereas the PEP-disabled system
shows underutilisation peaks down to 70 Mbit/s. Furthermore decreasing the
queue size has no visible effect on the performance of the CUBIC flow of the
PEP system (as expected, since the queue on the split link is fixed to 500 pack-
ets), it provides an average utilisation of about 94.1 Mbit/s. The simulation
without the PEP in use however already has slightly lower average utilisation,
approximately 93.3 Mbit/s, for a queue size of 3000. Decreasing the queue size
to 1500 and 1000 results in an average utilisation of 85.1 Mbit/s and 81.5 Mbit/s
respectively.

For smaller flow numbers, 5 in the example illustrated in figure 4.6, the queue
size-dependent effect of the performance enhancement is even stronger visible.
For a queue size of 3000 packets, the PEP system cannot outperform the stan-
dard scenario with 5 competing flows, since the DropTail queue used for the
PEP-disabled scenario is able to buffer enough packets to mitigate the effect of
TCP’s fall back upon congestion. However this effect is increased greatly upon
decreasing the queue size, as illustrated by the graphs representing simulations
with a queue size of 1500 and 1000. As the queue size decreases, the interval
at which the utilisation stays at its theoretical maximum shrinks and the per-
formance drops become more frequent. This leads to an average utilisation of
87.8 Mbit/s and 78.4 Mbit/s for queue sizes of 1500 and 1000 respectively. For a
queue with a limit of 3000 packets, the PEP-disabled system reaches 96.2 Mbit/s
whereas the scenario with the PEP in use averages at 94.2 Mbit/s.

Further measurements regarding the behaviour of the end senders have been
done, the results of which are illustrated in figure 4.7. It shows the average
congestion window of 50 FTP senders over the course of the simulation. The
first and obvious observation is that — without a PEP system — the congestion
window is directly proportional to the queue sizes and bandwidth-delay products
on the path and therefore shrinks when the queue size for the bottleneck link is
decreased. Furthermore the split connection approach is directly visible, since

54

4.3 FTP

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 500 FTP flows, queue size 3000

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 500 FTP flows, queue size 1500

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 500 FTP flows, queue size 1000

PEP enabled
PEP disabled

Figure 4.5: Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with 500 FTP traffic flows. The graphs show an increasing
performance gain by use of the PEP system with decreasing queue
sizes.

55

Chapter 4 Evaluation

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 5 FTP flows, queue size 3000

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 5 FTP flows, queue size 1500

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 5 FTP flows, queue size 1000

PEP enabled
PEP disabled

Figure 4.6: Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with 5 FTP traffic flows. The graph with queue size 3000
shows that the PEP system cannot always outperform standard sce-
narios with competing flows. However it shows performance gains
for smaller queue sizes. Furthermore the scenario without the PEP
in use shows performance degradation when reducing the queue size,
since the DropTail queue in use leads to multiple flows simultaneously
backing off.

56

4.3 FTP

the average congestion window of the senders is significantly smaller when the
PEP is in place (approximately 30% for DropTail and 3% for RED compared
to the cwnd of unsplit flows). This is an indication of the smaller control loop
and round trip time of TCP, since its delay and number of hops have decreased
(one of the main reasons for deploying a split connection PEP). In addition, the
differences between the DropTail and RED mechanism are clearly visible. The
large DropTail queue allows for comparatively high congestion windows since the
queue can be at any fill level for arbitrary time intervals. For this reason, the
congestion window is directly proportional to the size of the local queue used on
the split start node. However this is not the case for RED, since its primary goal
is to mitigate bursty traffic but at the same time keep an overall small average
queue to minimise queueing delay. As previously explained, this is the reason why
RED’s max thresh value is set to 187.5 packets by its automatic configuration
(see table 4.1), whether the queue size is 600 or 3000. This leads to a much
better responsiveness of TCP, which is the reason for a much higher utilisation
and throughput of the PEP system for small flow numbers, as illustrated by
figure 4.6.

General results of the measurements are illustrated and compared to each other
in figure 4.8. All scenarios for these results were run with a simulation time of
2000 seconds. The graphs shows the split link utilisation in Mbit/s for the queue
sizes 3000, 1500, 1000, 600 and 300 for increasing numbers of parallel TCP flows
(1, 2, 3, 4, 5, 10, 25, 50, 100, 250 and 500). This allows for a comparison of TCP’s
behaviour and resource utilisation, while numerous effects can be observed. First
it shows — as previously mentioned — that there are cases in which the PEP
system does not provide any performance gains compared to separate, parallel
TCP flows that are competing for bandwidth. The graph for the queue size 3000
illustrates this observation. The reason for this effect is the queue’s ability to
smoothen TCP’s fighting effect (i.e. multiple flows backing off and leaving a
link underutilised). This is also the cause for the different results obtained for
smaller queue sizes. A queue size of 1500 is already enough to aggravate this
effect, leading to poor throughput compared to the one obtained by the PEP’s
single CUBIC flow, depending on the number of flows. A further observation

57

Chapter 4 Evaluation

 0

 50

 100

 150

 200

 250

 300

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

av
er

ag
e

cw
nd

time [s]

average cwnd, 50 FTP flows, queue size 3000
PEP enabled, RED

PEP enabled, DropTail
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

av
er

ag
e

cw
nd

time [s]

average cwnd, 50 FTP flows, queue size 1500

PEP enabled, RED
PEP enabled, DropTail

PEP disabled

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

av
er

ag
e

cw
nd

time [s]

average cwnd, 50 FTP flows, queue size 1000

PEP enabled, RED
PEP enabled, DropTail

PEP disabled

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

av
er

ag
e

cw
nd

time [s]

average cwnd, 50 FTP flows, queue size 600

PEP enabled, RED
PEP enabled, DropTail

PEP disabled

Figure 4.7: Average congestion window size of the end senders for queue sizes
1000, 1500 and 3000 with 50 FTP traffic flows. The graphs show
the large congestion window for scenarios without a split connection
mechanism, which shrinks for decreasing queue sizes. The windows
when the PEP system is in use indicate that the average length of
the RED queue is independent of the total queue size.

58

4.3 FTP

that can be made is that the peak performance of single TCP SACK flows in
such topologies (i.e. links with high bandwidths and high delays) can be achieved
by using 10 - 25 flows. Decreasing or increasing the number beyond this range
seems to lead to less overall throughput.

A further interesting effect is visible in the simplest comparison, namely a
scenario including the use of the PEP, and a scenario with a single unmodified
TCP SACK flow. Although the PEP was originally considered to mitigate the
fighting effect of multiple TCP flows, its comparison to standard TCP reveals
the ineffectiveness of TCP SACK over long fat pipes. Therefore, one can gain
performance benefits by using the PEP even for a single flow. The reason for this
lies in the very design of CUBIC’s congestion avoidance mechanism, as described
in section 3.3.2. However, as illustrated by figure 4.8, it still depends on the
queue size whether any performance gain is to be expected at all. A queue size
of 3000 for the satellite connection seems to be enough to mitigate this effect and
delay packet loss due to congestion beyond the 2000 second marker. However
despite the fact that TCP SACK will eventually show such performance drops,
it is still questionable whether they will have a significant impact on the over-
all performance. Together with CUBIC’s bandwidth probing behaviour, which
can keep it from achieving the absolute theoretical maximum of the bandwidth
that is available over longer intervals, it is possible that a split connection PEP
system using CUBIC will not show enough performance improvements regarding
throughput in such scenarios to justify its deployment.

Moreover the graphs of figure 4.8 show that a local queue size of 300 seems
to be reasonable enough as increasing the queue size further does not have any
effect on the performance of the PEP — most probably due to the reason that
enough flows supply the PEP with enough data to be forwarded, therefore the
queue is never fully emptied, even if limited to a comparatively small size of 300.
Hence the effect of various queue sizes (300 and above) for the local queue used
by the split start node of the performance enhancing proxy is minimal.

59

Chapter 4 Evaluation

 0

 20

 40

 60

 80

 100

1 2 3 4 5 10 25 50 100 250 500

ut
ili

sa
tio

n
[%

]

number of flows

split link utilisation, queue size 3000

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

1 2 3 4 5 10 25 50 100 250 500

ut
ili

sa
tio

n
[%

]

number of flows

split link utilisation, queue size 1500

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

1 2 3 4 5 10 25 50 100 250 500

ut
ili

sa
tio

n
[%

]

number of flows

split link utilisation, queue size 1000

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

1 2 3 4 5 10 25 50 100 250 500

ut
ili

sa
tio

n
[%

]

number of flows

split link utilisation, queue size 600

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

1 2 3 4 5 10 25 50 100 250 500

ut
ili

sa
tio

n
[%

]

number of flows

split link utilisation, queue size 300

PEP enabled
PEP disabled

Figure 4.8: Overall FTP traffic measurement results of using the PEP system
compared to unmodified parallel TCP SACK flows for different flow
numbers and queue sizes. The results show performance gains for
decreasing queue sizes, as well as a general performance deficit for
1–10 flows and 50–500.

60

4.4 Pareto

Table 4.2: Default Pareto parameters in ns-2, which were used for the simulations
with Pareto traffic.

Name Value
burst time 500 ms

idle time 500 ms
rate 64 Kb

packetSize 210
shape 1.5

4.4 Pareto

Simulations have also been done to investigate the effect of using the PEP for
web traffic. For this, a standard Pareto distribution has been used as a traffic
generator in ns-2, with 500, 750, 1000 and 1500 as numbers of users. Table 4.2
lists the parameters that were used for the Pareto distribution (which are also
the default values for Pareto in ns-2) Due to the nature of Pareto web traffic, 500
flows do not fully saturate the link but rather produce traffic of approximately
80 Mbit/s, as can be seen in figure 4.12 — to be able to fully saturate a link with
a bandwidth of 100 Mbit/s, one needs approximately 650 such flow. Therefore
these simulations represent approximately 80%, 115%, 153% and 230% workload
regarding the bottleneck’s throughput.

Figure 4.9 shows the bursty nature of web traffic. Even scenarios with the
largest queue size, 3000 packets, result in drops of the utilisation on the split
link since the queue is unable to mitigate the irregularities. Still, due to CU-
BIC’s bandwidth probing behaviour, the PEP system is unable to achieve better
performance than the separate parallel TCP flows, which show an average util-
isation of 95.3 Mbit/s compared to the PEP’s 93.8 Mbit/s. However — as we
have already seen for FTP traffic — the PEP can easily outperform concurrent
flows for smaller queue sizes, since the CUBIC flow of the PEP manages to stay
at 95.4 Mbit/s for queue sizes of 1500 and 1000, whereas the unmodified TCP
flows drop to 89.9 Mbit/s and 87.2 Mbit/s respectively. Still, it can be observed

61

Chapter 4 Evaluation

that the PEP — using a local RED queue for this experiment — seems unable
to achieve its nominal performance for the largest queue size of 3000. This effect
is further illustrated and discussed together with figure 4.12, when the overall
Pareto results are presented.

The effect of using the PEP with different queueing mechanisms is illustrated
in figure 4.10. It shows the throughput of a single flow without the PEP in use,
and with the PEP in use together with RED and DropTail as local queueing
mechanisms respectively. First of all, the great number of TCP flows without a
performance enhancing proxy seems to lead to intervals of starvation for single
flows (e.g. between 460 and 570 seconds for the selected flow). However it should
be mentioned that smaller intervals which lack any throughput can also be caused
by the nature of Pareto’s traffic and simply be a result of no browsing activity by
the user. This effect is still present when using the PEP, but greatly mitigated.
Furthermore one can observe that using RED as a local queue for the PEP seems
to result in higher peaks regarding throughput, although shorter in time. On the
other hand, DropTail queueing — for which the randomness of packet dropping
is a result of the sending rate of the TCP flows themselves — leads to a slightly
more consistent but smaller throughput. However it should be noted that the
average throughput of this flow is 103 Kbit/s without the PEP in use, whereas
enabling the PEP results in an average throughput of 105 Kbit/s for DropTail
and 152 Kbit/s for RED queuing. Since the average of the throughput of all
flows shows little variance (119 Kbit/s without the PEP and 120 Kbit/s with
the PEP for both queuing variants), the increase in performance of 50% for this
single flow when using RED must be a random phenomenon (i.e. other flows will
show a similar decrease in performance). This also leads to the conclusion that
— although it usually punishes flows with more packets more gravely — RED
provides no bandwidth guarantee for small, bursty traffic.

Figure 4.11 shows the effects of using RED and DropTail as local queue-
ing mechanisms respectively by illustrating the cumulative throughput one flow
achieves over time. The selected flow is the same that was used for figure 4.10.
In the cumulative graph, the effect of DropTail, which allows a smaller but more

62

4.4 Pareto

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 750 Pareto flows, queue size 3000

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 750 Pareto flows, queue size 1500

PEP enabled
PEP disabled

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

ut
ili

sa
tio

n
[%

]

time [s]

split link utilisation, 750 Pareto flows, queue size 1000

PEP enabled
PEP disabled

Figure 4.9: Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with 750 web traffic flows, represented by a Pareto distribu-
tion. The graphs show decreasing performance regarding utilisation
for parallel TCP flows with decreasing queue sizes. However even
a queue that can hold 3000 packets is unable to fully mitigate the
bursty nature of web traffic.

63

Chapter 4 Evaluation

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

single flow throughput, 750 Pareto flows, queue size 1500

PEP disabled

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

single flow throughput, 750 Pareto flows, queue size 1500

PEP enabled, DropTail

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

th
ro

ug
hp

ut
 [M

bi
t/s

]

time [s]

single flow throughput, 750 Pareto flows, queue size 1500

PEP enabled, RED

Figure 4.10: Throughput for a single randomly selected flow (no. 547) with the
PEP disabled and enabled with both RED and DropTail as local
queues for a queue size of 1500 and 750 web traffic flows. The graphs
show the different effects of RED and DropTail. RED seems to lead
to higher, shorter peaks in throughput for a single flow, compared to
DropTail which results in single flows achieving a smaller throughput
but over longer intervals.

64

4.4 Pareto

steady throughput, is more visible since it leads to a small but steady increase
in the amount of transferred data. In contrast, using RED leads to sporadic in-
tervals in which more data is transferred, followed by intervals during which less
data is transferred. This is also the case for the scenario without using the PEP.
Comparing this simulation with reality leads to the conclusion that RED allows
for short time frames in which more data (e.g. contents of a web page) can be
transferred to the user that is browsing the web, possibly resulting in some delay
after which large parts of the requested web page are received. DropTail on the
other hand seems to provide longer time frames with less bandwidth, which might
result in less delay but longer loading times once the transfer starts. Therefore
RED might be preferred over DropTail for web traffic since the chances are higher
that the transfer of a web page will be completed faster, once the transfer has
started.

The general results of simulations done with Pareto web traffic, illustrated
by figure 4.12, show that generally using RED has no advantage over using
DropTail as a queueing mechanism for the local queue used by the split start
node of the PEP. For the scenario with a queue size of 3000, DropTail even
seems to outperform RED marginally. This might be caused by RED dropping
packets earlier than DropTail (which drops only if the queue is full) - therefore
packets of short and bursty traffic can have a bigger chance of getting forwarded
with DropTail queues compared to RED (assuming the same queue size for both
mechanisms). Therefore, the flows might be forced by RED to back off sooner.
While it was expected for the PEP system with a local RED queue not to show
significant performance gains for large queue sizes (similar to the results obtained
with FTP traffic), the PEP system with RED actually shows worse link utilisation
for a queue size of 3000, achieving between 93.8 and 91.0 Mbit/s whereas the PEP
system using DropTail manages to stay at 95.4 Mbit/s. This phenomenon is less
visible for a queue size of 1500 (for which the PEP-enabled system achieves better
throughput results, between 95.4 and 94.4 Mbit/s) and completely disappears for
queue sizes 1000 and below.

65

Chapter 4 Evaluation

 0

 50

 100

 150

 200

 250

 300

 350

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

cu
m

ul
at

iv
e

th
ro

ug
hp

ut
 [M

bi
t]

time [s]

cumulative single flow throughput

PEP disabled
PEP enabled, RED

PEP enabled, DropTail

Figure 4.11: Cumulative throughput for a single randomly selected flow (no. 547)
with the PEP disabled and enabled with both RED and DropTail
as local queues for a queue size of 1500 and 750 web traffic flows.
The graph shows that DropTail leads to a smoother increase in the
amount of transferred data over longer periods of time compared to
RED, which results in the flow transferring higher amounts of data
but for shorter intervals.

66

4.4 Pareto

Apart from this small observation, the overall results show a similar perfor-
mance of the PEP system compared to FTP traffic. For 500 flows, which cannot
saturate the link, using the PEP system shows no positive or negative effects.
For higher flow numbers, both PEP systems show performance gains since they
stay at 95.4 Mbit/s, independent of the flow number. Without the PEP, the
average link utilisation drops to approximately 88.5 Mbit/s for a queue size of
1500, 86.0 Mbit/s for 1000, 82.0 Mbit/s for 600 and 80.0 Mbit/s for a queue size
of 300.

The overall results of all the simulation scenarios show that using the PEP
described in this thesis can lead to performance gains for small queue sizes.
Since it uses CUBIC as the transport protocol for delivering the data, there is no
need for large queue sizes in the range of the bandwidth-delay product or twice
this value. The experiments presented in this chapter have been done with a link
queue size of 500 for the PEP system. Furthermore the measurement results show
that the PEP system achieves good performance even for small local queue sizes
of 300 and 600. Therefore this performance enhancing proxy might be useful in
situations where hardware costs, power requirements or other constraints lead to
the usage of small buffers. As the illustration and discussion of the measurements
show, using a split connection PEP in such cases can raise the performance up
to 500%, depending significantly on the traffic and the number of flows that are
used.

67

Chapter 4 Evaluation

 0

 20

 40

 60

 80

 100

500 750 1000 1500

ut
ili

sa
tio

n

number of flows

split link utilisation, queue size 3000

PEP enabled, RED
PEP enabled, DropTail

PEP disabled
 0

 20

 40

 60

 80

 100

500 750 1000 1500

ut
ili

sa
tio

n

number of flows

split link utilisation, queue size 1500

PEP enabled, RED
PEP enabled, DropTail

PEP disabled

 0

 20

 40

 60

 80

 100

500 750 1000 1500

ut
ili

sa
tio

n

number of flows

split link utilisation, queue size 1000

PEP enabled, RED
PEP enabled, DropTail

PEP disabled
 0

 20

 40

 60

 80

 100

500 750 1000 1500

ut
ili

sa
tio

n

number of flows

split link utilisation, queue size 600

PEP enabled, RED
PEP enabled, DropTail

PEP disabled

 0

 20

 40

 60

 80

 100

500 750 1000 1500

ut
ili

sa
tio

n

number of flows

split link utilisation, queue size 300

PEP enabled, RED
PEP enabled, DropTail

PEP disabled

Figure 4.12: Overall Pareto web traffic measurement results of using the PEP
system compared to unmodified parallel TCP SACK flows for dif-
ferent flow numbers and queue sizes. There is no performance gain
for a queue size of 3000, however for decreasing queue sizes the PEP
system shows higher link utilisation compared to the standard sce-
nario with separate parallel TCP flows.

68

Chapter 5

Implementation

This chapter documents the ns-2 implementation details of the PEP. Section 5.1
presents the newly introduced C++ classes and discusses the modifications of
pertaining class files of ns-2. Moreover section 5.2 will show the usage of the new
agents in TCL and how they can be configured. Section 5.3 finally deals with
the resource requirements of ns-2 and how they can be reduced.

5.1 Implementation in ns-2

Basically the PEP implementation consists of three parts: The sender-side mod-
ifications, the receiver-side modifications and the so-called SplitManager. The
first two ensure the correct PEP processing of the TCP segments and regulate
flow control. The SplitManager is used to configure the system and change var-
ious parameters that affect the performance and behaviour of the performance
enhancing proxy. In addition, it holds references to objects and parameters
commonly used by the sender and receiver agents. A basic illustration of the
consisting parts of the PEP nodes is given in figure 5.1.

Since the sender- and receiver-side modifications are essentially changes to
pertaining TCP agents of ns-2, one must choose between two possible imple-
mentations that are available for TCP. First there are the one-way TCP agents.
Together with the Linux wrapper classes, they provide a variety of TCP variants
spanning from the original TCP protocol to versions with newer congestion con-

69

Chapter 5 Implementation

trol mechanisms like compound TCP or CUBIC. However they do not provide
means to carry real payload data, they are only able to transmit packets that
hold a size-field in the packet’s common header hdr cmn, that can be used for
resource-checking in queues accurate to a byte for example. But using such pack-
ets (and the agents generating them) to transport application data (e.g. HTTP
requests and responses) is not possible. Furthermore the TCP flow is a one-way
flow, i.e. the virtual data can only be transmitted from a specific source to a
specific sink. In addition, one-way TCP agents normally do not support a spe-
cific connection establishment or tear-down, as TCP does in reality. Hence, TCP
connections are simply available throughout the entire simulation as long as the
agents are in use.

Second there are ns-2’s FullTCP agents, which do exchange packets carrying
real payload data. These agents can be used to establish two-way connections
and transport application layer data between them in both directions. However
they do not provide the newer congestion control mechanisms mentioned above,
but only Tahoe, Reno, NewReno, and SACK. This renders them useless for the
purpose of this thesis, since the main application for this PEP are long fat pipes,
i.e. links with a high bandwidth-delay product. The TCP variants provided by
FullTCP behave poorly in such environments, as discussed in chapter 3, which
is the main reason why this performance enhancing proxy needs mechanisms
like CUBIC. Furthermore QuickStart1, which would be able to mitigate this
disadvantage, is also not available for FullTCP in ns-2.

For these reasons — and since FullTCP is incompatible with ns-2’s one-way
TCP agents — the implementation modifications extend the one-way TCP agents
rather than FullTCP, which — although no real data transfer is possible — allows
measurements to show if there are benefits that can be gained from using such a
performance enhancing proxy in topologies with long fat pipes.

The implementation of this PEP has been done and tested for ns-2.33 only.
It is not guaranteed that the modifications will build or produce correct results
with older or newer versions of ns-2.

1http://www.icir.org/floyd/quickstart.html

70

5.1 Implementation in ns-2

5.1.1 SplitManager

The SplitManager (TCL name: Application/SplitManager ; C++ class files
ns-base-dir/tcp/split-manager.*) is a control entity for the whole PEP sys-
tem. Both nodes at the beginning and end of the split connection hold a reference
to the same SplitManager instance, ensuring that only valid parameters are used.
Since this PEP system is only simulated in ns-2 this is a valid solution. In reality
however it might be necessary to use one control object for each node and to
arrange for some communication between the two to coordinate their actions.
For example the number of TCP end flows between the senders and the split
start node as well as the receivers and the split end node should always be the
same. The implementation uses a single SplitManager object for both the split
start node and the split end node, therefore preventing any misbehaviour due to
configuration errors.

Both split nodes hold references to the SplitManager object and use these to
get current values for queue and buffer sizes for example. This allows future
simulation scripts to change parameters like the queue length or the packet size
on-the-fly during the simulation and observe the effects. Presently there are five
parameters that can be configured via TCL:

number of connections This value represents both the number of flows as well
as the number of senders and receivers respectively.

buffer start The parameter buffer start is used as a starting value for flow
control. The split start node sets its buffer count variable to this value
during the initialisation phase, to allow some data to be received at the
beginning.

header size Normally the header size for TCP/IP simulations is 40 Bytes, 20
Bytes for the IP header and 20 Bytes for the TCP header. However to
accommodate deviations, the header size of the packet can be changed
with this parameter.

71

Chapter 5 Implementation

Table 5.1: Default values for the variables of SplitManager when they are not set
through TCL (number of connections must always be set).

TCL/C++ variable name Default value
number of connections 0

buffer start 200 * 1040 bytes
header size 40 bytes
packet size 1000 bytes

send check interval 0.01 seconds

packet size Also, the packet size is usually 1000 Bytes. To be able to simulate
other packet sizes, this value can be modified.

send check interval This value denotes the time interval between checking whether
there is data to be forwarded at the split start node (see section 5.1.2).

In addition to these five parameters, a SplitManager object also holds a refer-
ence to a queue that is used locally for buffering incoming packets at the split
start node (see section 3.2 for an explanation of how the flow control works). It
is defined as a Queue object. Queue is the superclass which all ns-2 C++ classes
implementing queues are derived from. Basically it is composed of a PacketQueue
(a simple FIFO queue that can hold packets), methods for enqueuing and de-
queuing packets, and methods to keep statistics. Usually the enque method is
then re-implemented in subclasses like DropTail to perform certain tasks (e.g.
only insert a given packet into the underlying PacketQueue if the queue length is
below a certain limit, drop the packet otherwise). By using a Queue object as the
queue for SplitManager, we ensure compatibility with any queuing mechanism
currently implemented in ns-2. This eliminates the need to re-implement queuing
techniques which are both already present and well-tested in ns-2. One simply
needs to specify the queue to be used in the TCL simulation script (see section
5.2). This queue is then used locally on the split start node, and packets are
enqueued before they are received by the receiving TCP stack of the split start
node. Only when flow control allows further packets to be received, these packets

72

5.1 Implementation in ns-2

are dequeued and handed to the recvFinal() method of the receiving TCP stack
(see subsection 5.1.3).

Furthermore SplitManager also holds references to two Table objects (the
classes for which are also defined in the C++ class files for SplitManager,
ns-base-dir/tcp/split-manager.*). They are necessary to ensure that the
data arriving at the split start and split end nodes is forwarded correctly. Every
TCP connection in ns-2 needs a sending TCP stack and a receiving TCP stack
(called a TCP sink). Therefore — if a node holds 10 incoming connections —
there are 10 TCP sinks installed on that node. When a packet is received by this
node, the receiving TCP stack simply hands the size of the payload data over to
the application layer. There is no information about where the data came from.
To be able to forward the data accordingly, SplitManager uses two tables send
and recv , one for each split node.

Basically a Table is a simple FIFO list that can hold addresses (i.e. integer
values). For every packet that arrives at the split start node, the source address is
copied into the list by its receiving TCP sink. The payload data is then handed to
the application layer, which again hands it to the sending TCP stack to forward
it in form of a new packet to the split end node. When this new packet is ready
for transport, the address previously inserted into the table is removed again and
saved into a special field of the IP header (see subsection 5.1.4). Hence, the split
end node can forward the data accordingly. If there were no such field, the split
end node would be unable to determine the receiver for the payload. At the split
end node, the field is read and inserted to another table. When the application
layer gets the data, it removes the first entry from the table to determine which
sending TCP stack needs to forward the data to the end receiver (since we have
multiple TCP sender agents each holding a connection to a single node, we need
to determine the respective agent, not the destination address).

Since the insertion and removal of addresses needs to be done every time a
packet is received, Table has been implemented as a resizeable ring buffer array
for performance reasons regarding code execution.

73

Chapter 5 Implementation

Table 5.2: Function call chain that illustrates packet processing when receiving
a packet at the split start node.

Function name Description
SplitTcpSinkAgent::recv() This function is called whenever a packet

is received. It calls the enque() function
of the local queue.

Queue::enque() Normal enque() function of Queue; en-
queues a packet and exits.

SplitTcpAgent::checkSend() Called whenever the timer fires (see sub-
section 5.1.2); if there are packets in
the queue and the buffer value is high
enough, a packet is dequeued and handed
to SplitTcpSinkAgent::recvFinal().

SplitTcpSinkAgent::recvFinal() Adds the source address of the packet
to the recv table by calling SplitMan-
ager::add(); calls DelAckSink::recv() af-
terwards, which in turn calls SplitTcpA-
gent::recvBytes() with a number of pay-
load bytes that are delivered (nbytes, see
figure 5.1).

SplitTcpAgent::recvBytes() Forwards the payload to the split end
node by calling SplitTcpAgent ’s inherited
sendmsg() function.

SplitTcpAgent::output() Slightly modified version of TcpA-
gent::output(), removes previously added
addresses from the recv table and saves
them in the pepid header field of outgoing
packets; increases the buffer value every
time a packet is sent.

74

5.1 Implementation in ns-2

SplitTcpSinkAgent SplitTcpAgent

Packet* pkt

nbytes

address address

SplitManager

Queue

SplitManager

Table recv_

SplitTcpSinkAgent TcpAgent

Packet* pkt

nbytes

address address

SplitManager

Table send_

Packet* pkt

Figure 5.1: The split start and split end nodes use modified versions of
Sack1TcpAgent (LinuxTcpAgent for Linux variants) and DelAckSink
for the data forwarding mechanism. As illustrated by the figure, the
Queue and Table objects are accessed through SplitManager.

5.1.2 Modified TCP Source

The second part of this performance enhancing proxy is a modified TCP sender
called SplitTcpAgent (TCL name Agent/TCP/Sack1/Split ; C++ class files
ns-base-dir/tcp/split-tcp.*), which is a subclass of Sack1TcpAgent. It is
used on the split start node only. When the receiving side of the node gets a
packet, its payload is handed to the application layer and immediately forces the
SplitTcpAgent to send a new packet on the split link with the payload data.
However the SplitTcpAgent instance on this node is in control of the flow of
packets that are received by the split start node. When a packet arrives at the
node, it is immediately enqueued in the node’s local queue without any further
processing. SplitTcpAgent checks this queue periodically (the time interval can

75

Chapter 5 Implementation

Table 5.3: Function call chain that illustrates packet processing when receiving
a packet at the split end node.

Function name Description
SplitTcpAgent::recv() Called whenever a packet is received; adds

the address contained in the pepid field
to the send table and hands the packet
to DelAckSink::recv(), which in turn calls
SplitTcpAgent::recvBytes() with a num-
ber of payload bytes that are delivered
(nbytes, see figure 5.1).

SplitTcpAgent::recvBytes() Removes addresses from the send ta-
ble and forwards the payload to the cor-
responding addresses by calling TcpA-
gent::sendmsg().

be configured through the SplitManager via the parameter send check interval)
and only if the current situation allows data to be received and forwarded, it
dequeues the packet from the queue and hands it to the recvFinal() method of
the receiving TCP stack.

The periodic checking is implemented via a ns-2 TimeHandler object called
SendTimer. Every time the timer fires, the SplitTcpAgent method checkSend()
checks whether there are any packets in the queue and whether the flow conditions
allow data to be forwarded. If both conditions are true, it hands the packet to the
corresponding TCP sink of the node for acknowledging (since there are multiple
TCP sinks installed on the split start node, the correct TCP sink is determined
by the packet’s destination port). However since this is done in a loop, we can
check and forward multiple packets during one interval. Therefore the sending
rate is only indirectly limited by the timer interval (i.e. too long intervals can
cause burst behaviour and possibly result in bad link utilisation). But one must
keep in mind the additional delay this timer can introduce if set too high. A
timer interval of 0.03 for example in combination with the split link’s queue may
result in smooth sending rates, however if — at some point in time — the queue

76

5.1 Implementation in ns-2

is empty or the buffer indicator is too low, the loop ends. Packets arriving just
after the loop has ended experience an additional delay of up to 30 milliseconds.
Therefore the default value for this interval is chosen small enough (0.01 seconds,
see table 5.1). When there are no more packets or if the flow control does not
allow the forwarding of more data (i.e. the buffer indicator is too low), the
loop ends and the timer is rescheduled to be fired again in the time provided by
check send interval.

Checking periodically for new packets is a safer way of implementing the PEP
than relying solely on an event-based structure, since only using events can cause
the PEP system to become bursty or even completely stall for some time. Let us
assume that we use an event-based implementation, that forwards the payload
of packets upon their reception at the split start node (i.e. such a forwarding
event is a simple function call). Furthermore we assume a scenario in which
the end senders have sent enough packets to completely fill the local queue and
that they do not need to send more packets for some time. Since enqueueing
packets on a queue in ns-2 itself cannot cause further external action outside the
queue, an event-based implementation would have to generate forwarding events
upon the reception of packets before they are enqueued or dropped. However
this means that the forwarding of data of enqueued packets on the split start
node is exclusively driven by the end senders’ transmission of packets. If — for
any reason — the forwarding on the split start node is delayed (e.g. due to
congestion on the split link), buffered data on the split start node would then
only be forwarded again when new packets arrive (whether they are dropped or
not). But under the previous assumption that the senders do not need to send
additional data, “new” packets will only arrive when the retransmission timer of
a sender expires, therefore introducing an unnecessary delay to the forwarding
path (since the RTO timeout should rather be larger than smaller as suggested
in [28]). Furthermore if the forwarding over the split link is delayed, incoming
events would have to be neglected (if they were accepted despite any congestion
on the split link, there would be no flow control at all). This means that there
can be packets in the queue, the forwarding events for which got lost. As a result,
assuming a scenario including long-lived traffic and a queue size of 100, the last

77

Chapter 5 Implementation

100 packets might not be forwarded at all since the corresponding events that
cause the forwarding are missing. To avoid such problems, the forwarding on the
split start node is scheduled via SendTimer to separate buffered packets from
their forwarding events. On the split end node, there is no need for such a timer
since there is no local queue and data can be handed to the sending TCP agents
immediately.

SplitTcpAgent also holds a reference to the SplitManager to get information
like packet sizes and to access the local queue, and it also holds references to
all TCP sinks on that node since it needs to be able to forward the dequeued
packets to them for acknowledging. Both references are assigned through the
TCL script.

The only method of TcpAgent that is overridden is output(), which is respon-
sible for assembling and sending packets. This method is almost a complete copy
of the original, with two small modifications. First we need to set the pepid field
of the outgoing packet, so the split end node knows which end receiver is the
intended destination of this data. This is determined by removing the first en-
try from the send table of the SplitManager. Second, the SplitTcpAgent needs
to increase the buffer count parameter since it sends data from its buffer and
therefore can receive new data to be sent.

To enable simulations with the PEP that use the Linux TCP variants sup-
ported by ns-2, the same modifications apply for ns-2’s LinuxTcpAgent classes,
enabling the same functionality for any Linux variant of TCP (e.g. CUBIC). The
C++ class for the Linux variant is called SplitTcpLinuxAgent (TCL name Agen-
t/TCP/Linux/Split ; C++ class files ns-base-dir/tcp/split-tcp-linux.*).

5.1.3 Modified TCP Sink

The third part the PEP consists of a modified version of ns-2’s DelAckSink,
a TCP sink using delayed ACKs, called SplitTcpSinkAgent
(TCL name: Agent/TCPSink/Sack1/DelAck/Split ; C++ class files
ns-base-dir/tcp/split-tcp-sink.*). It is used on both split nodes, at the

78

5.1 Implementation in ns-2

start and at the end of the split link, although exhibiting different behaviour
depending on the position. On the split start node, when receiving a packet, the
packet is simply enqueued in the queue held by SplitManager. Whenever the
SplitTcpAgent allows this packet to be received (see chapter 3 for a description
of the mechanism), it is handed to SplitTcpSinkAgent’s recvFinal() method.
It adds the packet’s source address into the recv address table (also held by
SplitManager) and invokes the normal TCP sink recv() method (responsible for
acknowledging). When there is data that can be handed over to the application,
the recvBytes() method is called. Here, the data is handed to the SplitTcpAgent
with the second split node as its destination.

At the split end node, the SplitTcpSinkAgent simply adds the packet’s pepid
to the send table of SplitManager and calls the recv() method of DelAckSink.
When the recvBytes() method is ultimately called, the corresponding address of
the data to be forwarded is removed from the table, and the packet is forwarded
to its destination.

Since the same SplitTcpSinkAgent implementation is used on both nodes of
the split link, the mode of operation (SPLITSTART or SPLITEND) has to be
configured. Furthermore the agent used at the split start node needs a reference
to the destination agent (i.e. the TCP sink installed on the split end node) — and
likewise, the split end node implementation needs references to all sending TCP
stacks to be able to forward the data to the end receivers. This is all configured
via TCL (see section 5.2).

5.1.4 Other Changes

Further changes to the existing ns-2 code include an extension of the IP header
(contained in the C++ files ns-base-dir/common/ip.*). A new field pepid has
been added to store the original source address of the data after it is re-packed
and sent on the split link. When the packet is received by the split end node,
this field is read to ensure correct forwarding to the respective destination. For
simulation purposes, introducing a new field in the IP (or any other) header poses

79

Chapter 5 Implementation

no danger of interfering with normal operations since the existing implementation
is simply unaware of it and the header sizes are saved in separate variables and
are not directly related to the number or size of the header fields.

5.2 TCL Usage Examples

A SplitManager TCL object can be created and configured as follows:

set sp l i t manager [new Appl i ca t ion / SplitManager]
$ sp l i t manager local−queue $manager queue
$ sp l i t manager set number o f connect ions 10
$ sp l i t manager set b u f f e r s t a r t [expr 800 *1040]
$ sp l i t manager set h e a d e r s i z e 40
$ sp l i t manager set p a c k e t s i z e 1000
$ sp l i t manager set s e n d c h e c k i n t e r v a l 0 .003

The values for the parameters buffer start , header size and packet size are
specified in bytes. The buffer start variable in the example is set to 800 packets
with 1040 being the total packet size. The unit for send check interval is seconds.
The specified queue manager queue can be any queue implemented in ns-2, for
example Queue/DropTail. It can be created like any other ns-2 TCL object,
however it should be noted that there may be some additional requirements to
be met for certain queueing mechanisms. Queue/RED’s automatic configuration
for example uses knowledge about the bandwidth and delay of the link it is
normally installed on (e.g. to automatically calculate its threshold values, see
section 3.4.2 for a more detailed description of the automatic configuration).
For that, it references the link to access its delay and bandwidth parameters.
Since there is no link for the local usage of the queue, one may need to create a
dummy link object — with the appropriate delay and bandwidth properties of
the satellite link — for such queues to work properly. Since the sole purpose of
this reference is the retrieval of bandwidth and delay information, this solution
may be necessary for such mechanisms to work as desired, however the fact that

80

5.2 TCL Usage Examples

it is only a dummy link has no impact on the simulation results. The creation of
such a dummy link together with a RED queue is shown below:

set l o c a l l i n k [new DelayLink]
$ l o c a l l i n k set bandwidth 50Mb
$ l o c a l l i n k set de l ay 250ms

set manager queue [new Queue/RED]
$manager queue l i n k $ l o c a l l i n k
$manager queue set l i m i t 1000
$manager queue r e s e t

The following TCL example code creates a TCP sender for the split connection
and sets its reference to the manager:

set t c p s p l i t s t a r t s e n d [new Agent/TCP/Sack1/ S p l i t]
$ t c p s p l i t s t a r t s e n d manager $ sp l i t manager

The creation of a TCP sink for the split connection is similar, but the type
(SPLITSTART or SPLITEND) needs to be specified. Furthermore the TCP
sender needs references to the TCP sinks for packet acknowledging:

for { set i 0} { $ i < $numOfConns} { incr i } {
set t c p s p l i t s t a r t r e c v ($ i) [new Agent/TCPSink/Sack1/DelAck/

S p l i t]
$ t c p s p l i t s t a r t r e c v ($ i) type SPLITSTART
$ t c p s p l i t s t a r t r e c v ($ i) manager $ sp l i t manager
$ t c p s p l i t s t a r t s e n d acker $ t c p s p l i t s t a r t r e c v ($ i)
}

Furthermore, the forwarders need to be set:

for { set i 0} { $ i < $numOfConns} { incr i } {
$ t c p s p l i t s t a r t r e c v ($ i) forwarder s t a r t $ t c p s p l i t s t a r t s e n d
$ t c p s p l i t e n d r e c v forwarder end $ t c p s p l i t e n d s e n d ($ i)
}

If the PEP should use Linux TCP, there are two modifications to be done.
First, the TCP sender object must be of the type Agent/TCP/Linux/Split in-

81

Chapter 5 Implementation

stead of Agent/TCP/Sack1/Split. Second, one must specify the congestion con-
trol algorithm to be used by means of a scheduled command as in the following
example:

$ns at 0 . 0 ” $ t c p s p l i t s t a r t s e n d s e l e c t c a cubic ”

5.2.1 Sample TCL Script split.tcl

The sample TCL simulation script creates a dumbbell topology (similar to the
one shown in figure 3.1) with a configurable number of end nodes that use FTP
to generate traffic over a shared bottleneck link. It uses five parameters that
need to be specified when the simulation script is run:

usePEP This parameter is used as a boolean flag to enable or disable the use
of the PEP. When the PEP is not in use, all TCP sender simply connect
to all TCP receivers over the split link with no flow intervention from the
split nodes. If the PEP is enabled, the TCP senders send their data to the
split start node, it forwards the data to the split end node and the split
end node forwards it to the TCP receivers.

bandwidth With this value, one can specify the bandwidth of the split link in
megabit per second. The delay is unchangeable and set to 250 ms.

numOfConns The parameter numOfConns specifies the number of TCP flows,
hence also the number of TCP sender and receiver end nodes.

transferEndTime The duration of the file transfers in seconds can be specified
with this parameter.

tcpMode This option specifies the protocol to be used between the split nodes.
One can either set the mode to “sack”, thereby using standard TCP be-
haviour, or one can specify one of the Linux congestion control variants
that are implemented in ns-2 (e.g. “cubic”, “compound”, etc.).

A sample scenario with the PEP in use, a split link bandwidth of 50 megabit/s,
20 TCP flows, a data transfer time of 600 seconds and CUBIC being the TCP

82

5.2 TCL Usage Examples

variant used for the split connection can therefore be simulated by calling ns-2
as follows:

ns split.tcl 1 50 20 600 cubic

The sample script generates output files with measurement results collected
during the simulation. Measurements are taken every 1.0 seconds. The data is
saved in a subdirectory data/Apep-Bmb-Cnum-Dtime-E, where the letters A-E
denote the parameters with which the script was run. The content of the output
files is as follows:

xfbw recv(i).tr contains the application throughput of end receiver i

xfbw recv avg.tr contains the average application throughput of all end receivers

xfcw send(i).tr contains the congestion window of end sender i

xfbw splitstart recv.tr contains the application throughput at the split start
node (only available when the PEP is enabled)

xfcw splitstart.tr contains the congestion window of the split start node (only
available when the PEP is enabled)

xfbw splitend recv.tr contains the application throughput at the split end node
(only available when the PEP is enabled)

xftracebw splitend recv.tr is a tracefile of the utilisation of the split link

The trace data for the split link utilisation is accumulated by a TCL procedure
called trace splitend recv {a}. To be able to evaluate this data like all other
measurement variables by the record { } procedure, the sample script installs
the procedure as a trace-callback. The procedure is then called every time a
packet is received at this node and adds the packet size to a variable called
trace bw splitend recv. Installing such a trace-callback can be done as shown
below:

$ns duplex− l ink $ s p l i t s t a r t $ s p l i t e n d $ sp l i t bandwidth
$ s p l i t d e l a y DropTail

83

Chapter 5 Implementation

set s p l i t l i n k [$ns l i n k $ s p l i t s t a r t $ s p l i t e n d]
$ s p l i t l i n k t race−ca l lback $ns t r a c e s p l i t e n d r e c v

5.3 ns-2 Resource Requirements and Limitations

In reality, a network packet holds a small number of headers. For example for
a packet belonging to Internet traffic being transmitted on an Ethernet cable,
it is reasonable to assume that — in short — the Ethernet frame consists of an
Ethernet header (and footer), an IP header and a TCP header, followed by the
TCP payload which can carry any application information. The size of this packet
is the sum of the sizes of the application-level data and all its headers. If routers
need to process, store or deal in any way with this packet, the resources must
suffice for this packet size. Furthermore, routers need time to process packets,
whether they are just routing them or modifying information as a performance
enhancing proxy possibly would.

Since ns-2 is a simulator and does not exactly resemble network reality, there
are three major differences which need to be taken into account. First, packets
in ns-2 do not carry real payload data (unless special transport agents are used
which explicitly allow the transfer of application data, see section 5.1), they only
consist of headers and a simple integer value representing their size. Therefore
the virtual size of the payload has no impact on the resource requirements to
simulate that packet. However, compared to real networks, ns-2 has much higher
resource requirements regarding the packet’s headers. Contrary to a real packet,
only holding the packet header information of the protocols that are actually in
use, ns-2 reserves — by default — memory for every header that might be used
for a packet. Therefore, every packet — no matter which information it carries
or what protocols are used for the current simulation — holds headers for every
protocol known to and implemented in ns-2 (e.g. multicast protocols, wireless
sensor and mobility protocols, multimedia extensions, etc.), which represents a
huge overhead for most simulations.

84

5.3 ns-2 Resource Requirements and Limitations

Furthermore ns-2 keeps almost all packets that occur in its simulation in the
memory until the simulation has ended, hence the memory requirement is di-
rectly proportional to the simulation time. To mitigate this issue, it is necessary
to command ns-2 to remove or rather omit unnecessary packet headers. This is
documented in the file ns-base-dir/tcl/lib/ns-packet.tcl. Headers can be
omitted in ns-packet.tcl or directly in the simulation script prior to instanti-
ating the simulator object ns with the commands remove-all-packet-headers
and add-packet-header IP TCP for example. This can greatly reduce the mem-
ory requirements of ns-2, depending on the simulation scenario [22].

The third difference is that ns-2 does not simulate processing time. Routers
naturally need a small amount of time to process information and act accord-
ingly, even for simple tasks as just forwarding packets. Moreover data cannot
be generated at arbitrarily high rates. This is not the case for simulations done
with ns-2. In its simulations there is no processing time, complex tasks can be
performed with zero time consumption and data can be generated at any rate.
For this reason, the discussion of the simulation results assumes a steady state
system, skipping the initial start-up phase of the network scenarios.

A further limitation of ns-2 is the duration of the simulation time. Although
the source code of ns-2 is generally written with respect to large scenarios and
advice is provided in [22] on how to cope with large simulations (both regard-
ing topology and time), the simulation time is limited in some way. Time is
generally represented by a double variable, in the ns-2 scheduler and otherwise.
However depending on the number of TCP Agents (and their workload), it is
possible that some time values still overflow the relatively large number range
provided. As a result, timestamps can suddenly hold negative numbers at some
point in simulation time. One sign of such an overflow is ns-2 exiting with an
error message such as “TcpAgent: negative RTO! (-429496729.600000)”. Fur-
thermore, this error does occur in a peculiar manner. Let us assume for example
that a specific simulation scenario completes successfully for a total simulation
time of 4000 seconds. If the error occurs for longer simulation times, it does not
necessarily occur after the 4000 second point in time has passed (after which one

85

Chapter 5 Implementation

would expect the overflow to happen since the simulation complete successfully
for a duration of 4000 seconds), but at any time — sometimes also just after a few
seconds of simulation time. After extensive investigation, the only solution that
is both suggested and working for such errors is to reduce the overall simulation
time, hence avoiding such overflows. Therefore, this poses a time constraint for
simulating scenarios that depend on long simulation times, such as simulations
involving large round trip times as they were done for this thesis.

86

Chapter 6

Conclusion

This thesis has shown that despite many extensions to TCP over the years, there
is still room for improvement that cannot be achieved by small modifications of
the protocol. Related work has been presented, which has shown both the need
for performance enhancing proxies and the performance gains one can achieve
by deploying them. The PEP presented in this thesis — using a split connection
approach — shows that using such a mechanism can improve the performance
of transport protocols like TCP significantly, although depending on the specific
circumstances. The measurement results that have been illustrated and discussed
in chapter 4 show that the PEP shows little to no improvement for queue sizes
which resemble the bandwidth-delay product of a link. However since this prod-
uct is comparatively large for links with a high bandwidth and a long signal
propagation delay such as satellite connections, the effect of smaller queue sizes
has also been investigated. The outcome of the simulation experiments done in
ns-2 indicates that a split connection PEP, that uses different protocols than
standard TCP variants like TCP SACK, can lead to performance improvements
between a few percent up to a factor of 5 for flows that transfer large amounts of
data. For web traffic — resembled by a standard Pareto distribution — the use
of this PEP still shows performance gains for queue sizes that are smaller than
the bandwidth-delay product, up to 20%.

Furthermore investigating the use of different queuing mechanisms used locally
to buffer the data to be forwarded by the PEP system has shown the different

87

Chapter 6 Conclusion

characteristics of those queueing techniques and their effect on the end-to-end
throughput of single flows. Since DropTail is based on a simple decision without
any random factors, it can lead to phase effects that reduce the overall effective-
ness of a network and leaves resources unused. Furthermore these phase effects
reduce the fairness between TCP flows and can even lead to the starvation of
flows. Using RED mitigates these disadvantages, since its decision making (on
whether to drop a packet) is partially probability-based. Hence, it provides
higher fairness for multiple competing TCP flows. For these reasons — although
DropTail provides the same overall utilisation and average throughput — RED
seems to be the preferred mechanism for the local queue used by the PEP

The field of PEPs offer a great variety of future work to be done, despite the
fact that there has already been much research in the past. Even if one limits
their research to PEPs implementing the idea of split connections, there are still
many characteristics that can be investigated. Future efforts regarding this topic
might include new means of flow control, different transport protocols on the
split link or different queuing techniques besides those presented and discussed
in this thesis.

88

List of Figures

3.1 The topology shows connection splitting performed by the two
split nodes. 28

3.2 The main packet forwarding behaviour of the split start node. . . 30

3.3 The congestion window of CUBIC and Reno TCP over time. . . 36

3.4 The dropping strategy of RED. p denotes the probability of drop-
ping a packet, min thresh and max thresh represent queue length
limits for the mechanism. 40

4.1 A comparison of the link utilisation of the PEP system with TCP
SACK and CUBIC as protocol in use. The figure shows TCP
SACKs poor behaviour upon packet loss over links with high
bandwidth-delay products. 48

4.2 Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with FTP traffic using 50 SACK flows with the PEP
disabled, and the PEP enabled with CUBIC as the transport pro-
tocol. The figures show an increasing performance improvement,
when the PEP is used, for decreasing queue sizes. 49

4.3 Average throughput and throughput for a single randomly selected
flow for RED queueing with queue sizes 3000 and 600 with 50 FTP
traffic flows. The figures show that the average throughput of the
scenario without PEP is higher for a queue size of 3000. The third
illustration shows the throughput of a single flow (no. 23) for both
variants, with and without PEP in use. 51

89

List of Figures

4.4 Average throughput and throughput for a single randomly selected
flow for DropTail queueing with queue sizes 3000 and 600 with 50
flows transporting FTP traffic. The figures show that the average
throughput of the scenario without PEP is higher for a queue size
of 3000. The third illustration shows the throughput of a single
flow (no. 23) for both variants, with and without PEP in use. . . 53

4.5 Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with 500 FTP traffic flows. The graphs show an increas-
ing performance gain by use of the PEP system with decreasing
queue sizes. 55

4.6 Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with 5 FTP traffic flows. The graph with queue size 3000
shows that the PEP system cannot always outperform standard
scenarios with competing flows. However it shows performance
gains for smaller queue sizes. Furthermore the scenario without
the PEP in use shows performance degradation when reducing the
queue size, since the DropTail queue in use leads to multiple flows
simultaneously backing off. 56

4.7 Average congestion window size of the end senders for queue sizes
1000, 1500 and 3000 with 50 FTP traffic flows. The graphs show
the large congestion window for scenarios without a split connec-
tion mechanism, which shrinks for decreasing queue sizes. The
windows when the PEP system is in use indicate that the average
length of the RED queue is independent of the total queue size. . 58

4.8 Overall FTP traffic measurement results of using the PEP system
compared to unmodified parallel TCP SACK flows for different
flow numbers and queue sizes. The results show performance gains
for decreasing queue sizes, as well as a general performance deficit
for 1–10 flows and 50–500. 60

90

List of Figures

4.9 Split link utilisation for RED queueing with queue sizes 1000, 1500
and 3000 with 750 web traffic flows, represented by a Pareto distri-
bution. The graphs show decreasing performance regarding utili-
sation for parallel TCP flows with decreasing queue sizes. However
even a queue that can hold 3000 packets is unable to fully mitigate
the bursty nature of web traffic. 63

4.10 Throughput for a single randomly selected flow (no. 547) with
the PEP disabled and enabled with both RED and DropTail as
local queues for a queue size of 1500 and 750 web traffic flows.
The graphs show the different effects of RED and DropTail. RED
seems to lead to higher, shorter peaks in throughput for a single
flow, compared to DropTail which results in single flows achieving
a smaller throughput but over longer intervals. 64

4.11 Cumulative throughput for a single randomly selected flow (no.
547) with the PEP disabled and enabled with both RED and
DropTail as local queues for a queue size of 1500 and 750 web
traffic flows. The graph shows that DropTail leads to a smoother
increase in the amount of transferred data over longer periods
of time compared to RED, which results in the flow transferring
higher amounts of data but for shorter intervals. 66

4.12 Overall Pareto web traffic measurement results of using the PEP
system compared to unmodified parallel TCP SACK flows for dif-
ferent flow numbers and queue sizes. There is no performance
gain for a queue size of 3000, however for decreasing queue sizes
the PEP system shows higher link utilisation compared to the
standard scenario with separate parallel TCP flows. 68

5.1 The split start and split end nodes use modified versions of Sack1TcpAgent
(LinuxTcpAgent for Linux variants) and DelAckSink for the data
forwarding mechanism. As illustrated by the figure, the Queue
and Table objects are accessed through SplitManager. 75

91

List of Tables

3.1 Configurable parameters of RED. 41

4.1 Parameters for RED when the (recommended) automatic config-
uration is used, for a link with a bandwidth of 100 Mbit/s and a
delay of 250 ms. 46

4.2 Default Pareto parameters in ns-2, which were used for the simu-
lations with Pareto traffic. 61

5.1 Default values for the variables of SplitManager when they are not
set through TCL (number of connections must always be set). . 72

5.2 Function call chain that illustrates packet processing when receiv-
ing a packet at the split start node. 74

5.3 Function call chain that illustrates packet processing when receiv-
ing a packet at the split end node. 76

93

Bibliography

[1] Ian F Akyildiz and Seong-Ho Jeong. Satellite ATM Networks: A Survey.
IEEE Communications Magazine, (5):1–3, 1997.

[2] Ian F. Akyildiz, Giacomo Morabito, and Sergio Palazzo. TCP-Peach: a
new congestion control scheme for satellite IP networks. IEEE/ACM Trans.
Netw., 9(3):307–321, 2001.

[3] M. Allman, S. Dawkins, D. Glover, J. Griner, D. Tran, T. Henderson, J. Hei-
demann, J. Touch, H. Kruse, S. Ostermann, K. Scott, and J. Semke. Ongoing
TCP Research Related to Satellites. RFC 2760 (Informational), February
2000.

[4] M. Allman, D. Glover, and L. Sanchez. Enhancing TCP Over Satellite
Channels using Standard Mechanisms. RFC 2488 (Best Current Practice),
January 1999.

[5] Ajay Bakre and B.R. Badrinath. I-TCP: Indirect TCP for Mobile Hosts.
pages 136–143, 1995.

[6] Hari Balakrishnan, Venkata N. Padmanabhan, Randy H. Katz, and Y H.
Katz. The Effects of Asymmetry on TCP Performance, 1997.

[7] Hari Balakrishnan, Srinivasan Seshan, Elan Amir, and Y H. Katz. Improving
TCP/IP Performance over Wireless Networks. pages 2–11, 1995.

[8] Pravin Bhagwat, Partha P. Bhattacharya, Arvind Krishna, and Satish K.
Tripathi. Using channel state dependent packet scheduling to improve
TCPthroughput over wireless LANs. Wireless Networks, 3(1):91–102, 1997.

95

Bibliography

[9] J. Border, M. Kojo, J. Griner, G. Montenegro, and Z. Shelby. Performance
Enhancing Proxies Intended to Mitigate Link-Related Degradations. RFC
3135 (Informational), June 2001.

[10] B. Braden, D. Clark, J. Crowcroft, B. Davie, S. Deering, D. Estrin, S. Floyd,
V. Jacobson, G. Minshall, C. Partridge, L. Peterson, K. Ramakrishnan,
S. Shenker, J. Wroclawski, and L. Zhang. Recommendations on Queue
Management and Congestion Avoidance in the Internet. RFC 2309 (Infor-
mational), April 1998.

[11] Ramon Caceres and Liviu Iftode. Improving the Performance of Reliable
Transport Protocols in Mobile Computing Environments. IEEE Journal on
Selected Areas in Communications, 13:850–857, 1994.

[12] C. Caini and R. Firrincieli. TCP Hybla: a TCP enhancement for hetero-
geneous networks. International Journal of Satellite Communications and
Networking, 22(5), 2004.

[13] C. Caini, R. Firrincieli, and D. Lacamera. PEPsal: a Performance Enhanc-
ing Proxy for TCP satellite connections. IEEE Aerospace and Electronic
Systems Magazine, 22(8):7–16, 2007.

[14] D. Clark. The design philosophy of the DARPA internet protocols. SIG-
COMM Comput. Commun. Rev., 18(4):106–114, 1988.

[15] Robert C. Durst, Gregory J. Miller, and Eric J. Travis. TCP Extensions for
Space Communications. pages 15–26, 1996.

[16] N. Ehsan, M. Liu, and R.J. Ragland. Evaluation of Performance Enhancing
Proxies in Internet over Satellite. International Journal of Communication
Systems, 16(6), 2003.

[17] M. Fiorenzi, D. Girella, N. M
”oller, Å. Arvidsson, R. Skog, J. Petersson, P. Karlsson, C. Fischione, and
KH Johansson. Enhancing TCP over HSDPA by cross-layer signalling. In
IEEE Global Telecommunications Conference, volume 1, pages 5348–5352,
2007.

96

Bibliography

[18] S. Floyd, J. Mahdavi, M. Mathis, M. Podolsky, and A. Romanow. An
extension to the selective acknowledgement (SACK) option for TCP, 1999.

[19] Sally Floyd. RED: Discussions of Setting Parameters. http://www.icir.

org/floyd/REDparameters.txt, 1997.

[20] Sally Floyd. Recommendation on using the gentle variant of RED. http:

//www.icir.org/floyd/red/gentle.html, 2000.

[21] Christian Huitema. Routing in the Internet. Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1995.

[22] Information Sciences Institute, University of Southern California. The Net-
work Simulator ns-2: Tips and Statistical Data for Running Large Simula-
tions in NS. http://www.isi.edu/nsnam/ns/ns-largesim.html, 2002.

[23] V. Jacobson, R. Braden, and D. Borman. TCP Extensions for High Perfor-
mance. RFC 1323 (Proposed Standard), May 1992.

[24] Mikkel Christiansen Kevin, Kevin Jeffay, David Ott, and F. Donelson Smith.
Tuning RED for Web Traffic. In in Proceedings of ACM SIGCOMM 2000,
pages 139–150, 2000.

[25] M. Marchese, M. Rossi, and G. Morabito. PETRA: Performance Enhancing
Transport Architecture for Satellite Communications. IEEE JOURNAL ON
SELECTED AREAS IN COMMUNICATIONS, 22(2), 2004.

[26] Christopher Metz. TCP over Satellite... The Final Frontier. IEEE Internet
Computing, 3(1):76–80, 1999.

[27] C Partridge and T J Shepard. TCP/IP Performance Over Satellite Links. In
Internet Node Technology Development Project Protocol Architecture Model
Report, 1997.

[28] V. Paxson and M. Allman. Computing TCP’s Retransmission Timer. RFC
2988 (Proposed Standard), November 2000.

[29] Fei Peng, Lijuan Wu, and Victor C. M. Leung. Cross-layer enhancement of
TCP split-connections over satellites links. International Journal of Satellite

97

http://www.icir.org/floyd/REDparameters.txt
http://www.icir.org/floyd/REDparameters.txt
http://www.icir.org/floyd/red/gentle.html
http://www.icir.org/floyd/red/gentle.html
http://www.isi.edu/nsnam/ns/ns-largesim.html

Bibliography

Communications and Networking, 24(5):405–418, 2006.

[30] I. Rhee and L. Xu. CUBIC: A new TCP-friendly high-speed TCP variant.
In Proc. PFLDnet, volume 2005, 2005.

[31] J. H. Saltzer, D. P. Reed, and D. D. Clark. End-to-end arguments in system
design. ACM Trans. Comput. Syst., 2(4):277–288, 1984.

[32] D. Velenis, D. Kalogeras, and B. Maglaris. SaTPEP: A TCP performance
enhancing proxy for satellite links. Lecture notes in computer science, pages
1233–1238, 2002.

[33] Michael Welzl. Network Congestion Control: Managing Internet Traffic
(Wiley Series on Communications Networking & Distributed Systems). John
Wiley & Sons, 2005.

98

Acknowledgements

I would like to thank my supervisor, Dr. Michael Welzl for his continued help
and support for this thesis. Furthermore I thank Dragana Damjanovic for her as-
sistance and many insightful conversations during the research and investigation
of this topic.

99

	Abstract
	Introduction
	Motivation
	Simulating with ns-2
	Outline

	PEP Overview
	Characteristics and Classification
	Related Work
	Splitting the Connection
	Other Approaches

	Theory
	General
	Classification

	Flow Control
	Protocols
	TCP
	CUBIC

	Queuing
	Drop Tail
	RED

	Evaluation
	Methodology and Simulation Setup
	General
	FTP
	Pareto

	Implementation
	Implementation in ns-2
	SplitManager
	Modified TCP Source
	Modified TCP Sink
	Other Changes

	TCL Usage Examples
	Sample TCL Script split.tcl

	ns-2 Resource Requirements and Limitations

	Conclusion
	List of Figures
	List of Tables
	Bibliography
	Acknowledgements

