
The AllScale API
1st Philipp Gschwandtner

Department of Computer Science
University of Innsbruck

Innsbruck, Austria
philipp.gschwandtner@uibk.ac.at

2nd Herbert Jordan
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

herbert.jordan@uibk.ac.at

3rd Peter Thoman
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

peter.thoman@uibk.ac.at

4th Thomas Fahringer
Department of Computer Science

University of Innsbruck
Innsbruck, Austria

thomas.fahringer@uibk.ac.at

Abstract—Effectively implementing scientific algorithms in
distributed memory parallel applications is a difficult task for
domain scientists, as evident by the large number of domain-
specific languages and libraries available today attempting to
facilitate the process. However, they usually provide a closed set
of parallel patterns and are not open for extension without vast
modifications to the underlying system.

In this work, we present the AllScale API, a programming
interface for developing distributed memory parallel applications
with the ease of shared memory programming models. The
AllScale API is closed for modification but open for extension,
allowing new, user-defined parallel patterns and data structures
to be implemented based on existing core primitives and therefore
fully supported in the AllScale framework. Focusing on high-
level functionality directly offered to application developers, we
present the design advantages of such an API design, detail some
of its specifications and evaluate it using three real-world use
cases. Our results show that AllScale decreases the complexity
of implementing scientific applications for distributed memory
while attaining comparable or higher performance compared to
MPI reference implementations.

Index Terms—API, programming interface, parallel program-
ming, shared memory, distributed memory, parallel operator,
data structure

I. INTRODUCTION

Even with the recent trend of many-core processors, provid-
ing users with dozens of cores per chip in a single memory
address space, distributed memory systems pose an essential
aspect of HPC in order to achieve large-scale performance
for scientific applications. Although there are certain system
architectures that overcome the issue of distinct memory
address spaces by hardware means (e.g. SGI’s UV [1] series
using the NumaLink protocol), the conventional approach is
still to handle distinct memory address spaces in the software
stack by providing a global address space in software or by
explicit message exchange.

This project has received funding from the European Unions Horizon 2020
research and innovation programme as part of the FETHPC AllScale project
under grant agreement No 671603. The computational results presented have
been achieved in part using the Vienna Scientific Cluster and the Regionales
RechenZentrum Erlangen.

However, most of these ubiquitous software solutions entail
several disadvantages that make them hard to use for domain
scientists. Programming interfaces such as MPI are often too
low-level for non-computer science experts and clutter up
the application with non-domain-relevant source code. On the
other hand, there are high-level domain-specific languages
or libraries that lack extensibility in order to support new
scientific problems [2]. In addition, many of these solutions
often lack the composability required for building libraries
and integrating them seamlessly into larger applications, they
deny an incremental approach that allows parallelizing an
application step by step, or are limited to shared memory
only. Therefore, users often resort to combining several of
these solutions (e.g. MPI + OpenMP), which presupposes
knowledge in at least two different programming models and
entails a lack of resource management coordination that is left
to the user.

In contrast, the AllScale API aims at providing the ap-
plication developer with a single, extensible programming
interface to express their parallel algorithms on a high level of
abstraction, with automatic support for distributed memory.

The specific contributions of this work are:
• a shared-memory-style API for high-level specifications

of algorithms and data structures with implicit distributed
memory support,

• the capability of expressing new algorithms by extending
the API with full compatibility to the rest of the software
stack, and

• an evaluation of its programmability and performance
using three real-life use cases.

While documentation and tutorials introducing the novice
to the AllScale API are available online1, the remainder of
this work focuses on the API specification and important
properties.

The rest of the paper is structured as follows. Section II
discusses API design motivation while Section III and Sec-
tion IV detail API components. Implementation information

1https://github.com/allscale/allscale_api/wiki
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Fig. 1. AllScale API design and usage overview.

is given in Section V. Three real-world pilot applications and
their respective API use are presented in Section VI followed
by an evaluation in Section VII. Related work is discussed
in Section VIII and Section IX provides the conclusion and
future work.

II. API DESIGN

AllScale aims at providing domain scientists with the ability
to write parallel applications for distributed memory using an
API that is as easy to use as shared memory programming
models such as OpenMP. While AllScale consists of many
components including the API, a compiler, a distributed mem-
ory runtime system, and additional components for monitor-
ing, resilience, etc., this work will present the API in detail.

The AllScale API is the façade of the AllScale Environment
towards end-user applications. It provides the necessary prim-
itives to express parallelism, data dependencies, and needed
synchronization steps within application code. The API is
subdivided into two layers: the AllScale Core API and the
AllScale User API. Their relationship is illustrated in Fig. 1
and further discussed in the remainder this section.

The Core API provides a concise set of basic generic
primitives, comprising parallel control flow, synchronization,
and communication constructs. It furthermore offers a generic
data item interface that enables automatic data management
of user-defined data structures. The User API is harnessing
the expressive power of the Core API to provide specialized
primitives for particular use cases, including basic constructs
like parallel loops or adaptive grids.

The purpose of the subdivision into a Core and User
API is to enable the implementation of a variety of parallel
primitives on top of a small, concise set of central constructs
which can be utilized to provide portability among different
implementations of the AllScale Core API. Currently there are
two implementations available within AllScale:

• a shared memory, pure C++ implementation, also referred
to as standard toolchain, which can be compiled by any
C++14-compliant compiler with no further third-party
library dependencies — this implementation serves as a
development platform for AllScale applications and also
represents a reference implementation; and

• the implementation utilizing the AllScale Compiler and
Runtime System, also called the AllScale toolchain,
which comprises a combination of static program analysis

(crucial for automatically deriving data dependencies
required for distributed memory execution), code gener-
ation, scheduling, and resilience techniques to provide a
highly scalable and portable implementation of the Core
API on distributed memory systems.

Hence, applications developed within AllScale can be
ported from shared to distributed memory simply by switching
the toolchain, without any modifications required in the appli-
cation. Additional parallel constructs may be introduced in
the User API without the necessity of altering the underlying
Core API implementation. Thus, the User API layer provides
an effective way of extending the range of supported parallel
patterns.

Furthermore, the User API shields application developers
from the complexity of the Core API constructs. Due to
the introduction of the User API efficient implementations
of primitives native to the domain of the applications can
be provided by parallelization experts. Therefore, AllScale
provides a separation of concerns — with the overall task of
providing efficient parallel codes — distributed among three
contributors:

• the domain expert, aiming at obtaining the most effective
algorithmic solution for the problem of interest;

• the HPC expert, able to develop efficient domain specific
primitives to be used by the domain expert, focusing
on e.g. communication and synchronization overheads or
cache efficiency; and

• the system-level expert focusing on providing the most
flexible and portable implementation of the Core API,
hence handling load management, scheduling, resilience,
and hardware management obligations.

The separation of responsibilities also effects the code
base. By shielding the domain expert from all the underlying
details (e.g. synchronization, communication, cache efficiency,
scheduling, utilization of low-level parallel APIs), the resulting
application code remains free of the otherwise necessary
management code. This improves the maintainability of the
resulting applications and thus the productivity of the domain
expert.

III. CORE API

This section will detail the Core part of the AllScale API,
specifically the primitives for parallel control flow and the
concept of data items and their requirements. The User API,
discussed in the section thereafter, builds on-top of these basic
constructs to provide more high-level operations to domain
experts. Note that while the Core API also offers additional
tools such as a small performance profiling tool or means for
managing distributed IO, discussing those exceeds the scope
of this paper.

A. Parallel Control Flow

The AllScale Core API provides a single primitive for
running concurrent tasks, resulting in feasible yet profound
compiler and runtime system support for automatic distributed
memory management of parallel applications. This single



parallelism primitive forms the basis for all higher-level oper-
ators of the User API such as parallel loops, allowing the
User API to be open for extension with new higher-level
operators without any modifications required in the Core API
or underlying compiler and runtime system [3].

This primitive, the prec [4] operator, is a higher order
function combining three given functions into a new, recursive
function. The three combined input functions are:

• a function testing for the base case of a recursion,
• a function processing the base case of a recursion, and
• a function processing the recursive step case.

The result is a new recursive function which, for a given input
parameter, conducts the specified computation accordingly. To
support an arbitrary input type, the prec operator has the type α→ bool,

α→ β,
(α, α→ treeture〈β〉)→ treeture〈β〉


→ (α→ treeture〈β〉)

where α is the parameter type of the resulting recursive
function and treeture〈β〉 is a parameterized abstract data
type (ADT) modeling a handle on parallel tasks. The three
parameters of the prec operator are the input functions dis-
cussed above. The resulting value of type α → treeture〈β〉
is a function which, upon invocation, spawns a new task
conducting the specified recursive operation in parallel. The
resulting task handle can be utilized to orchestrate the parallel
execution of additional tasks. A more in-depth discussion of
ADTs can be found online [5].

B. Data Structure Primitives

While the parallel control flow primitive has been covered
so far, it is not sufficient to compose parallel applications
for distributed memory. In order to properly manage data
dependencies for parallel tasks executed in distinct memory
address spaces, a specification for user-defined data structures
needs to be defined as well. The purpose of this specification
is to provide a single generic interface for HPC experts to
implement new user-defined data structures while offering
management access to the underlying runtime system for data
distribution.

To this end, the data structure primitives offered by the
Core API are a mere specification of any potential data type’s
interfaces and behaviors. Any data type T to be managed
by an AllScale API implementation must provide a fragment
type F for managing data storage and a range type R for
addressing and managing sub-ranges of the data structure.
Table I lists the operators required to be defined by F and
R. Proper implementation of these operators for any arbitrary
data structure ensures its suitability for automatic distributed
data management by the AllScale Compiler and Runtime
System. Several examples that implement widely-used data
structures such as grids are discussed in Section IV-B while
their implementation, among others, can be found online2.

2https://git.io/fj4Xj

1 #include <array>
2 #include <allscale/api/user/algorithm/pfor.h>
3 namespace alg = allscale::api::user::algorithm;
4 using ArrayType = std::array<int,N>;
5 const int N = 200;
6 void initAndIncrement(const ArrayType& data, ArrayType& output) {
7 auto ref = alg::pfor(0,N,[&](int i) {
8 output[i] = ...; // initialization
9 });

10 alg::pfor(1,N−1,[&](int i) {
11 output[i] += data[i+1] + data[i] + data[i−1];
12 }, alg::neighborhood_sync(ref));
13 }

Fig. 2. Two pfor operators initializing and incrementing data in a std::array
with fine-grained synchronization. The second pfor will execute iteration i
after the first has finished its iterations i− 1, i, and i+1. Constructs specific
to the AllScale API are shown in blue and underlined.

IV. USER API

The generic nature of the Core API exceeds the complexity
which could be effectively handled by domain experts for
implementing parallel algorithms. For this reason, the AllScale
User API aims at providing a set of more user-friendly, higher-
level constructs for the composition of parallel applications
by domain experts. The implementation of these constructs is
carried out by HPC experts utilizing the primitives offered by
the Core API.

A. Parallel Control Flow Constructs

While the User API is open for extension with new par-
allel patterns, several frequently-encountered patterns such as
parallel loops are already provided and discussed below.

1) Parallel Loops: A vast majority of algorithms expressing
data parallelism rely on parallel loops. They provide the means
to perform computational work in an iteration space in parallel
at the cost of executing the individual iterations concurrently
and in an arbitrary order. To that end, the User API offers a
parallel loop construct for realizing data-parallel programming
within the AllScale environment.

Let iterator be a random access iterator. Then the pfor
operator provides a parallel loop execution with the parameters
defined in Table II. Fig. 2 shows a sample usage of the
pfor operator with fine-grained synchronization. Several of
these synchronization patterns are available, such as neigh-
borhoor_sync or one_on_one. HPC experts are free to extend
these by new patterns not yet covered.

2) Recursive space/time decomposition: A frequently uti-
lized template for large-scale high-performance applications
are stencils. In a stencil-based application, an update operation
is iteratively applied to the elements of an n-dimensional
array of cells. Thereby, for each update, the update operation
is combining the previous values of cells within a locally
confined area surrounding the targeted cell location to obtain
the updated value for the targeted cell. Since these update
operations within a single update step (also known as timestep)
are independent, this application pattern provides a valuable
source for parallelism within a correspondingly shaped appli-
cation. The User API offers the stencil operator, the parameters
of which are defined in Table III.



TABLE I
OPERATORS TO BE DEFINED BY FRAGMENT F AND RANGE R TYPES OF AN ALLSCALE DATA STRUCTURE.

Name Type Description
Fragment

create R→ F creates a fragment covering (at least) the specified range
delete F → unit deletes the given fragment
resize (F,R)→ unit alters the capacity of given fragment F to cover at least the range R
mask F → T provides access to the data stored in fragment F via the interface defined by type T

extract (F,R)→ Archive extracts the data addressed by R from fragment F and packs it into an archive; Archive is a generic type of a
utility provided by the API implementations to serialize data to be transferred between address spaces

insert (F,R,Archive)→ unit imports the data stored in the given archive into fragment F at the specified range R
Range

union (R,R)→ R computes the union of two ranges
intersect (R,R)→ R computes the intersection of two ranges

difference (R,R)→ R computes the set difference of two ranges
empty (R)→ bool determines whether the given range is empty, thus addressing no elements
pack (R)→ Archive serializes instances

unpack (Archive)→ R deserializes instances

TABLE II
PARAMETERS OF THE pfor OPERATOR.

Name Type Description
begin iterator inclusive beginning of the iterator range
end iterator exclusive end of the iterator range

body (iterator)→ β the function applied to each element

dependency dep〈iterator〉 optional dependency for fine-grained
synchronization

1 #include <allscale/api/user/data/grid.h>
2 // create a two−dimensional grid of integers of size 10x20
3 allscale::api::user::data::Grid<int, 2> grid({10,20});
4 // initialize all elements with 1.0
5 grid.pforEach([](int& element) { element = 1.0; });
6 // set element at position [7,9] to 5.0
7 grid[{7,9}] = 5.0;

Fig. 3. Example usage of the Grid data structure.

3) Additional operations: Beyond the pfor and stencil
operators presented thus far, the User API offers additional
parallel operations that are frequently encountered in parallel
applications. These include e.g. the map-reduce operator for
data aggregation, the async operator for single tasks, or the
vcycle operator for multi-grid methods. However, a more
detailed presentation is omitted for brevity.

B. Data Structures

1) Grid: A frequently-encountered data structure in high-
performance codes is formed by n-dimensional arrays of
values. While many programming languages support such
structures for arbitrary dimensions, C/C++ only supports one-
dimensional, dynamically sized arrays natively. However, this
leaves creation and management of these structures to the
user, forming a major obstacle for the usability of C++ on
distributed memory systems.

To ease the use of C++ for use cases depending on such
structures, the AllScale User API provides a uniform Grid data
structure providing the following features:

• regular n-dimensional array of runtime-defined size

• efficient read/write random access operators
• efficient scan operation (processing all elements)
• type-parameterized in element type and no. of dimensions
• enforces the serializability of its element types
• implements data item concept for automated distribution
Let Grid〈α, n〉 be the abstract data type family implemented

by the AllScale User API to represent n-dimensional grids,
where α is a type variable specifying the element type.
Furthermore, let type〈α〉 be the meta type of type α. Then
Table IV lists the operators defined on Grid data structures.

2) Adaptive Grid: The Adaptive Grid is an advanced vari-
ant of the Grid structure also frequently encountered within
simulation code. In addition to the properties of Grid, the
Adaptive Grid provides means to nest grids within grid cells.
For a given instance, each top-level grid cell contains an
identically structured fixed-length sequence of grids. The first
of those contains a single cell. Every consecutive grid contains
a multiple number of cells per dimension of its predecessor.
Each top-level grid cell comprising the sequence of its nested
grids is referred to as an Adaptive Grid Cell.

Let AGrid〈α, n, [r1, . . . , rl]〉 be the ADT family imple-
mented by the AllScale User API to represent n-dimensional
Adaptive Grids, where α is a type variable specifying the
element type, r1, . . . , rl the refinement factors, and l the
number of refinement levels. Thus, the size of the grid at level
i is defined by

s(i) =

{
[1, . . . , 1] ∈ intn if i = 0,
s(i− 1) ∗ ri otherwise.

To address elements within an Adaptive Grid an extension
of Grid coordinates is required. While elements within a
Grid can be addressed using a single coordinate of type intn,
the Adaptive Grid requires information regarding the location
of the addressed element in the nested grid structure. Thus,
additional coordinates to navigate through these refinement
layers are required. Hence, to address an element within an
Adaptive Grid, a hierarchical coordinate of type (intn)+ is



TABLE III
PARAMETERS OF THE stencil OPERATOR.

Name Type Description
timesteps int the number of time steps to be computed

size intn the spatial size of the n-dimensional data to be processed
kernel function (int, intn, αs1×...×sn )→ α the update function accepting the current time, location, and grid, computing the resulting value

kernel shape (intn)∗ a compile-time-constant list of offsets to cells accessed by the kernel, determining its shape
boundary function (int, intn, αs1×...×sn )→ α the update function for boundary cases, where some elements are outside the grid

initialization function (intn)→ α computes the initial value for a cell at a given coordinate
finalization function (intn, α)→ unit a function consuming the value of a cell at the end of a computation

observers
(

(int, intn)→ bool
(int, intn, α)→ unit

)∗ a list of pairs, each describing an observer with a time/location filtering function and the actual
trigger function to be applied

TABLE IV
OPERATORS DEFINED ON Grid DATA STRUCTURES.

Name Type Description

create
(

type〈α〉,
intn

)
→ Grid〈α, n〉 creates a new n-dimensional grid with element type α of the given size

destroy Grid〈α, n〉 → unit deletes the given grid

read
(

Grid〈α, n〉,
intn

)
→ α reads the element from the given grid at the specified coordinates

write

 Grid〈α, n〉,
intn,
α

→ unit updates the element within the given grid at the specified coordinates

scan

 intn,
intn,

(intn)→ β

→ treeture〈unit〉 applies the given function (in parallel) to all elements of the given interval in
an arbitrary order

required. For instance, the coordinate [[7, 3], [2, 4], [8, 2]] ad-
dresses the element located within the cell that can be reached
by navigating first to the top-level cell [7, 3], continuing to
cell [2, 4] of its first refinement layer, and ending up within
cell [8, 2] of the second refinement layer. Let seq〈r1, . . . , rl〉
be the static meta-type of a sequence of integers r1, . . . , rl,
then Table V lists the operators defined on Adaptive Grid data
structures.

3) Unstructured Mesh: The Mesh data structure is designed
to represent a graph structure of multiple node types that
are connected through various types of edges. Furthermore,
a Mesh may consist of several layers, which describe the
same graph in different levels of detail. Hierarchical edges
may connect the same nodes of different layers.

Besides the topological information maintained by Mesh
instances, means to maintain attributes associated to nodes,
edges, and hierarchical edges within a Mesh need to be
included. For instance, node IDs, coordinates, volumes, tem-
peratures, and other domain space specific properties may be
incorporated through this facility.

Let n1, . . . , nm be a list of node types, e1, . . . , ek ∈
{n1, . . . , nm}2 a list of edge types, and h1, . . . , ho ∈
{n1, . . . , nm}2 a list of hierarchical edge types. Then the type
Mesh〈[n1, . . . , nm], [e1, . . . , ek], [h1, . . . , ho], l〉 represents the
type of a Mesh structure including the given node, edge, and
hierarchical edge types on l layers. Furthermore, let id〈α, l〉 be
an identifier for an element of type α on layer l within a Mesh
— thus the type of ID used for addressing nodes, edges, or hi-
erarchical edges within meshes. Also, let MData〈n, l, α〉 be the
type of an attribute collection associating values of type α to

nodes of type n located on layer l of some Mesh instance. Fi-
nally, let MBuilder〈[n1, . . . , nm], [e1, . . . , ek], [h1, . . . , ho], l〉
be the type of construction utility for creating meshes. Then
Table VI lists the operations defined on these types.

V. IMPLEMENTATION

The AllScale API is based on C++, which allows the re-
use of existing tools such as debuggers, and makes heavy use
of template-based meta-programming. This built-in language
feature of C++ enables the scripted generation of code during
compilation. Widely utilized examples include the generation
of data structures like vectors, sets, or maps specialized to
specific type parameters. However, the capabilities of this
feature reach much further. It also enables the generic im-
plementation of primitives, where a single primitive may
cover a wide range of use cases, without the introduction
of any abstraction overhead. All primitives of the AllScale
Core API are generic primitives, making heavy use of C++
meta-programming features for the automated synthetization
of program code. The same applies for all AllScale User API
constructs, to improve their (re-)usability and flexibility.

In addition, the standard toolchain implementation of the
API only requires a C++14-compliant compiler and standard
library (e.g. recent versions of GCC, Clang, Apple-Clang, and
Visual Studio), and hence supports application development
on at least three different operating systems (Linux, OS X,
Windows). In order to mitigate the initial adoption barrier of
porting applications to AllScale, an SDK comprising a build
system infrastructure and setup scripts is provided3.

3https://github.com/allscale/allscale_sdk



TABLE V
OPERATORS DEFINED ON Adaptive Grid DATA STRUCTURES.

Name Type Description

create

 type〈α〉,
intn,

seq〈r1, . . . , rl〉

→ AGrid〈α, n, [r1, . . . , rl]〉
creates a new n-dimensional adaptive grid with element type α of the given
size and grid cell structure

destroy (AGrid〈α, n, [r1, . . . , rl]〉)→ unit deletes the given adaptive grid

read
(

AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+

)
→ α reads the element from the given grid at the specified hierarchical coordinates

write

 AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+,

α

→ unit updates the element within the given grid at the specified hierarchical coordi-
nates

refine

 AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+,

Grid〈α, n〉

→ unit refines the resolution of a cell addressed by the given hierarchical coordinate
by inserting the given grid data as refinement information

coarsen

 AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+,

α

→ unit coarsens the resolution of a cell addressed by the given hierarchical coordinate
and inserting the given value data as coarsened information

getLevel
(

AGrid〈α, n, [r1, . . . , rl]〉,
(intn)+

)
→ int get the currently active resolution level at the specified hierarchical grid position

scan

 intn,
intn,

AGrid〈α, n, [r1, . . . , rl]〉,
((intn)+)→ β

→ treeture〈unit〉 applies the given function (in parallel) to all active hierarchical coordinates of
the given interval in an arbitrary order

VI. USE CASES

This section presents our real-world pilot applications that
build on the AllScale API. The first, iPIC3D [6], is a particle-
in-cell simulation code developed together with KTH Stock-
holm and employs multiple pfor operators and 3-dimensional
Grid data structures. The second, AMDADOS [7], is an
advection-diffusion code developed together with IBM Re-
search Ireland and uses a 2-dimensional stencil operator and
adaptive grid structure. While the full implementation of these
applications is available online, we only present code excerpts
of the main computation here for brevity.

A. iPIC3D

The iPIC3D pilot application is an iterative particle-in-
cell space weather simulation code and its main computation
loop is shown in Fig. 4. Its underlying data structure is a
3-dimensional regular equidistant Grid (line 13) where each
element is a cell representing a cuboid and maintaining a
dynamically-sized list of particles (line 8) located in this
cuboid. Furthermore, each particle stores physical properties
such as location, velocity, charge, and mass.

In each iteration of the simulation, the physical effects of
the particles are aggregated to compute a set of induced force
fields (lines 21–26). These force fields are also represented
by 3-dimensional Grid structures (lines 9 and 14). In a next
step, electromagnetic field equations are solved (lines 27–29),
the forces affecting each particle’s position and velocity are
computed and the particles are updated accordingly (lines 35–
37). Particles moving beyond the boundary of a cell need to be
migrated (lines 33–35) to the respective target cell, which can
be any of 26 neighbor cells. Once the migration of particles
is completed, the next iteration can be computed.

These major simulation steps are all parallel update opera-
tions using higher-dimensional variations of the pfor operator.

1 unsigned numSteps = ...; // number of time steps
2 auto zero = utils::Coordinate<3>(0); // point of origin
3 auto size = ...; // size of domain
4
5 namespace alg = allscale::api::user::algorithm;
6 namespace data = allscale::api::user::data;
7
8 struct Cell { std::vector<Particle> particles; };
9 struct FieldNode { ... // electric and magnetic field components };

10 struct DensityNode { Vector3<double> J; // current density };
11
12 // 3D grids for cells, electromagnetic field and current density
13 data::Grid<Cell, 3> cells = ...;
14 data::Grid<FieldNode,3> field = ...;
15 data::Grid<DensityNode,3> density = ...;
16 // create a grid of buffers for density projection from particles to grid nodes
17 data::Grid<DensityNode> densityContributions(size * 2);
18
19 // run time loop for the simulation
20 for(unsigned i = 0; i < numSteps; ++i) {
21 alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos) {
22 //STEP 1a: collect particle density contributions and store in buffers
23 particleToFieldProjector(cells[pos], pos, densityContributions); });
24 alg::pfor(zero, density.size(), [&](const utils::Coordinate<3>& pos) {
25 // STEP 1b: aggregate density in buffers to density nodes
26 aggregateDensityContributions(densityContributions, pos, density[pos]); });
27 alg::pfor(fieldStart, fieldEnd, [&](const utils::Coordinate<3>& pos){
28 // STEP 2: solve electromagnetic field equations
29 fieldSolver(pos, density, field); });
30 alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos){
31 // STEP 3: project forces to particles and move particles
32 particleMover(cells[pos], pos, field, particleTransfers); });
33 alg::pfor(zero, size, [&](const utils::Coordinate<3>& pos){
34 // STEP 4: transfer particles into destination cells
35 transferParticles(cells[pos], pos, particleTransfers); });
36 }

Fig. 4. Code excerpt of main data structures and simulation loop of iPIC3D.
The full code is available online at https://github.com/allscale/allscale_ipic3d.

Thus, the resulting simulation code is structured like a list of
update loops, enclosed within a single time step loop.

B. AMDADOS

AMDADOS is a numerical simulation of an oil spill, with
an excerpt of the main computation code is shown in Fig. 5.
It is based on a 2-dimensional stencil (lines 20–44) and



TABLE VI
OPERATORS DEFINED ON Mesh BUILDER, Mesh STRUCTURE AND Mesh DATA.

Name Type Description
Mesh Builder

create (type〈Mesh〈n, e, h, l〉〉)→ MBuilder〈n, e, h, l〉 creates a builder for the given mesh type; intially, the mesh
under construction is left empty

destroy (MBuilder〈n, e, h, l〉)→ unit destroys a builder instance

addNode

 MBuilder〈[n1, . . . , nm], e, h, l〉,
type〈n〉,
type〈i〉

→ id〈n, i〉 creates a new node of the given type n on the given level i
within the mesh under construction

link

 MBuilder〈n, [(n1a, n1b), . . . , (nka, nkb)], h, l〉,
id〈nia, j〉,
id〈nib, j〉

→ unit ads an edge to the mesh under construction

link

 MBuilder〈n, e, [(n1a, n1b), . . . , (noa, nob)], l〉,
id〈nia, j + 1〉,

id〈nib, j〉

→ unit adds a hierarchical edge to the mesh under construction

toMesh (MBuilder〈n, e, h, l〉)→ Mesh〈n, e, h, l〉 obtains a copy of the mesh under construction
Mesh Structure

store (Mesh〈n, e, h, l〉)→ byte* serializes a mesh into a byte array

load
(

byte*,
type〈Mesh〈n, e, h, l〉〉

)
→ Mesh〈n, e, h, l〉 deserializes a given byte array into a mesh

destroy (Mesh〈n, e, h, l〉)→ unit destroys the given mesh

getNeighbors

 Mesh〈n, [(n1a, n1b), . . . , (nka, nkb)], h, l〉,
type〈nia, nib〉,

id〈nia, j〉

→ id〈nib, j〉*
obtains a list of neighbors of a given node following a given
kind of edge

getParents

 Mesh〈n, e, [(h1a, h1b), . . . , (hoa, hob)], l〉,
type〈hia, hib〉,

id〈hia, j〉

→ id〈hib, j + 1〉* obtains a list of parents of a given node following a given
kind of hierarchical edge

getChildren

 Mesh〈n, e, [(h1a, h1b), . . . , (hoa, hob)], l〉,
type〈hia, hib〉,

id〈hib, j〉

→ id〈hia, j − 1〉* obtains a list of children of a given node following a given
kind of hierarchical edge

scan

 Mesh〈[n1, . . . , nm], e, h, l〉,
type〈ni〉,
type〈j〉,

(id〈ni, j〉)→ β

→ treeture〈unit〉 applies a given operation to every instance of a selected node
type on a selected level within the given mesh

scan

 Mesh〈n, [(n1a, n1b), . . . , (nka, nkb)], h, l〉,
type〈(nia, nib)〉,

type〈j〉,
(id〈nia, j〉, id〈nib, j〉)→ β

→ treeture〈unit〉 applies a given operation to every instance of a selected edge
type on a selected level within the given mesh

scan

 Mesh〈n, e, [(n1a, n1b), . . . , (noa, nob)], l〉,
type〈(nia, nib)〉,

type〈j〉,
(id〈nia, j + 1〉, id〈nib, j〉)→ β

→ treeture〈unit〉
applies a given operation to every instance of a selected
hierarchical edge type on a selected pair of adjacent levels
within the given mesh

Mesh Data

create

 Mesh〈[n1, . . . , nm], e, h, l〉,
type〈ni〉,
type〈j〉,
type〈α〉

→ MData〈ni, j, α〉
creates an attribute storage associating a value of type α to
each node instance of type ni on layer j present in the given
mesh

destroy (MData〈n, l, α〉)→ unit deletes the given attribute storage

read
(

MData〈n, l, α〉,
id〈n, l〉

)
→ α

retrieves the value of an attribute associated to the given node
from the given attribute store

write

 MData〈n, l, α〉,
id〈n, l〉,
α

→ unit updates the value of an attribute associated to the given node
in the given attribute store

incorporates data assimilation events (line 28) using external
sensor data (line 16) in order to mitigate simulation errors. The
basic data structure of this application is a regular, Adaptive
Grid (line 18). The number of refinement levels is a compile-
time constant and can be hard coded within the application
(lines 4–8). However, coarsening and refinement steps are
applied dynamically during execution based on the state of
the simulation as well as data assimilation events (inside the
functions called in lines 26 and 28, not shown in detail here).

The resolution refinement follows a hierarchical pattern. On
the top level, a fixed size, regular 2D grid defines the domain

of the overall simulated area. Each of these top-level cells
(also called sub-domains) may then be itself recursively sub-
divided into small regular grids, up to a statically fixed max-
imum resolution. The simulation algorithm updates each sub-
domain independently for a single time step at the currently
active level of resolution. This update operation may take
several iterations, yet does not necessitate the exchange of any
information with neighboring sub-domains. Once complete,
boundary information is exchanged between adjacent sub-
domains. Thus, sub-domains being n top-level cell-widths
apart may be n time steps apart in their simulation time.



1 namespace alg = algorithm;
2 namespace alg = data;
3
4 typedef data::CellConfig<2, data::layers<
5 data::layer<1,1>, // layer 2, size 1 x 1
6 data::layer<8,8>, // layer 1, size 8 x 8
7 data::layer<2,2> // layer 0, size 16 x 16
8 >> subdomain_config_t;
9

10 using subdomain_t = data::AdaptiveGridCell<double, subdomain_config_t>;
11 using domain_t = data::Grid<subdomain_t, 2>;
12
13 struct Sensor { ... };
14
15 // 2D grid of sensor data
16 const data::Grid<Sensor, 2> sensors = ...;
17 const size_t Nt = ...; // number of time steps
18 domain_t state_field = ...; // 2D grid of sub−domains constitutes entire domain
19
20 alg::stencil(state_field, Nt,
21 [&,Nt](time_t t, const point2d_t& idx, const domain_t& state)
22 −> const subdomain_t
23 { // Computation of subdomains
24 subdomain_t temp_field;
25 if(contexts[idx].sensors.empty()) // subdomain without sensors
26 SubdomNoSensors(t, state, temp_field, contexts[idx], idx);
27 else // subdomain with sensors, assimilation occurs
28 SubdomKalman(sensors[idx], t, state, temp_field, contexts[idx], idx);
29 return temp_field;
30 },
31 alg::observer( // Monitoring: periodically write full subdomain to file
32 [=](time_t t) { return (t % output_interval == 0); // time filter },
33 [](const point2d_t&) { return true; // Space filter: no constraints },
34 // Append a full field to the file of simulation results.
35 [&](time_t t, const point2d_t& idx, const subdomain_t& cell) {
36 cell.forAllActiveNodes([&](const point2d_t& loc, double val) {
37 point2d_t glo = computeGlobalIndex(loc, idx);
38 out_stream.atomic([=](auto& file) {
39 file << ... << "\n"; // write output data
40 });
41 });
42 }
43 )
44 );

Fig. 5. Code excerpt of the main stencil computation of AMDADOS. The
full code is available online at https://github.com/allscale/allscale_amdados.

While this application could be implemented using the pfor
operator, this would lead to a flat parallelism structure with
synchronization enforced at the end of each time step. For
this reason, it utilizes the stencil operator instead, which ex-
poses recursive space-time decomposition and allows multiple
time steps on spatially sufficiently separated sub-domains to
be computed in parallel. In addition, it shows the observer
functionality of the stencil operator, which allows for time-
and space-controlled output of the simulation state.

C. FINE/Open

The FINE/Open application is a computational fluid dynam-
ics (CFD) solver developed by NUMECA [8]. The underlying
data structure is a static, unstructured Mesh comprising objects
such as cells, faces, edges, nodes, or boundary faces. The
computation is based on a vcycle, which is further detailed
below.

While it is not possible to show the actual implementation
of FINE/Open due to non-disclosure concerns, Fig. 6 shows
a basic code example which is built on-top of the same Mesh
data structure and also performs computations using the vcycle
operator. The geometric information is covered by a list of
relations connecting cells, faces and vertices (line 3 and lines

1 using namespace allscale::api::user;
2 // − elements −
3 struct Cell {}; struct Face {}; struct Vertex {};
4 // − edges −
5 struct Cell2Vertex : public data::edge<Cell, Vertex> {};
6 struct Cell2Face_In : public data::edge<Cell, Face> {};
7 struct Cell2Face_Out : public data::edge<Cell, Face> {};
8 struct Face2Cell_In : public data::edge<Face, Cell> {};
9 struct Face2Cell_Out : public data::edge<Face, Cell> {};

10 // − hierarchical edges −
11 struct Parent2Child : public data::hierarchy<Cell,Cell> {};
12 // −− property data −−
13 struct CellTemperature : public data::mesh_property<Cell,double> {};
14 struct FaceArea : public data::mesh_property<Face,value_t> {};
15 struct FaceVolRatio : public data::mesh_property<Face,value_t> {};
16 struct FaceConductivity : public data::mesh_property<Face,double> {};
17 // − define the mesh and builder −
18 template<unsigned levels = 1>
19 using MeshBuilder = data::MeshBuilder<
20 data::nodes<Cell, Face, Vertex>,
21 data::edges<Cell2Vertex, Cell2Face_In, Cell2Face_Out, Face2Cell_In,
22 Face2Cell_Out>,
23 data::hierarchies<Parent2Child>,
24 levels
25 >;
26 // −− type of a mesh −−
27 template<unsigned levels = 1, unsigned PDepth = P_DEPTH>
28 using Mesh = typename MeshBuilder<levels>::template mesh_type<PDepth>;
29 // −− type of the properties of a mesh −−
30 template<typename Mesh>
31 using MeshProperties = data::MeshProperties<Mesh::levels,
32 typename Mesh::partition_tree_type,
33 CellTemperature, FaceConductivity, VertexPosition
34 >;
35 // V−Cycle stage
36 template<typename Mesh, unsigned Lvl>
37 struct TemperatureStage {
38 const Mesh& mesh; // mesh structure, properties and cell data
39 MeshProperties<Mesh>& properties;
40 attribute<Cell, value_t> temperature;
41 attribute<Face, value_t> fluxes;
42
43 void jacobiSolver() {
44 auto& fConductivity = properties.template get<FaceConductivity, Lvl>();
45 auto& fArea = properties.template get<FaceArea, Lvl>();
46 auto& fVolumeRatio = properties.template get<FaceVolRatio, Lvl>();
47
48 mesh.template pforAll<Face, Lvl>([&](auto f) { // compute per−face flux
49 auto in = mesh.template getNeighbor<Face2Cell_In>(f);
50 auto out = mesh.template getNeighbor<Face2Cell_Out>(f);
51 value_t gradTemp = temperature[in] − temperature[out];
52 fluxes[f] = fVolumeRatio[f] * fConductivity[f] * fArea[f] * gradTemp;
53 });
54
55 mesh.template pforAll<Cell, Lvl>([&](auto c) { // update per−cell solution
56 auto subtractingFaces = mesh.template getNeighbors<Face2Cell_In>(c);
57 for(auto sf : subtractingFaces) { temperature[c] −= fluxes[sf]; }
58 auto addingFaces = mesh.template getNeighbors<Face2Cell_Out>(c);
59 for(auto af : addingFaces) { temperature[c] += fluxes[af]; }
60 });
61 }
62
63 void computeFineToCoarse() { ... }
64 void computeCoarseToFine() { ... }
65 void restrictFrom(TemperatureStage<Mesh,Lvl−1>& childStage) { ... }
66 void prolongateTo(TemperatureStage<Mesh,Lvl−1>& childStage) { ... }
67 };

Fig. 6. Code excerpt of a sample application using the vcycle operator on a
multi-grid mesh. The full version is available online at https://git.io/fjBTq.

5–9) with each other (e.g. a relation of a cell to its faces).
These relations can be easily navigated by templated member
functions (lines 49–50, 56 and 58). Note that the type system
of C++ ensures proper object navigation during compile-time
(e.g. attempting to illegally access a vertex from a face would
result in a compiler error). Furthermore, for each object, a set
of properties influencing the simulation is maintained (lines



TABLE VII
PILOT APPLICATION CODE METRICS.

AMDADOS iPIC3D
AllScale MPI AllScale MPI

P.SLOC 25 70 23 56
SLOC 1136 1420 1443 1717
TOT CY 154 181 204 264

13–16). These may comprise static information like e.g. the
volume of a cell or dynamic information such as the heat
flow through a face. The latter is the state of the conducted
simulation and the result end users are interested in. Finally, to
aid the effective computation of the desired solution, multiple
meshes describing the same objects in different resolutions
are combined into a hierarchy of meshes to enable the use of
multi-grid solvers (lines 43–66). The hierarchy of meshes can
be navigated via hierarchical edges (line 11).

In each simulation step, updates to the various properties
associated to the mesh objects are conducted. Updates start in
the mesh layer exhibiting the finest resolution. Thereby, physi-
cal effects are propagated through the connections between the
various objects on this layer. After a fixed number of iterations,
the current state of the simulated properties are aggregated and
projected to the next coarser-grained level of the hierarchical
mesh. There, the same propagation and aggregation operations
are repeated. After completing updates on the coarsest layer,
modifications are projected recursively down towards the finer
layers and the simulation continues with the next time step.

VII. EVALUATION

A. Productivity

Table VII lists absolute values for code metrics collected for
the AllScale and MPI versions of iPIC3D and AMDADOS,
in order to get a grasp on the productivity of working with
the AllScale API compared to MPI. P.SLOC denotes the lines
of code spent on parallelizing the application, counting only
the minimal set of lines containing explicit interface calls.
Additional code required for e.g. preparing arguments is not
accounted for, and hence these results present a best-case per-
spective for MPI. Nevertheless, as the numbers show, AllScale
clearly outperforms MPI. Furthermore, we have measured the
sum of the cyclomatic complexity [9] (TOT CY) as well
as the total count of non-comment lines of code (SLOC)
over all translation units. Compared to P.SLOC, these give
an indication of how much of the overall pilot application
complexity is related to their manual MPI parallelization rather
than actual domain science content.

B. Performance

In order to ascertain the performance of the AllScale API
and the underlying AllScale toolchain, we conducted weak
scaling experiments for AMDADOS and iPIC3D on the Vi-
enna Scientific Cluster (VSC) 3 and the Meggie cluster of
the University of Erlangen-Nuremberg. Table VIII lists their
hardware characteristics. The initial problem size for a single
node was chosen such that application throughput did not
noticeably improve when further increasing the problem size.

Fig. 7 compares the performance results of the AllScale
implementations against MPI reference implementations, with
performance measured as application throughput. The figure
illustrates that for AMDADOS, both AllScale and MPI show
degrading performance for increasing node counts, however
the AllScale implementation clearly outperforms the MPI
variant (up to 160% higher performance for 256 nodes). Note
that the performance for MPI for 512 nodes is missing. This
is due to the fact that we set the job time limit to 30 times the
execution time of a single node run, and the MPI experiments
for 512 nodes exceeded this time limit. For iPIC3D, AllScale is
on-par with MPI, both showing stable, almost linearly scaling
performance for higher node counts.

These results demonstrate the feasibility of using automati-
cally managed user-defined data structures in large-scale high
performance applications.

VIII. RELATED WORK

Conventional, low-level HPC infrastructures comprising
combinations of MPI with some per-node parallelism APIs
are still the default platforms for building HPC applications,
but require programmers to manually implement workload de-
composition. Systems providing a higher level of abstraction,
such as the AllScale API, can be grouped into three broad
categories: new general purpose languages, domain-specific
frameworks, and general purpose libraries. Note that there
are a large number of parallelism approaches constrained to
single-node shared memory hardware. We omit these from
our overview provided here as they do not address the same
problem space as the AllScale API.

In terms of languages, X10 [10] and Chapel [11] have
targeted (recursive) parallelism on large scale, distributed
systems, but left locality and data management to the user.
Charm++ [12], on the other hand, is a C++ extension aim-
ing at isolating the user from low-level mapping activities,
thus facilitating portability. Its design is based on message-
exchanging entities exposed to the user and lacks automated
data distribution management. Recently, the ANTAREX re-
search project [13] proposed a DSL-based approach, facil-
itating the separation of concerns between functional and
non-functional aspects of HPC applications. However, due to
its DSL-focused design, users require additional tools and
may not rely on the experience of an established developer
community.

Several new frameworks such as Lift [14], Delite [15], or
AnyDSL [16] provide environments for implementing DSLs.
Internally, DSL constructs are encoded using functional IR
constructs like map, reduce, or zip. However, the resulting
programming interface for the domain experts remains a DSL,
targeting very specific application domains and inheriting the
difficulties of DSLs noted above.

Domain-specific, C++-based libraries such as PETSc [2] or
TensorFlow [17] handle several of the challenges addressed
by our framework successfully for their respective domains.
However, they are tailored towards specific domains instead
of supporting a wider range of applications.



TABLE VIII
EXPERIMENTAL PLATFORM DESCRIPTION. THE NUMBER OF NODES REFERS TO THE MAXIMUM USED IN THIS WORK.

Name #Nodes CPU RAM Interconnect Compiler MPI Implementation
VSC-3 512 2x Intel Xeon E5-2650 v2 64 GB Intel Infiniband QDR-80 GCC 7.2.0 OpenMPI 3.0.0
Meggie 256 2x Intel Xeon E5-2630 v4 Intel Omnipath 100 GBit/s GCC 7.3.0 Intel MPI 2018.2
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Fig. 7. Comparison of throughput per node for AMDADOS on VSC-3 and iPIC3D on Meggie for MPI and AllScale.

More general purpose parallel C++ library based frame-
works like STAPL [18] and Kokkos [19] are exercising control
over parallel algorithms and data structures similar to our
architecture. STAPL envisions a separation of concerns strat-
egy similar to ours. Kokkos, on the other hand, has a strong
focus on multidimensional arrays and parallel loops, unlike
the wider range of data structures and operations supported by
our architecture. Due to a lack of compiler integration, these
approaches require data dependencies of code regions to be
expressed explicitly as part of the API, while this is covered
implicitly in our approach.

IX. CONCLUSION

This work presented the AllScale API, a novel interface for
implementing distributed memory parallel applications with
the programmability of a shared memory API. We illustrated
how the distinction into the User and Core components
provides a separation of concerns for domain experts, HPC
experts and system-level experts, and discussed several con-
structs of the AllScale API in detail. In addition, the three use
cases presented show the suitability of our approach to real-
world scientific problems, evaluated in both productiveness
and parallel performance.

Future work includes better user feedback for programming
errors, additional pre-provided operators in the User API along
with new applications.
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