The AllScale Runtime Application Model

Herbert Jordan, Philipp Gschwandtner,
Peter Zangerl, Peter Thoman and Thomas Fahringer
University of Innsbruck, 6020 Innsbruck, Austria
Email: {herbert,philipp,peterz,petert,tf} @dps.uibk.ac.at

Abstract—Contemporary state-of-the-art runtime systems un-
derlying widely utilized general purpose parallel programming
languages and libraries like OpenMP, MPI, or OpenCL provide
the foundation for accessing the parallel capabilities of modern
computing architectures. In the tradition of their respective
imperative host languages those runtime systems’ main focus is
on providing means for the distribution and synchronization of
operations — while the organization and management of ma-
nipulated data is left to application developers. Consequently,
the distribution of data remains inaccessible to those runtime
systems. However, many desirable system-level features depend
on a runtime system’s ability to exercise control on the distri-
bution of data. Thus, program models underlying traditional
systems lack the potential for the support of those features.

In this paper, we present a novel application model
granting parallel runtime systems system-wide control over
the distribution of user-defined shared data structures. Our
model utilizes the high-level nature of parallel programming
languages, in particular, the usage of well-typed data structures
and the associated hiding of implementation details from the
application developers. By being based on a generalization of
such data structures and extending the resulting abstraction
with features facilitating the automated management of the
distribution of those, our model enables runtime systems to
dynamically influence the placement and replication of shared
data. This paper covers a rigorous formal description of our
application model, as well as details on our prototype imple-
mentation and experimental results demonstrating its ability
to efficiently and scalably manage various data structures in
real-world environments.

1. Introduction

The vast majority of programming languages used today
for the development of high performance applications are
imperative languages. Their core features comprise means
to express the order of operations to be performed to achieve
the desired objective. Parallel libraries and language ex-
tensions like pthreads, OpenMP, MPI, OpenCL, or CUDA
extend those capabilities by enabling the specification of
partial orders of operations, facilitating the effective utiliza-
tion of parallel resources. Following the tradition of their

Thomas Heller and Dietmar Fey
Friedrich-Alexander University of Erlangen-Nuremberg
91058 Erlangen, Germany
Email: {thomas.heller,dietmar.fey} @fau.de

respective host languages, these extensions are themselves
focused on the orchestration of operations.

However, besides operations, every computation process
needs to be concerned with data. Data constitutes the in-
put and output of programs and provides the substrate all
operations act upon. To ease the task of programming, data
gets organized in data structures — higher level abstractions
enabling modular reasoning over applications. Only a few,
simple data structures like arrays are directly supported by
common programming languages. More complex structures
like lists, trees, graphs, sets, maps, or meshes are emergent
features supported by programming languages through the
power of composition.

A common practice for the development of parallel high
performance (HPC) codes is to start the design of programs
by outlining an essential data structure the program will
operate on. For instance, a finite element simulation will
perform its operations on some sort of mesh, while the simu-
lation of the gravitational forces between stars will be based
on some tree structure grouping elements by their spatial
relation. In a subsequent step, a partitioning scheme for the
envisioned data structure is devised and finally implemented
using a parallel language. The actual computation will then
build on top of the designed structure.

Consequentially, the data structure design forms the
foundation of many high-performance applications. How-
ever, due to being an emergent feature of the composition
of language features, these structures are beyond the reach
of contemporary parallel runtime systems. In fact, none of
the parallel languages enumerated above provide any direct
support for data structures beyond arrays — coinciding
with the level of data structure support provided by their
host languages. Higher level constructs are to be obtained
through composition.

As it constitutes the foundation of HPC applications, the
management of data structures, in particular, their distribu-
tion among address spaces, is essential for the realization
of a variety of desirable system-level features. Inter-node
load balancing, the offloading of computation to GPUs, the
dynamic adaptation to changes in resource availability, or
the checkpointing and restarting of computation all depend
on the manipulation of the distribution of the underlying
data structure. Contemporary general-purpose runtime sys-
tem designs have limited potential for these operations, due

Control Flow Control Flow
Application
Data Data Code
Structures Structures
H 1 T
Parallel API Tasks{Data Model System
Runtime System Runtime System Level

Hardware | | Hardware Architecture
Standard AllScale Runtime
Approach System Approach

Figure 1: Standard vs. data aware runtime systems.

to their lack of influence on and control over the data
structures used. As such, application developers generally
need to integrate these features manually as required.

In this paper, we present the AllScale runtime appli-
cation model, one of the theoretical foundations of the
AllScale runtime system. Its key novelty is the provision-
ing of generic support for the dynamic distribution and
management of user-defined data structures for distributed
memory environments, as outlined by Fig. 1. Its utilization
relieves developers from the associated data management
responsibilities, without losing flexibility in the design of
partitioning schemes. Furthermore, by taking control of
this crucial aspect of HPC applications, the potential for
the integration of advanced runtime-system-level services is
introduced. Our key contributions are:

o formalization of a novel parallel application model
providing unprecedented management access to user-
defined data structures to the runtime system,

e provisioning of a programming API and source-to-
source compiler interfacing with a prototype implemen-
tation of our runtime model, and

« evaluation of the capabilities of our approach through
a set of example applications.

Our model has been developed in the context of the AllScale
project [1], aiming for the research of improved program-
ming models for HPC applications based on advanced com-
piler and runtime technology.

The remainder of this paper is structured as follows:
Section 2 provides a formal specification of our application
model, before Section 3 describes its implementation in our
prototype runtime system. Section 4 shows the performance
evaluation of three example codes and Section 5 compares
our approach with related work. Finally, Section 6 provides
conclusive remarks and an outlook towards future work.

2. Application Model

The AllScale Runtime Application Model comprises
three major components: a data model, a task model and
an architecture model. The former two describe data objects
and tasks managed during the execution of an application,
while the architecture model provides an abstraction of the
underlying hardware infrastructure.

In this section we provide a rigorous abstract formal
definition of the main elements of the utilized models, fol-
lowed by a specification of the full application state model
and valid state transitions — thus valid application/runtime
interactions. The resulting model constitutes a specification
for implementations and provides a reference to reason
about valid system states, state transitions, invariants, and
dynamic system properties.

2.1. Data Model

The first model provides an abstraction of data objects to
be managed by the runtime system. For the model covered in
this section we focus on the bare essential requirements the
runtime imposes on concrete implementations of data struc-
tures following this model. Nevertheless, examples outlining
concrete implementations are provided. Section 3 covers
actual implementation details.

The foundation of the data model is an abstraction of
arbitrary data structure instances referred to as data items.
Instances of data structures like arrays, trees, maps, or
graphs provide means to organize sets of logically address-
able data elements. This basic concept is covered by the
following definition.

Definition 2.1 (Data Item). Let D be the set of all data
structure instances, [E the set of all logical addresses of data
elements within those, 2F the power set of E, and elems :
D — 2F a function assigning each data item d € I its finite
set of element addresses elems(d) C E.

Example 2.1 (Data Items). Let d, € D represent a 1D
array A of 20 data elements (A[0] = eq,..., A[19] = ea),
then elems(d,) = {e1,...,ex}. Similar, let d; € D be
a balanced binary tree T of height 4 containing 15 nodes
n1,...,n15. Then elems(d:) = {ny,...,n15}.

Due to their property of being assemblies of individually
addressable data elements, data items can be decomposed
and distributed among multiple address spaces. This is the
implicit basic principle of all HPC applications sharing a
global view on common data.

To facilitate the automated management of the distribu-
tion of data items, subsets of addressable elements need to
be addressable. Such an addressable subset is referred to as
a region.

Definition 2.2 (Region). Let d € D be a data item. Then a
set of element addresses r C elems(d) C E is a region of
data item d. Let the set of all regions be denoted by R.

Example 2.2 (Regions). Let d, € D be a 3D array of
1003 addressable elements {€00,0,0)5 - - - 1 €(99,09,99) }. Then
the box of elements {e(; ; x) | 10 <, 4,k < 20} is a region
of d,. So is the set {e(; ;) | 14 <14 < 30}.

Since there might be billions of addressable elements
for individual data items, enumerating them explicitly is not
very efficient and in many cases prohibitively expensive.
Thus, efficient means for defining regions, as hinted by
the implicit notation utilized in Example 2.2, are required.

Section 3 provides examples of such. In this section we
focus on functional aspects of our model.

Note that our definitions target the logical addresses
of stored elements, not their physical or virtual memory
addresses, nor their values. Actual values can be modeled
by a function val : D x E — X for some value domain X.
This value function would then have to be updated along
the evolution of the system state whenever the state of an
addressed element is updated. However, since this is not
relevant for the content of this paper we omit the evolution
of the value state of data items from our model.

2.2. Task Model

The second part of our model covers tasks. Tasks are
the active entities of applications performing operations on
data items. In the AllScale model, each task can be specified
through one or more alternative implementations, referred to
as (task) variants.

Definition 2.3 (Task). Let T be the set of all rasks, V be
the set of all (task) variants, and var : T — 2V \ () be the
function assigning each task its finite set of variants.

Example 2.3 (Task). Let ¢t € T be a task computing the sum
of a sub-range of array elements, vs; € V be a sequential
implementation and v, € V be a parallel variant dividing
the task in half and spawning two sub-tasks to perform the
computation. Then var(t) = {v,,v,} reflects the fact that
the runtime may choose between these two alternatives.

Without loss of generality we can assume that
Vtq,ta € T ity # tog = var(ty) Nvar(ty) =0

is satisfied. Thus, there is no pair of tasks sharing a common
variant. Furthermore, we generally assume that the different
variants of a task are computationally equivalent. Thus, the
evaluation of a variant of a task leads to the same result
as any other variant of the same task. While a rigorous
formalization of this property is beyond the scope of this
paper and not essential for its content, we would like to point
out one of its consequences: if any variant is terminating,
all variants are required to do so.

In each program, an entry-point task will form the initial
point of an application.

Definition 2.4 (Program). A program is given by its entry
point task ¢y € T. The set of all programs is denoted as
PCT.

To accomplish their objectives, tasks can interact with
the runtime system to request runtime-coordinated services.
These operations are referred to as actions.

Definition 2.5 (Action). The set of actions A is defined by
A = {spawn(t), sync(t), create(d), destroy(d), end}
for all tasks ¢t € T \ P and data items d € D.

Actions are service requests toward the runtime system
triggered by tasks. The spawn action requests the runtime

system to schedule a new task, while sync requests the
suspension of the current task until a given task has been
completed. The action create introduces a new data item to
the runtime system, while its counterpart destroy requests
the destruction of a data item. Finally, the action end signals
the termination of the current task.

The following definition covers means to model the
evaluation of tasks and the triggering of actions.

Definition 2.6 (Task Execution). Let S be a set of abstract
task-local execution states, init : V — S a function assigning
each variant an initial state, and the function step : VxS —
S x A describe the transition function of task variants.

A state s € S summarizes the task-local state informa-
tion maintained by a task e.g. on the stack or heap. Given a
terminating task variant v € V, its execution trace is defined
by a sequence of states s, ..., S,, where so := init(v) and
for all 0 < i < n we have (S;41,ai+1) := step(v, s;), and
an, = end. The action sequence ay,...,a, is the sequence
of commands issued to the runtime system.

Finally, to allow the runtime system to associate tasks
with their required data, variants are needed to state their
data requirements. Here, we distinguish between read-only
and read/write access.

Definition 2.7 (Data Requirements). Let v € V be a variant
and d € D be a data item. The function read : V x D — 2F
obtains the set of elements read(v,d) C elems(d) C E in
data item d during the execution of v. Correspondingly, the
function write : V x D — 2 obtains the set write(v,d) C
elems(d) C E of updated elements in data item d.

Note that for the vast majority of pairs (v,d) € V x E
the read sets read(v,d) and write sets write(v,d) will be
empty. Only for actually accessed data items this will not
be the case.

Finally, w.l.o.g. we impose the following restrictions on
tasks:

feT—VxS:VteT\P:step(f(t)) = (s,spawn(t))

Thus, every task ¢ that is not the entry point of a program
has a unique spawn point f(t).

2.3. Architecture Model

The third component of our model provides an abstract
description of the hardware architecture. The key elements
required for a functional description are compute units (e.g.
CPU cores, GPUs,...) for processing tasks, memory address
spaces (e.g. main memory, GPU device memory,...), and
edges between those two to describe which compute unit
can directly access data in which memory unit.

Definition 2.8 (Architecture Model). Let C' be a set of
compute units, M be a set of address spaces, and L. C C'x M
a set of links connecting compute units with accessible
address spaces. Then the system model is given by the
bipartite graph (C'w M, L)!.

1. we use W to denote the union of disjoint sets

Example 2.4 (Architecture). A distributed memory sys-
tem comprising 2 nodes, each forming its own address
space my4 and mp, and being equipped with 4 CPU cores
— CA1,--.,cA4 and cpi,...,cpy respectively — can be
modeled as the bipartite graph (C' W M, L) where C =
{ca1,...,cBa}, M = {ma,mp} and L = {(cpi,mz) |
xe€{A B} N1 <i<d4}.

As for other components, we restricted the architecture
model in this section to the strictly necessary functional
details. In particular, we do not include network topology
details or cache hierarchies in our model. Nevertheless, those
details are considered by our implementation covered by
Section 3.

2.4. Execution Model

The definitions so far covered static aspects of appli-
cations. To model the dynamic evolution of an application
managed by the AllScale runtime system, the state space of
the evaluation as well as state transitions are defined.

Definition 2.9 (System State). The state of an application
processed by the AllScale runtime system is given by a tuple

(Q,R,B,D,L,,L,,(CWM,L))

where

e Q C Tis a set of enqueued, yet not started tasks

e R C C xV xS describes the state of running variant
executions; an entry (c,v, s) € R describes a variant v
running on compute unit ¢ with its current state s

e BC C xV xS xT lists suspended variants; an entry
(c,v,s,t) € B describes a variant v with its state s
waiting on compute unit ¢ for the completion of task ¢

e D C M x D x E describes the distribution state of
data; an entry (m,d,e) € D states that element e of
data item d is present in address space m

e L, CV x M x D x E enumerates data elements read
locked; an entry (v, m, d,) states that in address space
m the element e of data item d is read locked for the
duration of the execution of v

e L, CVxMxDxE analogous to L, for write locks

e (C'wM,L) the model of the hardware architecture a
program is processed on

The set of all system states is denoted by S.

Each state summarizes a snapshot of the management
information to be maintained by the runtime system for
processing an AllScale application at each moment in time.
It covers the execution state of tasks, the distribution of
data items, as well as active access permissions to data in
the various address spaces.

To cover the dynamic behavior over time, valid state
transitions are specified.

Definition 2.10 (State Transitions). The binary state tran-
sition relation —: § x § is defined by the inference rules
enumerated in Fig. 2 and Fig. 3.

Each rule in Fig. 2 and Fig. 3 specifies the effect of
an active or passive interaction of the processed application
with the underlying AllScale runtime system. There are five
task-scheduling related operations:

e (start) ...at any time the runtime system is allowed to
take a task ¢ from @), pick one of its variants v € var(t),
and start processing it on a compute unit ¢ having v’s
data requirements satisfied; by doing so, all the data
elements accessed by v get locked

e (spawn) ...during processing, any variant v may spawn
a new task ¢, which gets enqueued in)

e (sync) ...variants may also synchronize on other tasks,
moving the synchronizing variant from the set of run-
ning variants R to the set of blocked variants B

e (continue) ...whenever the runtime system discovers
that the task ¢ a blocked variant v is waiting on has been
completed, it may continue processing v by moving it
back to R

e (end) ...once a task is completed, its state information
is discarded and its held data element locks are released

Furthermore, five additional rules cover data management
issues:

e (create) ...tasks may dynamically create new data
items during execution; initially no locks will be
granted, nor will memory space be allocated

e (init) ...the runtime may, at any time, allocate memory
in address spaces for data elements not yet allocated
anywhere throughout the system

e (migrate) ...the runtime may also move data from a
source memory space ms to a destination memory
space mg in case no locks are currently held on the
corresponding elements

o (replicate) ...the runtime may, furthermore, replicate
data in case there is no write lock on the source
locations

e (destroy) ...tasks may release data items when no
longer needed; all associated data elements and locks
are deleted

Operations spawn, sync, end, create, and destroy are trig-
gered by the processing of tasks, while start, continue, init,
migrate, and replicate are controlled by the runtime system.
While the runtime system has to react upon the former, the
latter can be utilized to (pro-)actively enforce scheduling
and data management policies.

For clarity and brevity we assume a static architecture
model in this section. Extension of our model covering
dynamic environments where compute nodes may join or
leave (crash) can be formulated, but exceed the scope of
this paper.

Finally, the execution of a program is modeled by its
traces.

Definition 2.11 (Trace). Let (C'W M, L) be an architecture
and {p € P be a program. A trace of ¢y is a sequence
80,81,... € S where sg = ({to},@,@,@,@,@, (OL‘H M, L))
and Vi > 0 : s;_1 — s;. A trace ferminates by reach-
ing a state s; = (0,0,0,Dy,0,0,(C W M, L)) for some
D CMxDxE.

teQ v € var(t)

JeeC:ImeD - M :VdeD: (¢, n(d)) € L AVe : read(v,d) U write(v,d) : (m(d),d,e) € D DND, =0

(start)

(Q,R,B,D, L, L, (CyM,L)) = (Q\ {t}, RY{(c, v, init(v))}, B,D, L., L, (C & M,L))
where Dy, = Uyep {(m,d,e) | m € M\ {m(d)} Ae € write(v,d)}
and L = L, W Uycp {(v,m(d), d, €) | e € read(v,d)}
and Lj, = Ly WU cp {(v,m(d), d, e) | e € write(v,d)}

(c,v,8) € R step(v,s) = (s', spawn(t))

QR B.D. L Le (COMI) = QUL (R\ (0.9 & {(v.s)].B.D. L e (Cw ML) Peem)
(c,v,8) € R step(v,s) = (s, sync(t))
QR B.D. L In (COMI) = @R\ {(co.s)] BY{(co.s DD L Lo (CoM.1) V"
(c,v,8,t) EB t£€Q A €var(t):I(c,s,t): (c,v',s) € RV (c,v',s,t) € B b
QR B.D L. Ly (CE ML) = (@ RS {(c,0,5)} B\ {(c,0,5.01. D, Ly, Ly, (C @ M, L)) comtinue)
(c,v,s) € R step(v,s) = (s',end) L,={v}x M xDxE J
(@ R, B.D, L L (O & M, 1)) — (@ B\ {(e,0,9)}1, B, D, L\ L Lo\ L (Co AL L)) %)
Figure 2: Task related state transition rules.
(c,v,8) € R step(v,s) = (s, create(d)) .
QR B.D. I I (COM,L)) = (@ (R\ {0,501 @ {(e,0,5)} B.D. Ly Lo (Cw M, 1)) Teat®)
meM deD ECelems(d) E#0 DN(Mx{d} xE)=20 -
(@ R.B,D, L, L, (C O M, 1)) — (@ R, B, D& ({m} x {d} x B), L, L, (Cw a1, 1) ™)
deD ECelems(d) E#0 ms,mge€ M (L,UL,)N(VX{ms,mg}x{d}xE)=0)
(migrate)

(Q,R,B,D,L,,L,,,(CyM,L)) = (Q,R,B,(D\ ({ms} x {d} x E)) U ({mgq} x {d} x E), L, L,,, (C & M, L))

deD ECelems(d) E#0 ms,mge€ M L,N(Vx{ms} x{d} xE)=0

(LrJLw) N (V x {mg} x {d} x E) =0 (replicate)

(Q,R,B,D,L,,L,,(C¥M,L)) = (Q,R,B,DU ({mgq} x {d} x E), L,, L, (C & M, L))

(c,v,s) € R step(v,s) = (s',destroy(d)) Ls=V x M x {d} XxE

(destroy)

(Q,R,B,D, L, L,,,(C¥ M, L)) = (Q,(R\ {(c,v,8)}) W{(c,v,s")}, B,D\ (M x {d} X E),L,\ Lq, Ly, \ La, (C & M, L))

Figure 3: Data related state transition rules.

In our model each operation is atomic and no state
transition may overlap with others. Although modeling the
concurrent execution of tasks, this eliminates any paral-
lelism. To utilize parallel resources, implementations are
allowed to perform overlapping transitions. However, the
observable behavior of a program executed in parallel must
be equivalent to the observable result of some sequential
trace of the program.

2.5. Model Properties

Beside others, the following properties can be proven
for our model [2]:

e single-execution: in a terminating trace, for the entry
point and each spawned task exactly one variant will
be selected and processed exactly once

e termination: if a deadlock-free program has a termi-
nating trace, all of its traces not including infinite
initialization, migration, and replication sequences will
eventually terminate

o satisfied requirements: variants are only processed on
compute units where all required data is available for
the duration of their processing

o exclusive writes: a data element being write locked in
some memory address space is not replicated anywhere
else in the system at the same time, nor can such
replicates be created

e data preservation: the runtime system cannot delete
data that is not explicitly destroyed; the runtime can,
however, remove replicated data

In particular the termination property ensures that sensible
scheduling of runtime operations does not influence the
termination of a program. The exclusive writes property, on
the other hand, ensures that the runtime system can not
introduce race conditions through scheduling and/or data
management decisions.

3. Implementation

The AllScale environment provides an implementation
of our application model based on C++. It comprises three

logical physcial logical
facade location A ragment facade
subsets m
location B addressed
as regions
[accessible cell @ accessible node
[inaccessible cell 4 O inaccessible node
location C

(a) regular 2D grid

(b) binary tree, flexible regions

physcial logical physcial
\fragment \fragment
location A /fagade
m \subsets m _subsets
location B addressed location B addressed
as regions g as regions
kel
location C O inaccessible node| | ™ location C

(c) binary tree, blocked regions

Figure 4: Example data item organizations.

major components: implementations of templated data struc-
tures facilitating instances to be managed as data items, a
runtime system utilizing those to coordinate the processing
of programs on distributed memory systems, and a source-
to-source compiler component converting a high-level task
API into the format required by our model.

3.1. Data Items

Our C++ implementations of data items are required
to provide three components as illustrated by Fig. 4: a
facade type, a fragment type, and a region type. The facade
type defines the logical view on the data structure to the
end user, i.e. the application developer. It provides data-
structure-specific operations, like field accesses or iterators.
The fragment type, on the other hand, is the runtime’s view
on the data structure. Fragments are capable of maintaining
subsets of elements of a data structure within some address
space. Finally, regions provide the necessary means to ad-
dress the subset of elements maintained within fragments,
as introduced by Definition 2.2.

A large variety of data structures, ranging from sim-
ple scalars, ordinary arrays, over multi-dimensional grids,
various types of trees, graphs, sets, and maps can be imple-
mented using this interface. The key element for the efficient
distribution of those, however, is the region type — thus the
means to address subsets of elements.

Region types have to satisfy several criteria: first, they
have to be closed under union, intersection, and set-
difference. Thus, for instance, using simple axis aligned
bounding boxes for describing regions in e.g. a 2D grid
would not be sufficient, since boxes are neither closed under
union nor set-difference. Second, representations ought to
be efficient, both in space and runtime complexity. Thus,
explicit element enumerations, while technically sound, are
less practical. Finally, region types must be able to accu-
rately express regions of interest for the algorithm applied
on the associated data structure.

The last criteria implies that there is not a single ideal
region type for every kind of data structure. There might
be several different alternatives application developers may
chose from, to adapt the data item implementation to their
needs — similar to choosing between e.g. linked lists and
array lists for a respective use case when performing algo-
rithmic optimizations.

Fig. 4 outlines three example data item implementations
provided by our prototype implementation. Fig. 4a illustrates
a 2D version of our N-dimensional grid implementation,
utilizing sets of axis-aligned bounding boxes to describe
regions. Unlike individual boxes, sets are closed under in-
tersection and set-difference and are thus valid region types.

Fig. 4b and Fig. 4c outline the structure of two binary
tree data items, equipped with different region schemes.
In Fig. 4b regions are defined through two sets of sub-
trees, each identified by its respective root node. The first
set enumerates included sub-trees, while the second set
enumerates excluded sub-trees nested within the included
trees. Thus, the data partitioning illustrated in Fig. 4b can
be represented by listing at most three nodes to characterize
the regions covered by the individual regions. This scheme
provides the flexibility to express arbitrary node distributions
among tree fragments.

However, in some cases the flexibility provided by the
scheme of Fig. 4b is not required. More coarse grained
blocking like outlined in Fig. 4c might be sufficient. In
this scheme, the overall tree is divided into one root tree
of height h and 2" sub-trees. Thus, a simple bit-mask of
length 2" 4 1 is sufficient to model regions, providing a
much more efficient scheme, yet less flexible distribution
options. Depending on the algorithm though, those might
not be required.

Data item implementations, as well as a set of parallel
algorithms applicable on them are provided by the AllScale
API [3]. The AllScale API is a small header-only library
associated to the AllScale compiler and our runtime system
providing a user interface to develop applications utilizing
the provided infrastructure.

3.2. Runtime System

The AllScale Runtime System implementation [4] is
based on the HPX distributed memory runtime system [5].
HPX offers a task based parallel programming library,
handling the scheduling of tasks in a distributed memory
environment as well as means for services globally address-
able through remote procedure calls. By default, the HPX
runtime system maintains a single process per node within a
distributed memory cluster. Each of these processes manages
a pool of worker threads, to harness intra-node parallelism.

process,
ro7 = To3 Urar

process,,
ro3 = 1ro1 U3

process,
ra7 =145 Urey

process processy process, processg

ror =T Uy ||reg =12 Urs || 145 =14 U5 || 167 =16 UTT

Do P1||P2 D3| | P4 Ds | | Pe p7
To T | T2 T3 || T4 T5 || T6 7

Figure 5: Hierarchical, distributed data storage index.

Communication between processes is realized through a
compact, exchangeable communication layer. MPI, plain
TCP, or libfabric based implementations are available.

Our runtime system prototype extends upon HPX by
adding a data item manager, an adapted task scheduler,
an extended monitoring infrastructure [6], and a resilience
manager [7] — the latter two are possible due to the AllScale
runtime model, but their details are beyond the scope of this
paper.

The objective of the data item manager and the scheduler
is to maintain a consistent view on the system state, react
to task-triggered actions and steer the program execution by
scheduling tasks and managing the distribution of data.

As covered in the previous section, the overall state
information to be maintained by the runtime system is given
by the tuple

(Q’ R7B7D7LT'7L'LU’ (O &J M’ L))

The overall state is maintained in a distributed fashion
throughout the system, exploiting locality. Enqueued tasks
(Q) are stored within node-local queues at the locality
where they have been created, yet may be stolen by other
nodes. Running and blocked tasks (R and B) are equally
maintained within node-local structures, but may not be
moved to other nodes since their task-private state can not
be migrated.

The data distribution D is managed by keeping track
of locally present regions of data items. Thus, a data item
manager instance in each AllScale process maintains frag-
ments of data items and actively manages contained data by
performing resizing, import, and export operations. Further-
more, the data item manager keeps track of the lock states
L, and L,, of locally maintained data item regions. Finally,
information regarding the hardware model (C' W M, L) is
maintained by the underlying HPX system.

When scheduling application tasks, in particular in the
context of a start transition, the runtime is frequently
tasked with locating regions of data items being distributed
throughout the system. For instance, before being allowed
to start a variant v of a task all data required by v must
be located and moved to a common compute locality or —
preferably — the variant v must be moved to a locality
where the required data is already present. To speed up
the process of locating required data, a distributed index
structure as outlined by Fig. 5 is maintained.

Algorithm 1 Region location resolution.

Input: d € D...adataitem

Input: r € R ...aregion of d to be located

Output: m C R x N ...a relation mapping region segments to hosting
process IDs, such that U(ac,j)Em zCr

1: function LOOKUP(d,r)

2: return local_process.RESOLVE(d,r,1)

3: end function

4:

5: function RESOLVE(d,r,l)

6: ¢ := <local process ID>

7. m =10

8: if { == 1 then

9: // leaf level - add local share to result

10: r; = <region of d covered by local process i>

11: ifrNr; # 0 then

12: m:=mwW{(rNr;,i)}

13: ro=r\r;

14: end if

15: else

16: // inner level - check children

17: r; = <region of d covered by left subtree of process ¢ on level I>
18: if rNr; #0 then

19: m = m W process[¢].RESOLVE(d,r,l — 1)
20: re=r\r
21: end if
22: - = <region of d covered by right subtree of process i on level I>
23: if N7, %40 then
24: m :=m W process[i + 2!=11 RESOLVE(d,r,l — 1)
25: re=r\re
26: end if
27: end if
28:

29: // if fully resolved => done
30: if 7 = 0 then return m end if

32: // escalate to parent

33: if [is not the root level then

34: m := m W process[2! Li/QZJ].RESOLVE(d,r,l +1)
35: end if

37. // done
38: return m
