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Abstract—Energy consumption optimization of HPC appli-
cations inherently requires measurements for reference and
comparison. However, most of today’s systems lack the nec-
essary hardware support for power or energy measurements.
Furthermore, in-band data availability is preferred for specific
optimization techniques such as auto-tuning. For this reason,
we present in-band energy consumption models for the IBM
POWER7 processor based on hardware counters. We demon-
strate that linear regression is a suitable means for modeling
energy consumption, and we rely on already available, high-
level benchmarks for training instead of self-written or hand-
tuned micro-kernels. We compare modeling efforts for different
instruction mixes caused by two compilers (GCC and IBM XL)
as well as various multi-threading usage scenarios, and validate
across our training benchmarks and two real-world applications.
Results show mean errors of approximately 1% and overall max
errors of 5.3% for GCC.

I. INTRODUCTION

Although high computational performance is still the main
objective in most fields concerned with parallel computing,
there have been research efforts towards power and recently
also energy consumption minimization. The reasons for that
are diverse, ranging from infrastructural limits such as the
20 MW power limit for exascale systems [1] or cooling
equipment requirements over financial constraints to environ-
mental considerations. While some of these aspects originally
target power consumption, there are new aspirations directly
concerned with energy.

However, as of today it still remains unclear how to meet
all these requirements. While industry implemented numerous
technologies in hardware over the years, such as DVFS, clock
and power gating, et cetera, deployed systems still provide only
limited support for measuring power and energy consump-
tion. Nevertheless, optimizing for power or energy inherently
requires measurements for reference and comparison, and
depending on the specific research problem only few suitable
solutions exist.

In the overall power and energy consumption of an HPC
node without accelerators, the CPU is currently the biggest
contributor that can also be influenced the most depending
on the system configuration and the workload executed. As
such, most efforts concentrate on this part of a system and this
work also sets its focus there. There are several instrumentation
systems available [2], [3] that supply researchers with power
and energy consumption information. However, many suffer
from topological granularity issues as well as resolution and
accuracy problems. In addition, many of them supply results
out-of-band, impeding or preventing many new optimization

efforts in HPC such as auto-tuning [4] or performance analy-
sis [5] with respect to energy.

There has been a lot of research invested in the modeling of
power or energy consumption, either via architectural simula-
tors or statistical models coupled with reference measurements.
In this work we take the latter path and present energy models
for an IBM POWER7 processor.

Our main contributions are simple yet accurate energy
models for the POWER7 that – once calibrated – solely rely
on information easily obtainable in-band by most performance
analysis tools and frameworks. Specifically, we use hardware
counters and correlate their data with the energy consumption
of the chip using linear regression. We do this with respect
to various benchmarks and applications as well as different
parallelism and compiler setups that cause different instruction
mixes. To the best of our knowledge, there has been no
other energy modeling work that compares compiler effects
and parallelism. We achieve high accuracy with a maximum
error of 5.3% and an average error of ~1% when using GCC.
Furthermore, we show that – contrary to popular approaches in
related work – it is not always necessary to train models with
micro-benchmarks that are specifically tuned to the hardware
in question. This shows that such models can be easily
portable.

The paper is organized as follows: Section II outlines
related work. Section III will present a brief description of
the hardware characteristics of the POWER7 chip, focusing
on aspects related to this research. Section IV will describe
our methodology, define our setup and usage scenarios and
list general conditions. The models themselves are discussed
in Section V and the results presented and illustrated in
Section VI. Finally Section VII concludes and provides an
outlook for future work.

II. RELATED WORK

There is an increasing amount of related work that deals
with modeling power and energy consumption. Kestor et al. [6]
developed a per-core power model for an AMD Interlagos
system and suggest the use of a System Management Interface
(SMI) to enable easy access to power sensor values, whether
they are measured or modeled. Similarly, Goel et al. built
models [7] for different Intel and AMD platforms. Both
approaches model power consumption whereas we investi-
gate energy consumption modeling. Furthermore, both rely
on coarse-grained node-level instrumentation while we use
fine-grained CPU component power measurements instead.
Similarly, a power model for an Intel Core i7 is presented



in [8], however it is based on a less accurate instrumentation
infrastructure [2] and does not state maximum errors. To the
best of our knowledge, no related work explored the effect of
using different compilers.

In [9] Huang et al. present a per-core power proxy for the
POWER7. They achieve a comparable mean error of 1.8%
for their workloads, however their model relies on activity
sensors that are not available in production (neither in- nor
out-of-band) and they train with over 700 micro-benchmarks.
A similar but production-deployed model exists for Intel
Sandy/Ivy Bridge processors and others, and is used by their
Running Average Power Limit (RAPL) interface [10]. It offers
in-band energy estimations of the entire CPU, and depending
on the CPU model also captures off-core entities such as the
memory controller or the integrated graphics unit. Another,
less documented in-hardware model called Application Power
Management (APM) is in use on newer AMD processors [11].

There is also research that uses POWER7 measurements
but does not attempt to model power or energy consumption.
Instead they are used solely for analysis and optimization [12],
[13] or power management purposes [14].

Finally there is a long history of architectural simulators
that also give power or energy information [15], [16], [17].
They face the difficulty of simulating increasingly complex
architectures, the availability of input parameters for specific
CPU models and need to balance the trade-off between accu-
racy and simulation overhead. Approaches such as ours have
the advantage of comparatively negligible overhead and no
need for detailed processor specifications.

III. ARCHITECTURE

The hardware platform for our experiments is an IBM
Power 720 Express node equipped with a single POWER7
processor fabricated in 45 nm [18]. It features 4 out-of-order
cores clocked at 3.0 GHz, with each core offering up to 4
hardware threads and a total of 12 execution units (among
which 2 fixed-point units (FXUs), 4 double-precision (DP)
floating point units, a vector unit and 2 load/store units (LSUs)
capable of performing simple fixed-point operations). The
floating point and vector units are combined into a single
vector-scalar unit that can process 2 DP floating point or
4 integer operations simultaneously. Furthermore, each core
holds 32 KB of L1 data and instruction cache each, as well
as 256 KB of L2 cache. The entire CPU holds 16 MB of
L3 cache, divided into 4 MB parts local to each core. The
system is equipped with 16 GB of DDR3 main memory,
accessible via two on-chip memory controllers. The operating
system in use is openSUSE 12.2 with a 3.4.6 Linux kernel.
Our compilers consist of GCC 4.7.1 and IBM XL compilers
technology preview version 13.0 for C and 15.0 for Fortran.

In addition to its conventional architectural features, the
POWER7 node is also equipped with power instrumentation
via its Thermal and Power Management Device (TPMD). It
includes several power, temperature and other sensors that
monitor the entire node as well as its subsystems such as the
CPU, memory or I/O. These sensors can be accessed via the
POWER7’s service processor and collected out-of-band using
IBM’s Amester tool, causing no performance or power/energy
perturbation on the POWER7 itself. For the scope of this

TABLE I. INVESTIGATED COMPILER AND PARALLELIZATION SETUPS.
#P DENOTES THE NUMBER OF PROCESSES WHILE #T DENOTES THE

NUMBER OF THREADS PER PROCESS. THE NUMBER SUFFIX IN THE SETUP
NAME STATES THE OVERALL NUMBER OF THREADS, THE SUFFIX NOSMT

DENOTES THE CASES RUN IN SMT1 MODE.

setup name NAS MP2C SHS
#P #T #P #T #P #T

GCC4 NOSMT 1 4 4 1 2 2
GCC4 1 4 4 1 2 2
GCC8 1 8 8 1 2 4
GCC16 1 16 16 1 2 8
XLC4 NOSMT 1 4 4 1 2 2
XLC4 1 4 4 1 2 2
XLC8 1 8 8 1 2 4
XLC16 1 16 16 1 2 8

research, we confine our measurements to the CPU power,
eliminating any noise originating from other components. The
specific sensors we use are sampled at 1 kHz with a resolution
of 100 mW and an accuracy that is no worse than 2% by
design [19], [14]. The readings are then filtered by constructing
averages every 32 ms. We then use this data and the total run
time of our training benchmarks to derive the total energy
consumed. The high resolution and documented accuracy of
the sensors coupled with the high sampling frequency ensures
high accuracy of the reference data.

IV. METHODOLOGY

Although using micro-benchmarks is a popular method in
related work to train power and energy models [6], it often
requires tuning such benchmarks to specific hardware char-
acteristics. Considering the complexity of today’s processors,
including multi-threading and available execution paths, this
introduces additional effort and possible causes for inaccuracy.
To eliminate these, we rely on already available, higher-level
benchmarks to stress the system and train our models. To that
end, we choose the SNU C/OpenMP variants of version 3.3 of
the NAS Parallel Benchmarks [20]. To arrive at a reasonable
number of training codes, we arbitrarily select 15 benchmark-
problem size combinations with a run time of approximately
500 ms to 90 s (see Table III for a list of the benchmarks and
problem classes in use). To test the accuracy of our models
we employ k-fold cross-validation with k = 15, meaning we
train with 14 of these codes and use the 15th for validation.
This is done 15 times, choosing each code for validation once
in a rotating manner. All training benchmarks are run with the
number of OpenMP threads according Table I.

We want to eliminate any false sense of accuracy by not
restricting our validation codes to a closed set of same-source
C/OpenMP codes. Therefore, we also include two real-world
MPI applications in the validation process, MP2C [21] and
SHS [22]. MP2C (Massively Parallel Multi-Particle Collision)
simulates fluids with solvated particles, using both molec-
ular dynamics as well as multi-particle collision dynamics.
It is written in Fortran90 and exclusively uses MPI. SHS
(Simple Hyperbolic Solver) solves the compressible Navier-
Stokes equation, describing the motion of fluids, on a two-
dimensional domain using a simple one-step explicit finite
difference scheme. It is written in C and uses both MPI and
OpenMP for parallelization.

We investigate energy modeling when using different com-
pilers (GCC and XLC, with optimization levels -O3 and -O5



respectively). Moreover, we test various simultaneous multi-
threading (SMT) usage scenarios since the POWER7 offers
the capability to set the number of active hardware threads per
core (modes SMT1, SMT2 and SMT4, with the digit denoting
the number of enabled hardware threads). Specifically, we use
the SMT4 mode (using 1, 2, and 4 threads per core, with
any remaining hardware threads active but idle) and hardware
SMT1 mode (using 1 thread per core) to examine their effect
on energy consumption modeling. Table I lists all our usage
scenarios with their respective names and the corresponding
parallelization setups of our codes. Our affinity policy is
scatter-first, meaning each process is mapped onto a dedicated
core before sharing one with another process. Afterwards any
remaining OpenMP threads are scheduled in the same manner,
balancing the usage of hardware threads over all cores.

To minimize any inaccuracy that arises from CPU load
noise due to the operating system and background processes, as
well as any possible inaccuracies caused by the measurement
system, all data reported in this work is the result of 10 runs
(for both training and validation). From these 10 runs, we
choose the median of each metric (hardware counter events,
measured energy consumption, time).

Ordinarily, the processor temperature would need to be
included in the input parameters of a power or energy model,
since leakage power increases with the temperature [9]. This
would pose a problem, since we found no well-documented in-
band temperature sensor that is accessible to us. However, out-
of-band measurements with Amester showed the temperature
of our specific sample to remain between 28◦ C and 34◦ C
when the processor was idle or under full load for longer
periods. Upon further investigation of the power readings, we
found the effect of this temperature variation to border on the
power measurement resolution and the introduced error to be
less than 0.5%.

V. MODEL

Our energy modeling efforts aim at several goals that we
are trying to unite. The models should be

1) high-level,
2) in-band,
3) low in computational intensiveness in training and

deployment, and
4) accurate enough for detailed energy consumption

analysis and optimization of parallel programs.

To satisfy constraints 1) and 2), we only use hardware
counter information that can be obtained via popular high-level
interfaces such as PAPI [23]. Since 3) requires the models to
not only to be computationally fast in deployment but also
in training, we focus our method on ordinary least squares
(OLS) multiple linear regression as opposed to more complex
solutions such as artificial neural networks. The base idea is
that on average each hardware event contributes to the overall
energy consumption with a fixed quota. As we will show in
Section VI, this is a simple yet sufficient approach for most
cases to achieve goal 4), high accuracy.

Since we always consider full usage of the chip and only
vary the number of active hardware threads per core, we model
energy as

Etotal = Eidle + Edynamic (1)

TABLE II. HARDWARE EVENT TYPES INITIALLY CONSIDERED FOR
MODELING.

event name event description
PAPI FP INS Floating Point Operation Finished
PAPI INT INS Fixed point unit 0 or 1 finished an instruction
PAPI L1 DCM L1 data cache misses
PAPI L2 DCM L2 data cache misses
PAPI L3 DCM L3 data cache misses
PAPI L3 DCR L3 data cache reads
PAPI TOT CYC Total cycles
PAPI TOT INS Total instructions
PM CMPLU STALL CPU stalls due to any reason
PM CMPLU STALL THRD CPU stalls due to thread conflict
PM L1 ICACHE MISS L1 instruction cache miss
PM L2 INST MISS L2 instruction cache miss
PM L3 MISS L3 references that miss the L3 cache
PM L3 PREF MISS L3 prefetches that miss the L3 cache
PM LSU DC PREF
STREAM CONFIRM

An active prefetching stream matches a load from
a load/store unit

PM LSU FX FIN Load/store unit finished a fixed-point instruction
PM LSU LDF Load/store unit finished a scalar load
PM LSU LDX Load/store unit finished a vector load
PM MEM0 PREFETCH
DISP

Prefetch memory read issued on memory con-
troller 0

PM VSU FMA DOUBLE Vectorized fused multiply-add finished
PM VSU SIMPLE ISSUED Vector unit finished a simple VMX instruction
PM VSU VECTOR
DOUBLE ISSUED

Vector unit finished a double-precision vector
instruction

PM VSU VECTOR
SINGLE ISSUED

Vector unit finished a single-precision vector in-
struction

Edynamic =

n∑
i=1

m∑
j=1

αjci,j (2)

where Etotal denotes the overall energy consumption during
the execution of a workload, Eidle and Edynamic denote its idle
and workload execution-dependent parts. To arrive at a value
for Edynamic our models sum all counter values ci,j of each
event type 1 < i ≤ n over all hardware threads 1 < j ≤ m of
all cores and multiplies them with their respective regression
coefficients αi. Then we compute the final result by summing
over all event types.

Since the instrumentation system of the POWER7 does not
directly offer energy but only power readings, we derive the
idle and dynamic energy by including the execution time when
performing our measurements. Nevertheless it should be noted
that the time is not an input of the linear regression part of
our models, but only used to derive energy values from power
readings and to compute Eidle. This is also the reason why we
do not include any idle cycles counter for the linear regression
part, since it only models Edynamic.

As our models are based on hardware counters, a main
concern is their selection. Since the POWER7 offers over 500
different hardware counter events [24], a smaller subset must
be derived. One approach in related work is to first manually
select a medium number of hardware counters that seems like
a good fit with regard to the hardware architecture [6]. We also
employ this method of initial counter selection. However, in [6]
a series of benchmarks is run afterwards and the number of
counters further reduced by computing correlation coefficients
between the counters themselves, as well as correlation coef-
ficients between counters and measured energy values. While
this approach leads to models with acceptable accuracy, we
found that empirically selecting a different (but mostly not
disjoint) set of counters yields better results. Furthermore, it
is also dependent on the final objective of the models (i.e.
minimized mean error vs. minimized max error). Table II lists
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Fig. 1. Energy consumption in nanojoules (nJ) per FMA (including necessary
L1 loads and stores) and per group of operands for vectorized and non-
vectorized double-precision floating point and integer loads.

all hardware events that we initially considered as input for our
model. The selection was done with regard to the capabilities
of the hardware and compilers in use.

Although our models are trained with high-level bench-
marks from the NAS suite, we implemented 4 fused multiply-
add (FMA) micro-benchmarks to get a better grasp on the
energy and power consumption characteristics of integer and
double-precision (DP) floating point operations, both vector-
ized and non-vectorized. We chose FMA as the operation to
be performed, since it is an expensive operation in terms of the
numbers of transistors involved and likely among the execution
unit instructions with the highest energy consumption. Each
benchmark computes FMAs on one kilobyte of data of the
respective type, hence all data resides in the L1 cache. To
obtain stable results the computation was performed in a loop
to ensure a total operand group count of ~100 billion resulting
in a run time of at least 2 seconds. A group of operands denotes
all operands required for one non-vector FMA operation, i.e.
A, B and C denote one operand group in C = C + A ∗ B.
Figure 1 illustrates the average Edynamic consumed for a
single operation of the respective type, including all necessary
operations such as loads/stores from L1. The figure shows
that non-vectorized floating point operations can consume up
to 49% more energy than non-vectorized integer operations.
Furthermore, the vectorized version of the floating point bench-
mark consumes 45% less per-operand-group energy (10%
more per operation) than the non-vectorized version. The same
holds for the integer benchmarks, with a reduction of 60% per-
operand-group energy (63% more per operation). The unequal
per-operand-group differences between the (non-)vectorized
floating point and integer cases are explained by the respective
vector width for the DP floating point and integer cases. As
described in Section III the POWER7 can perform 4 integer
but only 2 DP floating point FMAs simultaneously.

Since the impact of integer and floating point instruc-
tions on energy consumption differs greatly, we will always
include them separately in all our modeling efforts rather
than combining them into a single value or just counting
all finished instructions. Moreover, because vector operations
differ from non-vector operations in the same manner, we
consider including them separately whenever they are in use.
However, in our setup – contrary to XL – the GNU compiler
did not vectorize most portions of the codes. For this reason,

counting vector instructions can be omitted when modeling
our GCC-compiled benchmarks and applications. For XLC
however, we will include them in our efforts, as Figure 1
shows large differences in energy consumption per operation
(we consider vector loads as well as float-point and integer
vector instructions). Overall, this small experiment illustrates
the obvious importance of the instruction mix when selecting
appropriate events to be counted for energy modeling.

Counting only finished instructions of execution units can
yield high-error results since we do not yet account for any
CPU backend stalls due to events such as branch mispre-
dictions or cache misses. Also, rejected instructions are not
accounted for since events such as PAPI FP INS only count
finished floating point instructions, but not necessarily all that
were issued. For this reason, we include PM CMPLU STALL
in our model, which counts cycles for which a hardware thread
was stalled due to any reason. At this point it should be
noted that while the floating point and integer events count
instructions, events such as PM CMPLU STALL count cycles
instead. Furthermore, the events listed in Table II partially
belong to different domains (thread, core and chip) and care
must be taken to scale them accordingly for detailed analyses.
However, since linear regression inherently computes individ-
ual coefficients for all independent variables, we do not have
to employ any additional normalization or scaling.

We call the set of input variables common to the GCC and
XLC cases (conventional non-vectorized integer and floating
point counts via PAPI INT INS and PAPI FP INS, cycles
with stalls via PM CMPLU STALL) our default configura-
tion. We will use this as the basis for all model configurations,
adding additional counters such as vector instructions only as
it becomes necessary.

In addition to the POWER7’s integer units, also the
load/store units (LSUs) are capable of executing simple in-
teger instructions and both GCC and XLC make use of this
functionality. A preliminary analysis showed that, for our
training benchmarks, GCC uses this feature for up to 7% of
the overall integer instructions executed, while XLC reaches
8%. We choose to include this in our evaluation of counters to
be selected for linear regression (countable via the hardware
event PM LSU FX FIN). For distinction purposes, we call
conventional integer instructions FXU integer instructions and
those executed by the load/store units LSU integer instructions.
However, we do not expect large improvements by including
LSU integer instructions in our model. The low latency of
LSU instructions as well as low numbers of LSU integer
instructions compared to the total number of instructions will
likely limit the impact of this instruction on the overall energy
consumption.

VI. RESULTS

As already discussed in Section V we always train our
models with 14 of the 15 NAS benchmarks and validate with
the 15th and two real-world applications. For this reason, a
complete definition of a model instance consists of:

• The idle energy, which is based on the measured idle
power consumption of 43.2 watts. Since we found this
to be constant also over SMT mode changes, it is not
listed individually.



TABLE III. DETAILED RELATIVE MODEL ERRORS IN PERCENT FOR
GCC4 AND THE DEFAULT HARDWARE COUNTER SET.

error
validation

code
mean
(NAS)

median
(NAS)

max
(NAS)

valid.
code

MP2C SHS

dc.W 1.09 0.78 4.40 0.35 0.10 2.70
cg.A 1.08 0.80 4.39 1.21 0.07 2.29
bt.W 1.08 0.80 4.39 0.80 0.06 1.99
lu.W 1.09 0.78 4.41 4.41 0.06 1.76
sp.W 1.08 0.80 4.39 0.16 0.05 1.57
ua.W 1.08 0.80 4.39 0.27 0.04 1.42
ep.W 1.09 0.79 4.39 0.93 0.04 1.30
ft.A 1.08 0.80 4.39 0.76 0.03 1.19
is.B 1.09 0.79 4.39 0.44 0.04 1.10
ua.A 1.03 0.80 4.31 1.03 0.24 1.17
bt.A 1.18 0.74 3.73 3.73 0.32 0.88
sp.A 1.08 0.75 4.64 1.70 0.06 0.98
lu.A 1.16 0.76 4.97 2.85 0.05 0.89
ep.A 1.36 0.96 4.54 2.65 0.40 0.61
ft.B 1.13 0.85 4.25 0.84 0.04 0.79

• The 14 NAS benchmark-problem size combinations
used for training. Since it is sufficient to specify the
15th code used for validation to define the other 14,
we will use this naming scheme for brevity.

• The hardware counter events used as independent
variables for the linear regression part of our model.

To motivate the investigation of energy modeling for differ-
ent compilers, Figure 2 presents the relative time and energy
overhead of GCC8 compared to XLC8. It clearly shows that
the compilers differ not only in their ability to produce fast
code but also in the caused energy consumption. Moreover,
the differences in time and energy are not always correlated.
For this reason, we will evaluate our models with GCC and
XLC. In addition, we investigate varying parallelism as listed
in Table I. All errors given denote relative errors in percent.

A. GCC

First we investigate the results for GCC. Table III shows
the results for GCC4 when using the default set of counters,
i.e. floating point and FXU integer instructions as well as CPU
stalls. Each row represents a model instance with different sets
of training benchmarks. The table lists statistical measures for
the errors of the training benchmarks as well as the exact errors
of the 15th validation code and both applications. As can be
seen, using the default configuration already results in high
accuracy. The model with the worst maximum error is the one
lacking lu.W in the training set, suggesting that it might be
a cornerstone in our training suite that cannot be substituted
by any other benchmarks, including its larger problem size

pendant lu.A. Also, the configuration omitting lu.A shows the
highest maximum error of 4.97%, even though lu.A itself can
be modeled with only 2.85% error. Overall, we achieve a mean
error of 1.11% with the default counter selection.

As discussed in Section V, vector instructions do not occur
with our GCC setup, hence they are not included in any
configuration pertaining to GCC. However, we also tested
adding LSU integer instruction counts to the default set of
counters, resulting in almost no error change (on average 0.1%)
and being well below our energy measurement accuracy. For
this reason and due to space constraints, more detailed results
for these configurations are not shown and we recommend
adhering to the (smaller) default set of counters.

When switching the hardware to SMT1 mode, the error
increases slightly (below 0.1% change in training and for
validation of the NAS codes, increase of 1% mean and 1.7%
max for MP2C and 0.2% mean and 0.5% max for SHS) due to
a higher variation in the measurement results. Since there are
no idle hardware threads in SMT1 mode, the operating system
causes context switches which are not necessary in SMT4. For
brevity, we omit more detailed results for this case.

Results for GCC8 and GCC16 show the same behavior
when adding LSU integer instructions (average error changes
of 0.3% for GCC8 and 0.5% for GCC16) and are therefore
only presented in summary in Table IV. The only noteworthy
phenomenon is the dc.W configuration which poses an outlier
in the GCC8 case. Here, the validation of dc.W fails with
the max error actually increasing by 8.8% percentage points
when we include LSU integer instructions. This could be
contributed to the fact that dc.W is unusually integer-heavy
with integer instructions making up ~75% of the overall
instructions executed, and only executes ~50 floating point
instructions. Since there is no other benchmark exhibiting such
a high relative integer load, it cannot be modeled accurately.
Still, the fact that GCC4 and GCC16 do not show this effect
leads us to assume that multi-threading on the POWER7 affects
the usage of the LSU integer functionality or its contribution
to the energy consumption.

A likely reason for the overall lack of improvement when
including LSU integer instructions is that their number shows
a very high linear correlation (on average 0.997 over all GCC
cases) with the number of FXU integer instructions. This,
coupled with the fact that GCC only uses the LSU for approx-
imately 7% of the overall integer instructions, confirms our
expected low contribution to the overall energy consumption.
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B. XLC

We also tested our modeling efforts with the IBM XL com-
piler, and found it to be more difficult to handle. Contrary to
GCC, the IBM compiler makes use of vector instructions and
also shows a 15% higher amount of LSU integer instructions
compared to GCC. For this reason we will present results
for the default selection as well as when taking this extended
hardware usage into account.

First, we present the results of the XLC4 case in Figure 3. It
shows that with the default counter selection we reach a mean
error of 3.1%, with both applications being modeled very well
(around 1% error). When adding the LSU integer count, we
are able to decrease the error by approximately 0.6 percentage
points. We expected this small improvement since the overall
usage of this kind of instruction is comparable to GCC’s and
the GCC results showed a similar effect.

Adding vector instructions instead gives us an average
improvement of ~0.8 percentage points, however as illustrated
by the figure, our models do not always benefit from this
modification. In the case when validating with bt.A or lu.A
the average error actually increases. Furthermore, when we
use the full set of counters including also vector counts, the
average error again decreases by almost 1 percentage point,
however the mean error of MP2C increases drastically to 7.8%.

This effect shares a similarity with the dc.W phenomenon
in the GCC8 case. MP2C is not only the code with the
highest amount of vectorization (approximately 14% of all
floating point operations are vectorized), it is also the only code
– together with SHS – that uses vectorized fused-multiply-
add (FMA) instructions. As previously mentioned, vectorized
FMAs are an expensive operation in the number of transistors
involved. Hence, they are likely among the execution unit
instructions with the highest energy consumption and none of
our training benchmarks use them. As a result, although the
POWER7 can count vectorized FMAs, we are unable to model
them. This is one of the rare cases when adding specific micro-
benchmarks to our training set could improve the results.

Despite the mean error decreasing overall, the max error
increases when adding these counters since we always have 1-
2 outliers. First, dc.W again cannot be substituted by any other
code, hence it always shows a validation error between 9 and
19% when not included in training. Second, is.B is one of the
benchmarks that uses the LSU integer functionality the most.
As such, it is also irreplaceable and as an outlier responsible
for the fairly constant max error of 13-15%.

Comparable to our GCC scenario, switching off SMT (i.e.
using SMT1 mode instead of SMT4) also shows little effect
for XLC. Hence, for the XLC4 NOSMT case compared to
XLC4, we observe an error decrease of 0.1% mean and 1%
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Fig. 4. Error bars depicting mean (lower edge) and max (upper edge) relative errors in percent over all training codes for each model when using only the
default input, adding LSU integer counts, vector counts, or both, for the XLC8 case. The two clusters of bars for MP2C and SHS show their respective errors
over all model configurations.
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Fig. 5. Error bars depicting mean (lower edge) and max (upper edge) relative errors in percent over all training codes for each model when using only the
default input, adding LSU integer counts, vector counts, or both, for the XLC16 case. The two clusters of bars for MP2C and SHS show their respective errors
over all model configurations.

max error for the NAS codes, as well as an increase for MP2C
(0.5% mean and 0.8% max) and virtually no change for SHS
(less than 0.1% mean and max).

As illustrated by Figure 4 however, results are improving
when moving to the XLC8 case (using two hardware threads
per core). While the effect of the LSU integer instruction
count is almost negligible, including vector counts greatly
improves the accuracy of our models from an average mean
error of 5.6% to 1.6%. The fact that XLC8 exhibits effects
that are inverse to our observations for XLC4 once again
shows the significance of including multi-threading in energy
modeling efforts. The lowest overall mean error is achieved
when including the full set, default + LSU integer + vector
instructions. The results for the max error show a similar
behavior, with a decrease from 16% for the default set to
below 5% for default + vector counts. Adding LSU integer
counts again has a very small effect, however it increases the
average max error again to 16.7% and 5.9% respectively.

Results for the XLC16 case, depicted in Figure 5, show
very similar behavior. The best average mean error (1.98%) is

TABLE IV. OVERALL RELATIVE MODEL ERRORS IN PERCENT FOR ALL
CASES.

setup codes mean median max

GCC4 NOSMT
NAS 1.12 0.98 4.99

MP2C 1.27 1.22 2.14
SHS 1.66 1.44 3.25

GCC4
NAS 1.11 0.80 4.97

MP2C 0.31 0.11 1.52
SHS 3.31 3.32 3.78

GCC8
NAS 1.62 1.62 5.30

MP2C 0.22 0.10 1.01
SHS 2.00 1.70 4.25

GCC16
NAS 1.95 1.92 5.10

MP2C 0.57 0.54 1.12
SHS 0.07 0.04 0.27

XLC4 NOSMT
NAS 2.99 1.17 14.03

MP2C 1.24 1.20 2.11
SHS 0.95 0.91 1.79

XLC4
NAS 3.10 1.23 15.02

MP2C 0.68 0.68 1.33
SHS 0.57 0.53 1.03

XLC8
NAS 1.32 0.58 7.71

MP2C 2.09 2.04 4.70
SHS 2.91 2.78 5.53

XLC16
NAS 1.52 0.96 6.73

MP2C 6.35 5.88 13.64
SHS 5.32 4.36 13.48

achieved when adding both LSU counts and vector counts, and
the best average max error (5.8%) is also achieved by using the
full set. However, the figure clearly shows that the results for
our two application codes are significantly worse compared to
the NAS codes. While adding counts for the LSU and vector
units reduce the mean error by approximately 1-2 percentage
points, the maximum error remains fairly constant at roughly
14%. We do not have an explanation for this phenomenon as of
yet and experiments involving other counters from our initial
selection listed in Table II did not result in any significant
improvement. However, the fact that this phenomenon does not
occur for XLC8 and XLC4 again leads us to assume that either
multi-threading affects the usage of vector or LSU instructions
(or their energy consumption), or that such effects caused by
SMT are not accounted for in our initial selection of hardware
counters.

Table IV summarizes the overall results for all our test
cases. As a final selection, we use our default counter selection
(floating point instruction, FXU integer instruction and stall
cycle counts) for all GCC cases, we extend to default +
LSU integer instructions for XLC4 and we furthermore add
vector instructions for XLC8 and XLC16. To conclude the
results analysis, the table shows that while the GCC cases are
covered easily, XLC requires not only more counters but also
shows higher errors. We assume this to be an effect of XLC’s
more complex usage of the hardware and knowledge about its
characteristics.

VII. CONCLUSION

Within this paper we presented energy models for the
POWER7 processor based on linear regression. We have shown
that it can be successfully applied to achieve high accuracy
when directly modeling CPU energy consumption for various
workloads. The key findings of this research comprise:

• the hardware counter selection used as input parame-
ters for linear regression (being compiler- and multi-
threading-dependent),

• despite the high complexity of the POWER7 proces-
sor, linear regression can achieve high accuracy even
with a limited number of input variables depending on
the compiler and multi-threading settings, and



• using micro-benchmarks to train energy models can
be unnecessary; relying on a sufficiently large number
of high-level benchmarks instead can yield energy
consumption predictions with high accuracy.

In addition to the research presented, we also investi-
gated memory energy consumption modeling. We chose a
reasonable selection of performance counters (memory reads
and writes, cache misses, prefetching instructions, etc.) and
measured memory energy consumption. However, keeping our
methodology, we were unable to achieve any level of accuracy
that is suitable for our needs (results showed average errors
between 10 and 15%). It is yet unclear whether this is a result
of our simplistic approach or the lack of suitable hardware
counters to capture all characteristics necessary for this task.

Possible future work extending this research includes the
aforementioned memory modeling as well as improving the
results for the XLC cases and multi-threading or developing a
more complex, unified model for all use cases of compilers.
Alternatively, the distinction between compilers could be re-
moved by statically investigating the instruction mix and using
this data as a basis for selecting regression input. Moreover,
the model’s granularity could be increased to a per-core or per-
thread basis. Furthermore, support for DVFS could be added
or the effect of the POWER7’s various prefetching settings on
energy modeling investigated.

Finally, we plan to integrate our models into existing
software such as the Scalasca performance analysis tool [5] (to
provide energy data without the need for additional hardware to
run Amester) as well as the Insieme Compiler [4] (to perform
multi-objective auto-tuning that includes energy consumption
minimization as an objective).
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