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Abstract

Teaching parallel programming and HPC is a difficult task. There is a large
number of sophisticated hardware and software components, each complex on
their own and often showing non-intuitive interaction when used in combination.
We consider education in HPC among the more difficult topics in computer
science due to the fact that larger distributed memory systems are ubiquitous
yet inaccessible and intangible to students. In this work, we present the Cluster
Coffer, a miniature cluster computer based on 16 ARM compute boards that we
believe is suitable for reducing the entry barrier to HPC in teaching and public
outreach. We discuss our design goals for providing a portable, inexpensive
system that is easy to maintain and repair. We outline the implementation
path we took in terms of hardware and software, in order to provide others with
the information required to reproduce and extend our work. Finally, we present
two use cases for which the Cluster Coffer has been used multiple times, and
will continue to be used in the upcoming years.

Keywords: HPC, high performance computing, teaching, parallel hardware
architectures, parallel programming, visualization, portability, public outreach
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1. Introduction

High performance computing is an increasingly complex branch of computer
science. The number of sophisticated software and hardware components as
well as their complex interaction and coordination renders HPC a challenging
topic, especially in teaching. Execution units, cores, caches, sockets, proces-5

sor links, nodes, network links, and storage subsystems need to be understood
and their capabilities and intricacies managed on multiple levels of the HPC
hardware architecture hierarchy. Furthermore, a plethora of software tools and
paradigms are available for interacting with these architecture aspects, includ-
ing parallel programming models such as MPI [1], OpenMP [2], or SYCL [3],10
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parallel algorithms, efficient data structures, optimizing compilers, manual code
transformations, performance analysis and visualization tools or debuggers.

What makes HPC challenging from an educational perspective is the fact
that access to many of the tools required is restricted. While there is a mul-
titude of free implementations of parallel programming models, predominantly15

including OpenMP and MPI, HPC is a hardware-oriented field of study but
access to HPC hardware is hard to come by. Multi-/many-core CPUs are read-
ily available these days, but systems that consist of multiple CPUs or nodes,
challenging distributed memory programming skills, are usually not feasibly
available to students. This makes these systems intangible and often impedes20

HPC teaching efforts, as many characteristics of HPC hardware and software
can only be shown in theory, with little practical application for students. For
example, the effect of DVFS on not purely compute-bound HPC workloads in
a distributed memory setting cannot be investigated in detail on commodity
shared-memory hardware.25

In order to mitigate this issue, it would be beneficial to have a miniature
HPC system available that is low-cost and easy to maintain, yet representative
of larger systems in its characteristics and use cases. To that end, we present the
Cluster Coffer 1, a mobile HPC platform consisting of 16 multi-core compute
nodes interconnected via Gigabit Ethernet in a single robust metal carrying30

case. The goal of the Cluster Coffer and this paper is to

� show the feasibility of constructing small-scale but representative HPC
systems that can be easily relocated to a given target audience,

� illustrate the benefits of using such a system to demonstrate all major
HPC aspects in teaching and for public dissemination, especially using35

live interaction and application steering, and

� provide enough material and information for others to reproduce our work
for their own use and build upon it.

This paper is structured as follows: Section 2 lists selected related work
and puts our system in perspective. Section 3 discussed design principles while40

Section 4 and Section 5 present hardware and software implementation details,
respectively. Our use cases, including one with live application steering by the
audience, are presented and illustrated in Section 6, with Section 8 providing
concluding remarks and future ideas.

2. Related Work45

Since the rise of multi-core 64bit ARM CPUs, a great number of embedded
computing boards emerged on the market, especially with the appearance of the

1Coffer, besides its true meaning in English, is a play on words coming from the German
word Koffer, which means ”suitcase”.
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Raspberry Pi line. These embedded boards are predestined for experimenting
with computer science and also with HPC, and as such, many miniature cluster
computers showed up on the landscape. They can be classified in multiple50

ways, including their intended use, portability, performance, or focus on specific
aspects of computer science such as Cloud computing or feature sets such as
power instrumentation. A comprehensive study of miniature clusters built from
linking individual compute boards has already been created by Johnston et
al. [4] and would exceed the scope of this work, given the vast amount of systems55

available due to inexpensive components and relatively mature software stacks.
In contrast to that, the goal of this section is to given a small overview and
outline the different perspectives and use cases of these clusters, while almost
all systems contribute in the area of teaching and public outreach in (parallel)
programming and partly also HPC.60

One of the earliest systems and pioneer is Iridis-Pi, a cluster constructed
in 2012 by Cox et al. [5] from 64 Raspberry Pi Model B nodes. It is enclosed
in a housing made from LEGO bricks, which makes it less portable than our
suitcase-based design. On the other hand, its 64 nodes allow for more fine-
grained distributed memory scaling research. Due to its age, the cluster is65

limited to 700 MHz ARM1176JZF-S RISC processors, 256 MB RAM and a 100
MBit/s Ethernet network. Compared to our Cluster Coffer, besides its higher
performance attributed to the newer architecture, it also offers per-node power
instrumentation and Gigabit Ethernet. Similar approaches of low-cost housings
such as LEGO include 3D-printed designs as used in the Raspberry Pi Cloud70

project [6], wooden panels [7], or even designs that simply omit the housing
altogether [8].

Newer systems prominently include Wee Archie built by EPCC of the Uni-
versity of Edinburgh [9]. It features 18 Raspberry Pi 2 compute nodes in an
acrylic glass enclosure and each board is equipped with small dot-matrix screens75

that display single-pixel bar charts holding e.g. CPU, memory, or storage load
information per compute node. To the best of our knowledge, there is no per-
node power instrumentation available on Wee Archie and there is no information
on whether individual nodes can be switched off easily for resilience research.
Beyond the cluster itself, EPCC offers a tutorial on how to build even smaller80

versions of Wee Archie.
Compared to these systems originating from educational institutions, there

are also commercially available, semi-portable ARM-based clusters that are not
mainly used for teaching or public outreach. Such systems include BitScope [10],
a larger system consisting of 750 Raspberry Pi nodes in a total of 5 racks. These85

systems are used for testing scientific applications before moving to large-scale
systems. Compared to such ARM-based clusters, our Cluster Coffer with its
lower performance and infrastructure requirements aims at affordable educa-
tion and public outreach rather than providing an intermediate HPC stage for
scientists when moving to larger systems.90

Finally, there is the option of using Cloud resources, Docker instances or
simply remote access to real-world clusters for trying to achieve the same goals.
However, these approaches share common disadvantages preventing their use
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for this purpose, since their lack of on-site physical access to all components
involved reduces the engagement and attention level in our experience. Fur-95

thermore, for public outreach, it increases the entry threshold since the target
audience often does not fully comprehend the workings behind the scenes when
discussing e.g. Cloud computing. This is naturally one of the main goals of
Cloud computing, but in this case it hinders teaching hardware-oriented par-
allel programming concepts. Virtualization also usually entails the absence of100

suitable power instrumentation and potentially introduces performance pertur-
bation caused by the co-scheduling of virtual machines, which limits its use in
teaching e.g. the concept of DVFS and performance/energy trade-offs.

To the best of our knowledge, ours is one of few works that offer finer-grained
power instrumentation and the first work that is used for teaching and public105

outreach that engages the audience in live interaction with a simulation coming
from a real physics application. We believe that this live interaction, real-
world use-cases, and physical access to and visibility of all hardware components
involved in the computation are crucial. Our personal experience so far, when
presenting the Cluster Coffer, gathered over an aggregated total of several weeks’110

time, supports our hypothesis.

3. Motivation and Design Principles

In order to construct a successful substitute for real-world HPC systems and
do so in a goal-driven fashion, there are several design principles that need to
be established, both in hardware and in software.115

3.1. Hardware

Our hardware design goals include that our system is representative of mod-
ern HPC systems. As such, it should hold at least several multi- or many-
core nodes connected via a fast network interconnect. Offering several nodes
each equipped with several cores ensures that the system can accept hybrid120

MPI+OpenMP-like application workloads. It should use a wide-spread CPU
architecture supported by conventional modern compilers that are also com-
mon to larger HPC systems. The system should have at least one head node
responsible for handling user login, compilation and application start-up.

Beyond classic HPC requirements, the system should be mobile and trans-125

portable by a single person, putting restrictions on size, weight, and handling.
Its power-on process should be as hassle-free as possible and its power require-
ments be limited to a single commodity power cord and a thermal envelope that
can be cooled reasonably. Given that power and energy consumption concerns
have gained importance in HPC over the past years, we also need monitoring130

capabilities in that regard for e.g. multi-objective optimization projects. Finally,
the system should be assembled from low-cost commodity hardware components
to ensure technical and economical feasibility of the project.
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3.2. Software

The system should also be representative of modern HPC systems in terms135

of software. As such, it should be running a standard Linux operating system,
provide established compilers such as gcc and clang, and support OpenMP and
MPI applications, given their ubiquity in HPC. Furthermore, to simplify ap-
plication launches for distributed-memory environments such as MPI, storage
should be network-mounted and all nodes should be accessible via SSH.140

Beyond these basic requirements, we aim for low maintenance overhead when
installing, updating or modifying the software stack on the head node or any
of the compute nodes, favoring a centralized maintenance approach. Finally,
we need to be able to conveniently access non-functional metrics such as CPU
load or power consumption for any of the nodes. These metrics should also be145

displayed in a graphical fashion that both allows to quickly ascertain the overall
state of the Cluster Coffer at a glance, yet provide a visually intuitive way of
providing information to non-experts.

3.3. Target Audience and Educational Concept

Beyond hardware and software, there are also specific design goals regarding150

educational use that we aim for. In order to warrant development effort, the fi-
nal system should be suitable for being used in teaching students from secondary
schools up to undergraduate university levels. Furthermore, it should be highly
engaging and interactive in order to attract as much attention as possible among
the respective target audiences. This entails additional hardware requirements155

(directly visible and accessible components) and software (compelling, flexible
teaching cases that can be varied in the level of detail of discussion; similar
environment to real-life HPC systems, yet larger degree of freedom in environ-
ment settings). To further increase the merit of such a system, it should also
be capable of presenting parallel and high-performance computing topics to a160

broader audience, including students from other fields of study and in public
outreach. In order to maximize success, this aspect should also be interactive
but lower-threshold, and we aim for content that is highly relevant and tailored
to each respective target audience (widely used algorithms and benchmarks for
teaching; commonly-known real-world problems such as weather prediction for165

broader audiences)
It can be argued and our personal experience over the past 10 years in open

day events and education fairs has shown, that audience-specific, interactive
showcases generally have a much higher rate of success at attracting attention
compared to generic or pre-prepared material that is shown and discussed on170

screens or in hardcopy.

4. Hardware Architecture

This section describes the hardware selection process and provides details
on hardware characteristics that pertain to our use cases. For more detailed
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information on the individual components, any properties such as exact mea-175

surements or design drawings can be found in the technical documentation 2.
This documentation also offers a bill of materials at the end, which totals at
less than 1800 EUR for all but minor components such as screws or cable ties.

4.1. Computational Characteristics

In order to fulfill our design goal of a mobile, representative HPC cluster180

for demonstration purposes, we require a system of at least several compute
nodes with a network interconnect, yet light enough to be easily portable. The
size and weight of x86 hardware exceeds this limitation, aggravated by its need
for stable mounting platforms, power requirements and cooling infrastructure.
ARM-based architectures on the other hand are naturally better suited for this185

purpose and have demonstrated their viability in large-scale HPC even among
the Top500, as shown by Fugaku, the no. 1 as of June 2020, powered by ARM-
based Fujitsu A64FX processors [11]. The small form factor and small thermal
footprint of modern ARM compute boards allows us to pack 16 such devices
into an aluminum suitcase of approximately 32 litres. Since we do not want190

to restrict our workloads to pure distributed-memory applications, we consider
only multi-core boards with reasonable computational performance that are
suitable for both shared-memory and distributed-memory parallel programming,
yet inexpensive enough to be easily replaceable.

To that end, we choose NanoPi M4 boards with a Rockchip RK3399 System-195

on-Chip. It features ARM’s big.LITTLE architecture with two Cortex-A72
cores clocked at up to 1.8 GHz and four Cortex-A53 cores clocked at 1.4 GHz
and supports ARM’s NEON instruction set for SIMD operation. The NanoPis
are low-cost off-the-shelf products that can be easily replaced if necessary and
form our compute nodes. Table 1 lists further characteristics of the hardware200

architecture. Even though they are also equipped with Mali T864 GPUs that
support e.g. OpenCL, we do not employ the Cluster Coffer for any GPU-based
computing at this time. Details with regard to the obtainable performance on
our system are provided in Section 5.6.

The compute nodes are equipped with 2 GB RAM while the head node’s205

NanoPC T4 provides 4 GB for compilation and management reasons. Local
storage is available through per-node microSD cards (we use 16 GB), although —
as Section 3.2 will describe in more detail — it is only used for enabling network
boot and not involved in any storage operations after booting the Linux kernel.
Local storage on the head node is provided through both its own microSD card210

and 16 GB of on-board eMMC 5.1 flash memory.

4.2. Frame, Power, and Cooling

Fig. 1 illustrates the entire compute node assembly without the encompass-
ing suitcase or the head node, whereas Fig. 2 shows how individual nodes,

2https://github.com/uibk-dps-teaching/cluster-coffer/blob/master/docs/

cluster-coffer.pdf
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Table 1: Cluster Coffer hardware architecture.

Node SoC CPU (Cortex) GPU RAM Network
1x NanoPC T4 Rockchip

RK3399
2x A72, 1.8 GHz
4x A53, 1.4 GHz

Mali
T864

4 GB Gigabit
Ethernet16x NanoPi M4 2 GB

Figure 1: Illustration of the entire compute node assembly, with the network switch and power
supplies partially visible underneath.

coolers, and fans are attached. For clarity, these design illustrations do not215

show any wiring. The V-mount panels, shown in orange, each hold 4 compute
nodes. Fig. 3 shows top and bottom photography of a V-mount, including the
40 mm fans to aid in cooling and the four toggle switches for controlling the
power supply for each compute node. The switches allow us to do research in
resilience by simulating failing nodes. Although the nodes can also be powered220

via USB-C, its cabling and connectors are comparatively expensive and inflexi-
ble regarding cable lengths. Instead, we opt for supplying power to the compute
nodes via their GPIO header which is more easily accessible, versatile, and al-
lows us to interface our own compute node power board (ccpad), one per node.
These ccpads do not only act as a single-connector 5 V power supply but also225

provide in-band power instrumentation via an INA219 zero-drift bidirectional
shunt-resistor-based current monitor accessible through I2C on each respective
compute node. This enables us to expand the usage scenarios of our Cluster
Coffer to power/energy tuning research and multi-objective optimization work.
Similar shunt-based power instrumentation has been successfully demonstrated230

in related work in both ad-hoc [12] and commercially available solutions [13].
In the Green500 methodology [14], this makes the Cluster Coffer a power mea-
surement level 2 system, since we do have measurements for all compute nodes
but need to rely on estimates on the remaining hardware such as the network
switch or the fans to compute the overall power consumption.235

7



Figure 2: Exploded view on compute node and cooling assembly.

Figure 3: Photo showing a fully assembled V-mount with compute boards, cooling assembly
and cabling.

Power is supplied to the Cluster Coffer through an external IEC C14 con-
nector at the back of the aluminum suitcase, equipped with a switch and a fuse
for safety reasons. Through this connector, 220 V AC power is supplied to two
AC switching power supplies, with an output of 5 V 300 W and 12 V 48 W
respectively, both housed underneath the compute nodes.240

The 5 V rail supplies power to all compute nodes. Since adding a second
power supply for redundancy would increase the weight, we opt for sacrificing
redundancy rather than portability for an experimentally-focused cluster. Due
to the lack of any connected USB devices or other external components, the
overall power draw of the compute nodes does not exceed 200 W and therefore245

the power supply is amply dimensioned and not directly actively cooled. How-
ever, due to the fact that the compute node fans are located directly above,
there is some limited air flow that helps to cool the entire assembly. Our pre-
liminary experiments have not exhibited any overheating problems even under
full load on all 16 compute nodes, with a top temperature of 45 degrees Celsius250

measured on the memory modules, which do not have a dedicated cooler. Note
that we do not consider Cluster Coffer operation with the suitcase closed.

The second, 12 V rail offered by the 48 W power supply (an LED driver in our
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case) powers all 16 compute node fans as well as the head node and its cooling
fan. Since the head node is powered through its DC socket rather than the255

GPIO pins, power measurements are not available. However, since most cluster
configurations prohibit running production workloads on head/login nodes by
default, we do not consider this an issue. As the compute nodes do not power
their fans themselves, the current draw of the fans is not covered by the compute
node power instrumentation.260

Finally, we also added a WS2812 LED strip to the Cluster Coffer, which
runs on the inside of the bottom half of the suitcase and offers individually
addressable RGB LEDs, controlled by an Arduino Nano ATmega328P micro-
controller. The micro-controller is connected to the head node via an FTDI
RS232 UART-USB interface. This serves two key purposes. First, it provides265

an eye catcher for younger audiences (and sometimes also older ones) in order
to attract them to the Cluster Coffer and raise their interest in our research
topic and in computer science in general. Its effectiveness in that regard has
been proven at numerous public outreach events such as science or education
fairs. Second, it does not merely display any color but actually shows a live270

visualization of the computational load of the Cluster Coffer, as Section 5.4
further describes.

Fig. 4 shows the fully assembled Cluster Coffer. The compute node assembly
sits in the bottom part of the suitcase, the head node is mounted on the inside of
the top cover. The blue Ethernet cable seen on the left is the external network275

connection for interacting with the system. The entire suitcase weighs 13.2 kg
in its operational state.

4.3. Network

The area below the compute nodes houses the network switch (we chose
a TP-Link TL-SG1024D 24-port Gigabit Ethernet switch), connecting all 16280

compute nodes and the head node in a star topology using 25 cm and 50 cm Cat
7 cables. Its additional 7 unassigned ports leave ample room for extension for
future components such as additional instrumentation devices and an external
Ethernet cable that allows to interface the Cluster Coffer with the outside world.
The maximum power draw of the switch is 15 W and it has a switching capacity285

of 48 GBit/s, which is more than enough for our use case.

5. Software Architecture

This section details on the software environment of the Cluster Coffer, from
the bootloader to HPC-specific packages. The software components described
in this section are available publicly on GitHub 3, to be used and built upon290

by other researchers and instructors, and can be easily ported to similar ar-
chitectures with minimum effort. The only exceptions are the bootloader in

3https://github.com/uibk-dps-teaching/cluster-coffer
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Figure 4: The fully assembled Cluster Coffer. The head node is mounted on the top cover for
direct access to its USB and HDMI ports. The blue Ethernet cable connects to the outside
world.
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Section 5.1, the LED component in Section 5.4, and the power measurements
provided via I2C. While they all are also published on GitHub, they are tailored
to the specific hardware platform we use and likely need adjustment whenever295

the compute board models, LED controller, or power instrumentation imple-
mentation change.

5.1. Operating System and Base Software Stack

In order to meet the software design requirements outlined in Section 3.2, we
choose a standard Debian-based Linux operating system for both the head node300

and the compute nodes. It is stable, well-maintained and wide-spread, supports
our hardware architecture, and provides access to a vast amount of software
packages for cluster maintenance and parallel application development.

The compute nodes have local microSD card storage 4, which — at the
16 GB card sizes that we use — could easily accommodate a Linux installa-305

tion along with any packages and programs required for basic parallel systems
operation. However, this would entail unnecessary work duplication when up-
dating all compute nodes’ software stacks, modifying their configuration, or
simply adding new software packages. Instead, we choose to store only a small
U-Boot [15] boot loader that network-boots the compute nodes and mounts310

/dev/mmcblk2p2 on the head node as the root directory on the compute nodes
(also referred to as rootfs). The compute nodes in turn use a temporary over-
lay file system to prevent any interference from simultaneous write operations
to identical file paths on the NFS-mounted rootfs. Beyond the removal of du-
plicated work, this single point of information has the advantage of keeping the315

software stacks of all compute nodes automatically synchronized and reduces
wear on the microSD cards since they do not need to be written to when the
software stack changes or even when writing logs. Any persistent changes to the
compute nodes’ software stack can be performed on rootfs on the head node
using e.g. chroot. This naturally does not offer persistent write capabilities320

to the compute nodes, as writes to the overlay file system are discarded upon
shutdown. However, persistent writes to their root directory is not required
during normal operation and application workloads are run from a different
mount point. Any persistent node-specific settings, such as IP addresses or host
names, can be achieved through DHCP and the nodes’ unique MAC addresses,325

or by a single, unique identifier per compute node that can be included with
the boot loader when initially flashing the microSD cards. In order to preserve
the monotonicity of time, all compute nodes synchronize their clocks with an
NTP server running on the head node (for which changes are indeed persistent,
and which synchronizes its NTP server to the outside world using the external330

network connection upon booting).

4we use Kingston SDC4/16GBSP class 4 microSDHC cards

11



5.2. Cluster-specific Software Environment

In addition to a commodity Linux OS, we require a specific software envi-
ronment for proper Cluster Coffer operation and C/C++ development. This
includes the installation of development packages on the head node in order to335

compile and debug programs (gcc, cmake, valgrind, gdb), an NFS server for
serving the compute nodes with their root filesystem, or an MPI implementa-
tion on the compute nodes along with various additional packages such as ntp
clients for clock synchronization.

Furthermore, any cluster system naturally requires persistent storage for340

providing all nodes with access to e.g. MPI application executables or input
data. This is offered through a dedicated network-mounted directory /share

and resembles common cluster user directories such as $HOME or $SCRATCH.

5.3. Interface to Host

HPC systems often provide instrumentation that enables users to monitor345

the state of the system, such as the load of the cluster or its current power
consumption. Frequently, this data is provided through additional interfaces
to the outside world, besides SSH. Since the Cluster Coffer itself has no screen
due to space, weight, and power constraints, we implemented a small frame-
work that allows to exchange information between the Cluster Coffer and an350

optional host computer, e.g. a laptop. Developed during the H2020 AllScale
project [16], this so-called Dashboard is a browser-based online performance vi-
sualization tool. It offers two-way communication by receiving and illustrating
non-functional data from the Cluster Coffer such as computational, memory, or
network load, as well as sending control information to the runtime system for355

performance steering. For compatible programs (those relying on the AllScale
software framework [16]), it can affect scheduler decisions live, during the execu-
tion of a parallel application. Fig. 5 shows a screenshot of one of the Dashboard’s
views, with aggregated information displayed in gauges at the top, and more
detailed per-node information below. On the left, a list of color-coded nodes360

is shown and nodes that are offline are printed in gray (nodes are considered
offline if no data has been reported for them for a configurable amount of time,
which we set to 2 seconds). Next to it, there are speed, efficiency, and power
graphs that show data for every node. The two-dimensional plot on the bottom
right visualizes the current data distribution within the AllScale runtime sys-365

tem [17] and is a means of observing the effectiveness and efficiency of active
load balancing. Every rectangle corresponds to a certain data region of the
same, two-dimensional domain of an application and its color matches the node
colors on the left to illustrate in which node’s main memory the data region
currently resides. The active scheduler policy can be selected by choosing from370

a drop-down menu (set to the uniform policy in the screenshot). All informa-
tion between the Dashboard and the Cluster Coffer is exchanged in JSON for
compatibility and ease of debugging. The Dashboard web page is served by a
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Table 2: Application-inspecific compute node metrics gathered for Dashboard visualization.

Metric Source
Power /sys/bus/i2c/drivers/ina2xx/3-0040/hwmon/hwmon0/power1 input

CPU speed /sys/devices/system/cpu/cpu*/cpufreq/scaling cur freq

CPU load /proc/stat

RAM load /proc/meminfo

Network load /proc/net/dev

lightweight standalone Dashboard Server 5 written in Go that can run either on
the host computer or on the Cluster Coffer and performs the actual message375

exchange with the runtime system via TCP. For debugging purposes, the server
can also generate random status data for the Dashboard.

Since not all applications executed on the Cluster Coffer are written using
the AllScale software framework, we also a implemented standalone daemon that
periodically provides non-functional data irrespective of any specific application380

being executed. For this use case, each compute node runs such an instance
of the daemon for collecting its own data and forwards it to an aggregation
daemon on the head node, which in turn merges the data and forwards it to
the Dashboard server. When using these daemons, performance steering is
naturally not available and communication is one-way only. Table 2 lists all385

collected metrics and data sources per compute node.
The open-source nature of the project and the use of modularized compo-

nents and standards such as JSON facilitate modification and extension of this
monitoring tool.

5.4. Status LEDs390

As mentioned in Section 4.2, we also added a WS2812 LED strip to the
Cluster Coffer. Beyond its effect of attracting audiences at public events, it can
show a live visualization of the computational load of the Cluster Coffer.

The daemons that collect non-functional statistics forward this data, which
also contains CPU load information, to the head node. The head node in turn395

sends this data to an Arduino ATmega328P micro-controller that controls the
LED strip. Since the LEDs are individually addressable, we have the color of
every LED correspond to the load of the compute nodes adjacent to it. Fig. 6
shows an illustration of this visualization with four selected load cases. The
arrows of varying length illustrate the difference in speed of the brightness wave400

that progresses throughout the strip, i.e. higher computational load leads to
higher speeds.

There is also a second mode that visualizes the state of the cluster by showing
static brightness without any wave and switching off portions of the strip when
corresponding nodes are offline.405

This simple visual debugging tool has shown to be very effective in several
aspects, e.g. when verifying correct MPI rank placement, being alerted to fail-

5https://github.com/allscale/allscale_dashboard/blob/master/server.go
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Figure 5: One of several Dashboard pages. Aggregated information is shown on the top,
individual nodes are listed on the left. The graphs show computing speed and efficiency
for AllScale-type applications, along with the current data distribution and currently active
scheduling policy.

ing nodes, or even illustrating load imbalance, without having to consult the
Dashboard. Since the CPU load data collected by the daemons is deliberately
restricted to user load, the status LEDs also show inefficient program execution410

due to excessive use of or slow OS system calls.

5.5. Setup Process and Booting

For the initial setup of the software images used by the Cluster Coffer, a
small scripting framework is provided 6. These scripts can be run from any
Linux distribution (we use Debian) and build the three images that are required415

for setting up the cluster: the Linux image used by the head node, including
all software packages for development and Cluster administration discussed in
Section 5.2; the rootfs image stored on the head node to be used by the compute
nodes; and the boot loader of the compute nodes for network-booting from
rootfs. Subsequently, both the head node Linux image and the compute node420

boot loader are written to microSD cards, whereas the rootfs image needs
to be copied to the head node’s eMMC storage. The entire process takes less
than an hour on modern desktop hardware and allows re-flashing any images in
case of SD card breakdowns or head node software stack changes. Furthermore,
all node configuration such as IP addresses, hostnames, NTP setup and SSH425

host/user keys are also set up by these scripts such that the Cluster Coffer can

6https://github.com/uibk-dps-teaching/cluster-coffer/tree/master/software
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(a) Cluster fully idle. (b) Nodes 0-7 busy.

(c) Nodes 0-1, 4-5, 10-11, and 14-15 busy. (d) Cluster fully busy.

Figure 6: LED load status visualization examples. The length of the arrow denotes the speed
at which the wave is progressing.
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be booted without any additional work required. Further details on the inner
workings of the scripting framework are given by a readme file in the repository
and by reading the scripts themselves.

Since the compute nodes require their rootfs to be present on the head430

node, the head node needs to be switched on first when booting the cluster.
After a grace period of approximately 20 seconds, the head node’s services are
up and running and allow the compute nodes to be switched on. Switching on
all 16 compute nodes nearly simultaneously often induces high load on the head
node and has, on occasion, entailed filesystem and network timeouts. For this435

reason, we recommend a staggered power-on procedure, leaving approximately
1-2 seconds between compute node power cycles.

5.6. Benchmarking

Although the Cluster Coffer is mainly aimed at literal portability, we still
consider it an HPC system. Its Cortex-A72 cores are equipped with NEON, one440

of ARMs vector extensions, offering 128-bit wide registers. They can be used
for multiply-accumulate operations on up to two double precision floating-point
numbers, which leads to 4 FLOPS per clock cycle per core. At the nominal clock
rate of 1.8 GHz, each CPU core provides a theoretical peak performance of 7.2
GFLOPS, while the entire Cluster Coffer offers an Rpeak of 230.4 GFLOPS.445

Naturally, this is slow in today’s HPC world, given that even the last rank in
the Top500 list of June 2020, Graham, offers 2.6 PFLOPS [18]. Nevertheless, the
Cluster Coffer illustrates the vast performance improvements achieved through
the decades, as it outperforms - on paper - the first rank in the June 1994
list, XP/S140 at Sandia Labs due to its lower Rpeak of 184 GFLOPS [19].450

Moreover, while we did not find documentation on the power consumption of
the XP/S140, we assume that it was at least in the order of several kilowatts,
whereas our Cluster Coffer has an estimated overall maximum theoretical power
consumption of approximately 300 W. Measurements using a Voltech PM1000+
industrial grade power meter show power consumption at the wall socket to stay455

well below 200 W for all experiments discussed in this paper.
Still, the Top500 are ranked according to Rmax, not Rpeak, which is why

we also benchmarked our system with HPL [20]. Table 3 lists the major settings
chosen for our strong and weak scaling experiments. The maximum problem
size of N = 15000 for strong scaling was chosen such that the data still fit in the460

memory of a single node, leaving only 12% of RAM available. For weak scaling,
due to the comparatively limited amount of memory available and Linpack
requiring 2

3N
3 + 2N2 operations for an N × N matrix, we scaled N linearly

with the number of nodes (which increases the number of operations super-
linearly) in order to try to find the highest Rmax value possible while still being465

able to run experiments for all numbers of nodes. Here, the maximum problem
size for 16 nodes was N = 56000 or approx. 85% of the available RAM.

The block size NB = 64 was derived with an empirical study that shows
smaller block sizes to worsen performance, and no measurable benefit for higher
block sizes. The process grid of P and Q was chosen with our network topol-470

ogy in mind. For switched networks, HPL favors P : Q ratios of 1 : k with
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k in [1..3], which lead to the grid selection described in the table. Beyond
these benchmark-specific settings, we used GCC 8.3 for compiling with -Ofast

-mtune=cortex-a72 flags and linked against the BLAS implementation of ARMs
Performance Libraries version 20.3, built with the generic microarchitecture475

setting, hence targeting ARMv8 CPUs with NEON capabilities. OpenMPI 4.0.5
provides us with the necessary MPI implementation.

Fig. 7 shows the performance data of these benchmark runs, with Table 4
providing the raw data. Since Rmax denotes achieved maximum values and not
mean values, we did not conduct multiple experiment runs for each data point.480

Nevertheless, empirical evaluation of single data points indicates the variation
to be less than 5%. The power consumption for the highest Rmax of 101.21
GFLOPs for all compute nodes was approximately 113 W, and the estimated
power consumption of the entire cluster is approximately 200 W.

As the data shows, our Cluster Coffer would have ranked first in the Top500485

in June 1993, outperforming CM-5/1024 [21] of the Los Alamos National Lab-
oratory with its Rpeak of 59.7. However, besides the 27 years of progress in
hardware research and development, it should be noted that software stacks
were also improved over the years and HPL itself was updated several times
since then.490

However, since HPL resembles a subset of comparatively computationally-
bound applications, the Top500 has also included HPCG [22] benchmark data
for several years now. Compared to HPL, the overall performance of HPCG
depends more on memory and node interconnect performance, hence better
resembling many non-computationally-bound workloads. For this reason, we495

also benchmark our system with an ARM-optimized version of HPCG [23].
Similarly to HPL, we set the per-node problem size to N = 96 for each of

the three dimensions in order to arrive at a RAM usage of 70%, thus fulfilling
the benchmark’s requirement of at least 25%. Also, due to this requirement,
we only conduct weak scaling experiments. The build settings are identical to500

HPL (compiler version and flags, use of ARM performance libraries and NEON,
OpenMPI version) except for using a single rank per node with two OpenMP
threads to task both Cortex-A72 cores with work.

Table 5 lists the performance data of these HPCG runs. Note that while
the runtimes are too short to meet the criteria for official results (at least 1800505

seconds), they are sufficient for our purpose. The data shows a parallel effi-
ciency of 68% for 16 nodes, which is expected given our commodity Gigabit
node interconnect and nodes that are not optimized for fast memory hierarchy
interaction. Fig. 8 illustrates the performance in GFLOPS per node on the left
y-axis and wall time in seconds on the right y-axis.510

6. Use Cases

6.1. Student Teaching

Teaching parallel programming and HPC is a challenging task. There are
many intricacies on multiple levels in modern parallel hardware, including
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Table 3: Major HPL parameters used for benchmarking.

Parameter Setting
N 15000 (strong), 3500 (weak, single node)

NB 64
PMAP 0 (row-major)
PxQ 1x1, 1x2, 2x2, 2x4, 4x4

Table 4: HPL raw performance data. Rmax and Rpeak are shown for every number of nodes
tested, Time denotes the wall time.

#Nodes Rmax (strong) Rmax (weak) Rpeak Time (strong) Time (weak)
1 10.67 9.50 14.40 210.99 3.01
2 19.39 17.20 28.80 116.04 13.31
4 28.48 28.35 57.60 79.02 92.85
8 41.63 53.80 115.20 54.06 272.09
16 50.07 101.21 230.40 44.94 1156.79

� CPU architecture level: e.g. ISA, ILP, vectorization, hardware multi-515

threading, on-chip interconnect

� memory hiearchy level: e.g. private/shared caches, replacement policies,
NUMA topologies, hardware prefetching

� network level: e.g. network topologies, RDMA

� accelerators, if any: most of the CPU and memory aspects in a second,520

different

In addition, there are several software-focused aspects one must be aware
of, such as choice of algorithm, task- and data parallelism and their decompo-
sition, load balancing, temporal and spatial data locality, false sharing effects,
or thread affinity. The increase in parallelism width (e.g. more NUMA-domains525

per node, NUMA domains within CPUs, growing vector register widths), the
heterogeneity in both CPUs and accelerators, and the rise of new programming
models and domain-specific languages and libraries makes mastering parallel
programming on these systems a challenge.

We use the Cluster Coffer in teaching in order to better visualize the charac-530

teristics of HPC systems and to be able to provide a complementary system to
x86 hardware commonly available to every student. Since we have direct control

Table 5: HPCG weak scaling raw performance data including overall memory throughput for
every number of nodes tested, Time denotes the wall time, Bandwidth the raw total memory
bandwidth in GB/s.

#Nodes GFLOPs Time Bandwidth
1 0.55 29.10 4.15
2 0.96 33.36 7.27
4 1.80 35.64 13.67
8 3.34 38.71 25.30
16 5.94 43.65 45.02
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Figure 7: HPL performance achieved in GFLOPS per node.

1 2 4 8 16
0

0.2

0.4

0.6

Number of Nodes

G
F
L
O
P
s
p
e
r
N
o
d
e

0

10

20

30

40

W
a
ll

ti
m
e

Performance Wall time

Figure 8: HPCG performance achieved in GFLOPS per node and wall time in seconds.

over our system, changes in the software stack or even hardware reconfigura-
tions are made feasible - in contrast to production systems, for which computer
science experiments requiring direct hardware access are often not possible for535

practical reasons.
One of these aspects is promoted by the power instrumentation system of the

Cluster Coffer. It is highly suitable for teaching parallel program and hardware
optimizations, leading to our first use case: illustrating the concept of multi-
objective optimization at the example of frequency and voltage scaling (DVFS).540

Fig. 9 shows data of the HPL benchmark run on two Cortex-A72 cores us-
ing a single process and the multi-threaded BLAS implementation of ARM’s
Performance Libraries with problem size of N = 8000. The benchmark was run
repeatedly for different clock frequency settings as indicated on the y axis of the
figure, while simultaneously measuring the power consumption of the compute545

node in question. As the figure shows, there is an expected increase in perfor-
mance and decrease in wall time for increasing clock frequencies. However, what
most students do not expect when initially exposed to the concept of DVFS, is
the sweet spot of lowest energy consumption, which is neither the highest or the
lowest frequency setting. When discussing these topics with students, we often550

find that students intuitively expect the most energy-optimal setting to be the
lowest clock frequency. Subsequent examination reveals that they do not con-
sider static power consumption overheads from the remaining Cortex-A53 cores
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Figure 9: Performance and power/energy characteristics of HPL with N = 8000 on two
Cortex-A72 for various clock frequencies.

or off-core entities such as caches or memory controllers that skew this data.
Lowering the clock frequency below 1400 MHz — for the experiment configu-555

ration presented here — yields an execution time which is disproportionately
long compared to the power consumption savings coming from the frequency
and voltage reduction, due to these static overheads. In addition, this is an
excellent teaching case for the roofline model [24], which deals compute-bound
or memory-bound properties of workloads, or Amdahl’s law with regard to the560

relative amount of a program that is parallel and its parallel efficiency, since
these characteristics also influence the position of the sweet spot.

In addition, we use this data to teach and illustrate the non-linear relation-
ship that power consumption exhibits with clock frequency. This is caused by
the definition of dynamic power consumption, which is P = C ∗F ∗V 2 ∗α where565

C is the electrical capacitance (a fixed property of the hardware), F denotes
the frequency, V denotes the voltage, and α is the so-called switching factor, a
property of the workload (in essence the percentage of transistors that change
state at every clock cycle). We employ this data, illustrations and the equation
above as the initial motivation in our parallel programming courses, and to ex-570

plain the need and rise for increased parallelism and multi-/many-core CPUs.
Feedback from students in our courses has shown that live visualization of e.g.
benchmarks running on our Cluster Coffer greatly increases their interest in the
topic, compared to only presenting the background in a theoretical fashion.

In contrast to the raw data of Fig. 9, Fig. 10 presents the (normalized) trade-575

off between wall time and power consumption, where every point corresponds
to a clock frequency setting. In this figure, we also include measurements done
on the four slower but more energy-efficient Cortex-A53 cores, which support
the same clock frequencies except for 1.6 GHz and 1.8 GHz. The dotted line
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Figure 10: Pareto set of optimal solutions on the trade-off between average power consumption
and wall time for HPL with N = 8000 on two Cortex-A72 for various clock frequencies.

shows the so-called the Pareto-frontier, which consists of the set of points that580

are considered Pareto-optimal [25], meaning there is no point that outperforms
a point on the Pareto frontier in both objectives. Given common static power
consumption overheads in hardware and application workloads that are not fully
computationally bound, it is comparatively easy to obtain this trade-off between
power and time. This makes it an excellent teaching case for students to explore585

this trade-off themselves with their own applications implemented during course
homework or to motivate the existence of energy-aware scheduling on large-scale
systems such as the SuperMUC supercomputer [26].

To further illustrate the effect of DVFS in distributed-memory HPC envi-
ronments, we also run the HPCG benchmark of Section 5.6 with all frequency590

settings on the Cortex-A72 cores on varying numbers of nodes. Table 6 shows
the results of these experiments as heatmaps for both overall performance as
well as per-node power. Several effects can be observed here. First, both the
performance and power consumption are naturally decreasing for decreasing fre-
quencies. Similarly to HPL, a sweet spot can be found, e.g. for 16 nodes at a595

frequency setting of 1416 MHz, we reduce power consumption by 21.4% but
performance only by 9.2% compared to the nominal setting of 1800 MHz. How-
ever, also communication overhead is visible in the power data, as the per-node
power consumption decreases when increasing the number of nodes, caused by
stalled cores that are waiting for message passing operations to complete, even600

though our implementation of HPCG uses non-blocking communication. This
effect is strongest for the setting of 1608 MHz, where per-node power is reduced
by 7.1% for 16 nodes compared to a single node. This stall time has also been
referred to as slack time in related work and has been used for energy opti-
mization by reducing the clock frequency of cores that are busy-waiting in MPI605

wait states [27]. On our Cluster Coffer, this effect is essentially eliminated at
the lowest setting of 408 MHz, with any differences well within the margin for
measurement errors. Here, the latency of non-blocking communication is fully
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Table 6: Performance and per-node power consumption data for HPCG for several core fre-
quencies. The first row specifies the number of nodes, the first column specifies the frequency
setting in MHz.

1 2 4 8 16
1,800 0.55 0.96 1.8 3.34 5.94
1,608 0.52 0.89 1.71 3.15 5.64
1,416 0.48 0.84 1.6 2.99 5.39
1,200 0.43 0.76 1.45 2.73 4.93
1,008 0.37 0.66 1.29 2.44 4.5
816 0.32 0.57 1.1 2.1 3.91
600 0.24 0.44 0.86 1.64 3.12
408 0.17 0.31 0.6 1.13 2.25

(a) Compute performance (GFLOPS).

1 2 4 8 16
1,800 5.63 5.53 5.48 5.38 5.31
1,608 4.96 4.86 4.78 4.76 4.6
1,416 4.46 4.41 4.36 4.31 4.18
1,200 4.04 3.98 3.96 3.87 3.8
1,008 3.69 3.63 3.59 3.58 3.52
816 3.41 3.37 3.36 3.33 3.3
600 3.13 3.12 3.09 3.09 3.07
408 2.88 2.88 2.86 2.84 2.86

(b) Average power consumption (W).

hidden by the slow computation and data processing, hence reducing core stall
to a minimum.610

These experiments show the capability of the Cluster Coffer to produce data
suitable for teaching the aforementioned concepts of scalability, (non-)compute-
boundness and the effect of DVFS on HPC workloads. Nevertheless, these
experiments rely on the availability of fine-grained power measurements and
exclusive node access, preventing use of Cloud resources and many cluster sys-615

tems.
In order to ensure a productive teaching environment, we recommend teams

of 2-3 students each that either work in parallel on individual nodes for shared-
memory experiments or take turns using e.g. a job submission system to work
in distributed memory without mutual measurement perturbation. Given that620

practical courses involving programming exercises are often limited to a maxi-
mum of 25-35 students per group, platforms such as the Cluster Coffer can also
accomodate larger numbers of students by working with one group at a time.

6.2. Public Outreach

The second main use case of our Cluster Coffer is to engage with the gen-625

eral public during science fairs, education fairs, or even just open day events
at our institution. For this purpose, we do not want to rely on comparatively
sophisticated research such as multi-objective optimization for performance and
energy, but rather aim to demonstrate the basic principles of parallel program-
ming, work- and data decomposition, and how HPC impacts people’s everyday630

lives.
To that end, we selected one of the AllScale project pilot applications, a port

of iPiC3D [28], which is a Particle-in-Cell code for space weather applications. It
is used for simulating the interaction of solar wind (and more specifically solar
storms) with the Earth’s magnetosphere. Solar storms can cause damage in635

today’s electric and electronic systems, such as the the nine-hour power outage
in Québec in March 1989 [29]. For this reason, we consider solar storms a good
choice to motivate and justify the need for HPC and its expenses to the general
public, as the effect of solar storms can neither be investigated analytically nor
experimentally on demand.640
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Algorithm 1 High-level view of image capture and data visualization on the
host PC.

1: while true do
2: image← pollCamera()
3: visualize(image)
4: motion← extractMotion(image)
5: if motion 6= ∅ then
6: visualize(motion)
7: sendToCluster(motion)

8: particles← receiveFromCluster()
9: visualize(particles)

10: end

Algorithm 2 High-level view of simulation running on cluster.

1: particles← ∅
2: while true do
3: motion← receiveFromPC()
4: if motion 6= ∅ then
5: newParticles← generateParticles(motion)
6: partricles← particles ∪ newParticles
7: simulateTimestep()
8: if particles 6= ∅ then
9: sendToPC(particles)

10: end

Nevertheless, there are two caveats: first, solar wind is still an abstract
topic that many among the general public do not know about; second, the sim-
ulation usually works with static input data, which might lead to interesting
visualizations, but does not engage the audience in lively interaction. As a con-
sequence, we modified iPiC3D to accept live input data coming from a camera,645

enabling the audience to directly influence the simulation state and hence the
computational load on the cluster, and watch the functional and non-functional
visualization effects.

Algorithms 1 and 2 outline the setup of this use case, with a visualization
provided in Fig. 11. People’s movements are captured using a camera connected650

to a host PC. Since there are usually many people at fairs, moving in the back-
ground and possibly causing perturbation in our input data, we use a Microsoft
Kinect. It provides a depth sensor that allows us to consider only information
in a finite difference of a few meters, removing any information beyond that
and making the result visualization much more clear. Figure Fig. 12 shows a655

visualization of these images that are captured on the host. The image data
is analyzed on the host PC and motion information is extracted using a small
OpenCV-based program. If any motion was detected, the motion information
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Figure 11: Overview of the entire public outreach setup.

is forwarded via TCP to the Cluster Coffer, which generates particles from this
data using the recorded position and direction of movement. These new par-660

ticles are then included with the ones already present in the simulation from
previous time steps. Also, the speed of the movement is used to initialize the
particle’s energy. The Cluster Coffer then runs one simulation step, gathering
the new particle positions, if any, and sending them to the host PC. The host
PC in turn displays both the captured images from the Kinect camera (Fig. 12)665

as well as a 3D visualization of the particles received from the Cluster Coffer
(Fig. 13). Fig. 14 shows the corresponding Dashboard visualization when the
Cluster Coffer is fully loaded. All three visualizations of Figs. 12 to 14 are shown
live to the audience in order to explain the flow of information and to maximize
interactivity. When possible, an additional screen shows artist’s visualizations670

of solar winds in photos or videos for illustration of the physics involved.
The number of simulation updates per second is mainly limited by the inter-

connect between host PC and the Cluster Coffer, and depends on the number
of particles, with approximately 5∗104 particles per second saturating the head
node’s NIC performance, network bandwidth and latency — more than sufficient675

for our needs. In order to optimize the bandwidth usage, we use single-precision
data for the data exchange from the host PC to the Cluster Coffer. Also, we re-
move any data irrelevant for visualization when transferring particle information
back to the PC. Furthermore, for visualization clarity, particles are equipped
with a time-to-live field that is reduced every simulation step, and after a finite680
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Figure 12: Visualization of the images captured by the Kinect camera with a person passing
by. The top left shows the image captured by the depth sensor, the top right the image
captured by the normal sensor. The bottom left is a masked version of this image (in this
case the entire scene is in range and hence visible) and the bottom right shows the captured
motion information.

number of steps they are removed from the simulation. While this naturally
does not correctly represent the physical processes involved, it serves its main
purpose of clear illustration and interaction.

We have successfully demonstrated the Cluster Coffer at multiple public out-
reach events since 2018, including institution-wide open day events, university-685

wide and public education and science fairs, pre-scientific work courses with
pupils, or general networking events, all at varying locations — which empha-
sizes the usefulness of a mobile solution such as ours. All these events were
carried out with great success and highly favorable feedback from the respective
audiences.690

7. Cost Analysis

Costs include upfront and maintenance costs for both hardware and soft-
ware. The hardware totals at less than 1800 EUR for purchasing all but minor
components such as screws or cable ties. While there was limited effort involved
in system design (less than one person month of a full-time Master student well695

versed in CAD design and construction), the components can be ordered online
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Figure 13: Visualization of the particles coming from the iPiC3D simulation running on the
Cluster Coffer. The state of the simulation corresponds to the input as illustrated in Fig. 12.
Particles with higher energy are shown in yellow, those with lower energy are shown in blue.

at minimal cost by re-using our blueprints provided on GitHub. Full assembly
from scratch takes one person approximately 1-2 days, the software setup is
highly automated and takes 2-3 hours, whereas its development required ap-
proximately one person month. Running costs are minimal, as the system takes700

no special effort to maintain once it has been set up (comparable to any other
Linux system), and power costs are negligible, given its maximum theoretical
power consumption of 300 W and a measured maximum of less than 200 W
(comparable to a moderately powerful desktop computer). On-site set up time
for a public outreach event including host PC, webcam, screens, etc. is approx-705

imately 30 minutes.
In terms of stability and hardware repairs, the system is deliberately com-

posed of easily exchangable commodity hardware components that can be re-
placed at minimal cost. However, since its first use, we encountered only a single
hardware component failure, namely an SD card.710

8. Conclusion

In this work, we have demonstrated the feasibility of constructing a portable
HPC system for education and public outreach, the Cluster Coffer. We outlined
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Figure 14: Dashboard visualization of the cluster under full load when running iPiC3D with
a large number of particles. The individual graphs show, from left to right: CPU load, CPU
clock frequency, power consumption, current power consumption, and network load in (green)
and out (red).

our perspective on this topic, which already gave rise to numerous miniature
clusters, and detailed on the design process and its key elements. In addition,715

we demonstrated two use cases of our cluster for teaching students and low-
threshold research dissemination, for which it will continue to serve us for the
next years. With its modular design and feasible commodity components, we
do not expect any long outages or expensive repairs, and our experience so far
has shown the system to attract a lot of attention among both students and the720

general public.
Future work includes performance optimization of the software stack, as the

benchmark data presented clearly shows there is room for improvement with
respect to the theoretical peak performance. Furthermore, we intend to include
the Cluster Coffer in GPU programming courses that teach OpenCL and SYCL725

by working on the Mali GPUs. While the Cluster Coffer was already used
in reaching out to pupils during events hosted at our university, we intend to
extend our efforts to on-site events in schools, given the portability of the system.
Finally, we are considering the option of creating a small curriculum around the
use of this system, offering a pre-defined set of exercises with expected learning730

outcomes that could be re-used by similarly instrumented systems.
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