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Abstract—Message passing has been adopted as the main pro-
gramming paradigm for many-core processors with on-chip net-
works for inter-core communication. To this end, message-passing
libraries such as MPI can be used, as they provide well-known
interfaces to application developers. Since MPI implementations
were originally developed for macroscopic computer networks,
the different characteristics of on-chip networks may require
rethinking existing solutions. With the example of Allreduce, we
identify points where collective operations benefit from routines
optimized for on-chip networks. The identified issues are then
applied to additional collectives including Broadcast, Allgather
and Alltoall. The effectiveness of the proposed optimizations is
demonstrated on the Single-Chip Cloud Computer (SCC), a
many-core research chip created by Intel Labs. Experiments
show that collective operations subjected to the identified op-
timizations are accelerated by factors roughly between 2 to 3
compared to current state of the art implementations. In addition
to synthetic benchmarks, we show that the use of the optimized
routines accelerates a scientific application by more than 40%.
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I. INTRODUCTION

In the last few years, the most notable advance in micro-
processor technology has been the increase in processor cores
per chip. While back in 2004 single-core CPUs dominated
the desktop market, current workstation and server processors
already feature up to 16 cores. This trend of putting more
cores onto a single chip is expected to continue, as it helps
addressing problems like increasing power consumption or the
limited effectiveness of further parallelization efforts on the
instruction level. It is projected that future microprocessors
could consist of hundreds or even a thousand cores [1].
In current processor designs, cores communicate via shared
memory, but since memory bandwidth does not scale as fast
as the number of cores, processor vendors are looking for
alternatives. One possible solution is to provide cores with
their own private memory and let them communicate over
fast on-chip networks by exchanging messages. Prominent
examples for such architectures include the Tilera Tile-Gx [2]
and the Single-Chip Cloud Computer (SCC) of Intel [3]. These
processors resemble distributed memory systems, and as such
often use message-passing libraries similar to MPI [4] for
communication.

When moving from macroscopic networks to on-chip com-
munication, existing message-passing solutions may require
rethinking in multiple ways to achieve high application per-

formance. For example, novel algorithms might be needed to
exploit special features provided by the hardware. Second, the
consideration of topological information might be used to in-
crease resource utilization. Finally, the different characteristics
might favor a certain implementation over alternatives. The
low latency of on-chip networks for example allows finer-
grained parallelization and enables the scaling of problems
to higher core counts compared to macroscopic networks.
While the higher latency of off-chip communication masks
the overhead of features and convenience functions built into
modern message-passing libraries, the latency incurred by this
overhead can turn into a limiting factor of communication
performance when using on-chip networks. This is of spe-
cial importance for functions acting as primitives for more
complex functions. In MPI, this refers to the point-to-point
communication methods on which the collective operations
are based.

We investigate some of the formerly stated issues by ana-
lyzing the runtime behavior of the collective operations of the
Intel SCC’s native communication stack. With the example
of the Allreduce operation, we identify parts inside the stack
that exhibit overhead-induced delays and which may benefit
from optimizations. With this example, we have developed
guidelines for optimizations in order to achieve higher appli-
cation performance. Measurements show that addressing the
identified issues accelerates individual collective operations
typically by factors of 2 to 3, and decreases the runtime of
a scientific application computing thermodynamic properties
by more than 40%.

The remaining paper is organized as follows: Section II
gives an overview of the SCC’s architecture and highlights
the specific parts relevant to this work. Section III briefly
evaluates related work. In Section IV, we develop the proposed
optimizations in a step-by-step manner. Results are presented
in Section V, followed by a conclusion.

II. ARCHITECTURE OF THE SCC

The Intel SCC is a homogeneous, non-cache coherent many-
core processor consisting of 48 x86 Pentium cores [5]. The
cores are paired to 24 so-called tiles and connected to each
other via a fast on-chip mesh network. The chip holds four
on-chip dual-channel capable DDR3 memory controllers that
provide access to a maximum of 64 GB of main memory
through this mesh network (our setup is equipped with 32 GB).
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Fig. 1: Simplified hardware architecture of the SCC, displaying
the arrangement of the tiles and their content

Fig. 1 shows the general architecture of the chip and one of
its tiles. Despite the fact that all cores are on the same die, the
SCC can be regarded as a distributed memory machine in its
standard configuration. The entire main memory is distributed
evenly among the cores and each core is running its own small
operating system. The experimental system used for the work
in this paper is a standard PC running Ubuntu Linux 10.04.
The SCC board is connected via PCI Express, providing easy
access to the chip for productive as well as diagnostic or
debugging purposes.

A tile of the SCC is composed of two 32 bit Pentium
P54C cores, equipped with 16 KB of L1 instruction and data
cache as well as 256 KB of L2 cache for each core. The L2
cache policies are pseudo least-recently-used, write-back and
non-write-allocate. The architecture of the chip is non-cache
coherent, therefore coherency must be ensured in software if
required. Furthermore, the tiles also provide interface units that
connect them to the mesh network. Since the system allows
for a maximum of 64 GB of main memory, lookup tables
translate the 32 bit memory addresses of the cores to 36 bit
memory addresses of the system.

While shared memory communication among the cores is
possible, the main data exchange paradigm of the SCC is mes-
sage passing communication. To facilitate high-performance
communication, the SCC also holds 384 KB of fast on-chip
SRAM – 8 KB per core (i.e. 16 KB per tile) – the main
purpose of which is to act as message passing buffers (MPBs).
Although physically distributed and normally only accessed by
communication libraries, the MPBs can be regarded as a single
shared memory block that can be equally accessed by all cores
using simple memory read/write operations.

III. RELATED WORK

The SCC’s native communication API is called RCCE
(pronounced “rocky”) [6] and is intended as a lightweight
library for writing message-passing-based applications. It fea-
tures an MPI-like set of functions for both point-to-point
and basic collective operations. For point-to-point communi-
cation, blocking send and receive primitives are provided. In
addition, RCCE supports the collective operations Broadcast
and (All-)Reduce with very basic implementations. However,
due to their simplicity, they do not scale well since the root
communicates with the remaining cores in a serial way. In
addition, for Reduce, the computation of the actual reduction
is performed solely by the root. As a consequence, these

algorithms do not use the available parallelism and suffer from
both high latency and low efficiency.

There have been several approaches to address these lim-
itations. The iRCCE library [7] extends RCCE with non-
blocking point-to-point primitives and introduces optimized
memcpy routines that significantly increase the message-
passing performance. These optimized routines have also
been integrated into later RCCE releases. To improve the
efficiency of the collectives, [8] and [9] present tree-based
alternatives for Broadcast and (All-)Reduce that outperform
the simple RCCE variants by factors of more than 20x for
Broadcast and 6x for Reduce. RCKMPI [10] is a full-featured
MPI implementation based on MPICH that uses the SCC’s
MPBs as an internal communication channel. It implements
the complete MPI specification and contains sophisticated
algorithms for collective operations. These provide a set of
routines for different message sizes and pick the one that
performs best at runtime. For short messages sizes, RCKMPI’s
performance is similar to the previously mentioned isolated
tree-based approaches. In case of long message sizes, the
specialized routines of RCKMPI even show a performance
advantage. Its main drawbacks are the significantly higher
memory footprint and runtime overhead compared to RCCE.

Finally, the RCCE comm library [11] provides a solution
between a full, function-rich MPI implementation, and the
simple, lightweight RCCE library. Second only to RCKMPI,
it contains the most complete suite of collective operations
currently available for the SCC, including variants for different
message sizes. Since it is built on standard RCCE primitives, it
extends RCCE by advanced and efficient collective operations
without introducing too much overhead in terms of memory
and runtime. Initial tests showed that the thermodynamics
application scales best and achieves highest performance when
linked against the RCCE comm library. Hence, we have used
this library as basis for our optimization efforts.

Our main contribution is the identification of points where
common algorithms used for collective operations can be
optimized to take full advantage of the characteristics of on-
chip networks, here developed for the example of Allreduce.
These optimizations are then applied to additional collective
operations where applicable.

IV. OPTIMIZATIONS

We develop the candidate points for optimization at the
example of Allreduce, as all presented points can be applied
to this primitive. In addition, we describe for each point the
collectives to which this optimization can also be applied.

The semantics of Allreduce can be described as follows:
Let

{
v0, v1, . . . , vp−1

}
be a set of input vectors distributed

over p cores, vector vj being located at core j. Every input
vector contains n elements, with vj

i denoting the i-th element
of core j’s input vector. After the call to Allreduce, each core
is returned the same result vector w, where w has the same
element count as the input vectors and all elements wi satisfy
wi =

∑p−1
j=0 vj

i . To put it in a less formal way, an element
of the result vector contains the sum of all elements with the



same index from all cores’ input vectors. Note that the addition
operator applied by the sum is just an example here and can
in general be replaced by any associative binary operator.

A. Synchronization

Ideally, cores should be able to work independently in paral-
lel. However, e.g. when communicating, cores will eventually
need to synchronize with each other to preserve causality.
Since this may require a core to wait on other cores and keep
it from computing, synchronization should be used sparsely
and only where necessary. This can be an issue, as profiling of
the thermodynamic application shows: Here, cores spend up to
50% of their time in the rcce_wait_until method, which
is used to wait on a flag of a remote core and mainly serves the
purpose of synchronizing the sending and receiving cores of
a message-passing call. One way to speed up communication
is hence to reduce the need for synchronization.

For longer vector sizes, the Allreduce of RCCE comm is
implemented as a ReduceScatter followed by an Allgather. The
ReduceScatter is particularly susceptible to the synchroniza-
tion issue, as it is based on the bucket or ring algorithm [12].
Here, cores iteratively “push” portions of their operand vector
along a virtual ring containing all cores (cf. Fig. 2).
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Fig. 2: Ring algorithm for ReduceScatter

For the actual data transfer, RCCE’s blocking point-to-point
primitives are used. These synchronize twice, i.e. the receiver
waits for the sender to provide data, and the sender waits until
the receiver has picked up the data (cf. Fig. 3). Thus a send
call cannot return until the matching receive is called and vice
versa, making the cyclic communication pattern of the ring
algorithm prone to deadlocks. RCCE comm avoids this issue
by ordering the send and receive calls in the odd-even pattern:
Cores with an odd ID do the receive first, followed by send,
even-numbered cores use the reverse order, as shown in Fig. 4.

sender
RCCE_send RCCE_recv

receiver

set sent flag

wait for
sent flag

wait for
ready flag

set ready flag

put data into
local MPB

clear ready

copy data from
sender’s MPB

clear sent

Fig. 3: RCCE internals of the send and receive primitives

This ordering results in excessive synchronization, as nodes
are synchronized on both their first and second operations:
A node can start its second operation only after all nodes
completed the first one, similar to a barrier between both op-
erations. This is illustrated by the bold, dashed lines in Fig. 4.
Since the exchanged data blocks have no data dependencies
between each other, such barriers are not necessary from
the algorithmic perspective. The strict synchronization can be
relaxed by the use of non-blocking primitives, as illustrated in
Fig. 5. This has two advantages over the “blocking” solution:
First, it simplifies the implementation of the ring algorithm,
as issuing the send and receive requests of one round in an
arbitrary order does no longer cause deadlocks and renders the
odd-even scheme obsolete. Second, since there is no longer
an explicit ordering between the first and second operation,
cores can concurrently copy data in and out of the MPBs,
effectively using the time they formerly spent waiting for doing
actual work. Synchronization is now required only once each
round by waiting for the send and receive requests to finish,
as indicated by the bold, dashed line in Fig. 5.

As a first optimization step, we built the RCCE comm
library on top of iRCCE and replaced the blocking communi-
cation calls by their non-blocking alternatives. Since this kind
of synchronization occurs whenever a pair of cores has to
exchange a message, this optimization has also been applied
to the Allgather and Alltoall operations. For Allreduce, a
moderate speedup of ∼25% could be achieved for a single call
by this replacement (see Section V for performance figures).

B. Minimizing software overhead

An analysis of the iRCCE primitives showed that they
have a significantly lower efficiency, i.e. they have a higher
execution time than their blocking counterparts, when the
time spent transfering data or waiting for flags is excluded.
This is due to the higher management complexity needed for
advanced features: iRCCE supports multiple concurrent isend
and irecv requests, the cancellation of pending requests, and
the reception of messages from arbitrary cores with arbitrary
sizes1. Pending requests are kept inside a linked list and hence
require dynamic memory operations when issued and after
completion.

While these features make message-passing-based program-
ming very comfortable from a user perspective, the additional
overhead is counterproductive when the provided functions are
used as primitives in communication libraries on higher levels,
as e.g. in RCCE comm. Since most algorithms for collective
operations, including the ring algorithm, are organized into
rounds where a core exchanges at most one message with
another core, the expensive listkeeping can be avoided by
allowing only one active send and receive operation at a
time. We used this fact to extend RCCE by lightweight non-
blocking primitives that support at most one concurrent send
and receive.

1Plain RCCE, in contrast, requires the ID of the sender core and the message
length to be known “in advance”, i.e. they must be passed as parameters to
the receive call.
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Again, the communication primitives of the collectives
stated in the previous section were replaced with these
lightweight functions. First evaluations showed that software
overhead is really an issue for low-latency networks, as the
lightweight functions further accelerate the Allreduce opera-
tion by ∼65% compared to the iRCCE-based variant of the
previous section.

C. Load balancing

Parallel programs achieve the best performance when the
workload is balanced among the cores, so they can work
in parallel and do not have to spend time waiting for other
cores to finish their workshare. For the ring algorithm of
ReduceScatter, this means that a round should take about the
same time to complete on every core, as cores are synchro-

nized with each other during a round. To have a well-balanced
load, cores should communicate and process roughly the same
amount of vector elements per round, assuming that they all
run at the same frequency and have equal processing power.

As shown in Fig. 2, the ring algorithm splits the operand
vectors into a number of blocks that match the number of
participating cores and form the basic unit for communication
and compution. Each core processes a different block, so
all blocks are being processed in parallel. Hence, the load
is perfectly balanced when all blocks are of the same size.
Unfortunately, it is not always possible to attain perfect
balance, since the vector size may not be a multiple of
the number of cores. Instrumentation showed that this also
happens in the thermodynamic application. In its long-range
energy evaluation function, vectors of 276 complex-valued
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Fig. 6: Block sizes and their ratio for different vector lengths

Fourier coefficients have to be summed over all cores in order
to compute the energy term. This is done by an Allreduce
over the local coefficient vectors, which are treated as vectors
of size 552 (a real and an imaginary part per element) for
the reduction. Since 552 elements cannot be divided evenly
by 48 cores (11.5 elements per core), RCCE comm defines
the general block size as the integer part of the division
(i.e. 11), and increases the size of the first block to include
the remaining elements.

As shown in Fig. 6a, the remaining elements can be larger
than the general block size, thus making the first block
significantly larger than the other blocks. While in the best
case (Fig. 6a, top) all elements are distributed evenly, the
first block can grow to more than five times the size of the
remaining blocks in the worst case (Fig. 6a, bottom). For our
particular case (Fig. 6a, middle), the first block is more than
three times the size of a general block. This slows each round
down significantly, as all cores processing blocks with the
general block size are idle two thirds of the time, waiting
for the core processing the first block to finish.

To improve this issue, we changed the method of splitting
the input vector into blocks such that a more equal distribution
is achieved. Having n elements per input vector and p cores,
we add one additional element to the first n mod p blocks, as
shown in Fig. 6b. In addition to Allreduce, this optimization
has also been applied to the Reduce operation to a single root
and to the Broadcast implementation, which uses a scatter-
gather approach for longer messages. This change in the block
definition process reduces the imbalance between larger and
smaller blocks from a worst case factor of 5 down to a factor
of 1.1. For the example of an Allreduce of 552 elements,
this achieves an additional speedup of ∼28% compared to
the version of the previous section.

D. Hardware-specific optimization

As a final step, the hardware at hand can be considered
to allow further optimization. In case of the SCC, this puts
the focus on the MPBs. The high-level flavor of RCCE (the
so-called non-gory interface) uses the MPBs exclusively for
message-passing and synchronization via flags. Since MPBs

outbuf[]
(private mem.)

Local MPBRemote MPB

memcpy_get

memcpy_put

RCCE_irecv

outbuf[]
(private mem.)

inbuf[]
(private mem.)

outbuf[]
(private mem.)

compute reduction

+

outbuf[]
(private mem.)

memcpy_put

RCCE_isend

memcpy_get

...

...

...

...

...

...

round 0 round 1

Fig. 7: Low-level actions for Allreduce based on isend/irecv
primitives

can be accessed directly by all cores in the system, application
performance can be increased by lifting this restriction. Espe-
cially “in-transit” data, which are received and sent with little
or no local processing, or data that must be sent frequently to
other cores, can benefit from placement inside an MPB.

For ReduceScatter, the data blocks of the split input vectors
meet these criteria. Starting with the reception of a block via
RCCE irecv (cf. Fig. 7, left), a core first copies the data from
the MPB of its left neighbor into its own private memory. Each
received element is reduced with the corresponding element
of the local input vector, the result again being written into
private memory (cf. Fig. 7, center). At the start of the next
round, this result must be sent to the core’s right neighbor in
the ring, requiring another copy operation into the local MPB.
From here, the right neighbor will read the data and copy it
into its private memory, closing the cycle (cf. Fig. 7, right).
A data block is thus received, processed and immediately sent
out again, fitting the idea of in-transit data.

Consequently, we adapted the ring algorithm to work di-
rectly on MPBs whenever possible. The structure is shown in
Fig. 8: Instead of copying the intermediate result from the left
neighbor’s MPB, we feed the reduction operator directly with
this MPB’s address as the pointer to the first operand, use the
local input vector as the second operand, and write the result
vector into the local MPB. Then, in the next round, the right
neighbor only needs to use this MPB’s address as the pointer
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to the first operand, hence completely omitting the need to
copy to and from private memory. Since all rounds process
one data block per round in parallel, double buffering is used
to enable concurrent processing. MPBs are split in half into
two buffers, as hinted by the dotted lines in Fig. 8, allowing
a core to fill one buffer with the results being computed this
round while its right neighbor reads the intermediate results
of the previous round from the other buffer. The roles of
the buffers are swapped at the beginning of a new round,
the same handshaking mechanism via sent and ready signals
used in the non-blocking variant (cf. Section IV-A) ensuring
synchronization.

Since MPBs are on-chip SRAM memory, their access
time should be comparable to that of on-chip caches, i.e.
significantly lower than the access time for off-chip DRAM
memory. We expected the MPB algorithm therefore to have a
clear performance advantage, as it avoids the frequent copying
into and out of MPBs and contains fewer off-chip accesses
incurring high latency. However, compared to the version
described in the previous section, the MPB-aware implemen-
tation achieves only a speedup of 10%. The reason for this
rather poor performance is a bug in the SCC’s hardware that
is triggered when both cores of a tile access the local MPB at
the same time. Since the accesses are local, no network packet
must be created. When both cores try to access the local MPB
simultaneously, the arbiter fails to suppress the packet creation
for the request losing the arbitration round2. This may cause
data corruption or even lead to lockup for the involved core.
As a workaround, direct access to the local MPB is prohibited;
instead, cores have to send packets to themselves containing
the read or write request. Consequently, accesses to the local
MPB are slowed down from a latency of 15 core cycles to
45 core cycles plus 8 mesh cycles [13], coming close to the
transmission latency required for off-chip memory accesses
(40 core cycles + 8d mesh cycles, where d is the number
of hops between core and memory controller) [5]. As private
memory is cacheable, only the first access to a private memory
address is actually going off-chip. The latency for this first
access is similar to that of an MPB access. All later accesses
of the MPB-agnostic algorithm to the same address now refer

2The bug is e.g. mentioned in [13], page 8. A detailed description can be
found at http://communities.intel.com/docs/DOC-5405.

to the copy inside the cache, effectively masking the off-chip
access time. As a consequence, only a very small performance
benefit can be gained by working directly on MPBs. However,
with the hardware bug resolved, we expect to see significantly
higher speedups.

V. EXPERIMENTAL RESULTS

We have evaluated the effects of the different proposed opti-
mization steps on the affected collective operations and on an
application from the domain of thermodynamics. The SCC was
clocked according to the standard preset, meaning the cores
run at 533 MHz, whereas the network and the DRAM both
run at 800 MHz. For the communication libraries, we used the
latest available versions of RCCE (v1.1.0), RCCE comm and
RCKMPI (both at rev. 303 of the public SVN repository).

A. Performance of single collective operations

Fig. 9 shows the average measured latency against the
vector size for executing a single collective operation on
all 48 cores and having different sets of optimizations ap-
plied. To produce accurate results, operations were repeated
10000 times for each vector size, and the measured latencies
were averaged. The displayed latencies were measured on
core 0, but since the statistical variance over all cores is
very low, the values are also representative for the other
cores. The graph named blocking shows the latency for the
SCC’s native communication stack made of RCCE comm
on top of RCCE without any optimizations. Since we based
our optimizations on this implementation, we use it as a
reference and specify all speedups relative to its runtimes.
Graph iRCCE displays the latency after relaxing the syn-
chronization by using iRCCE’s non-blocking primitives (cf.
Section IV-A). The lightweight non-blocking graph shows the
latency after replacing iRCCE’s complex communication rou-
tines with lightweight ones that incur less software overhead
(cf. Section IV-B). The lightweight non-blocking, balanced
graph represents the latency after additionally applying the
load balancing optimization (cf. Section IV-C). The MPB-
based Allreduce graph shows the latency for a communi-
cation stack that has all three former optimizations applied
(relaxed synchronization, lightweightness, balancedness) and
additionally features an Allreduce routine optimized to the
SCC architecture as described in Section IV-D. Finally, we
have provided the latency graph for RCKMPI in order to have
a comparison against a standard MPI implementation.

Apart from RCKMPI, virtually all graphs show a “spiky”
behavior with a period of 4 elements. As we use doubles with
a size of 8 bytes each as element type, this matches the size
of a core’s L1 cache line. Message transfer is implemented
inside RCCE by writing cache lines of the local core’s L1
into a remote MPB. Since the SCC’s cores feature a write
combining buffer, only complete cache lines can be transferred
across the network, i.e. messages that do not fill a complete
line have to be padded and require the transfer of an additional
line. This additional transfer is realized by an extra call to
the communication function inside RCCE, thereby adding
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Fig. 9: Latencies of the optimized collectives



overhead. Thus, vector sizes divisible by 4 (e.g. 600 elements)
form the best cases and can be seen at the lower ends of the
spikes. In contrast, RCKMPI uses a different transfer scheme
that does not involve the extra function call for message
sizes not being a multiple of an L1 cache line. As such, its
runtime scales much smoother with the vector size. However,
since RCKMPI performs significantly worse (about factors 2
to 5) than our baseline of RCCE and RCCE comm in all
cases except Alltoall, we will not refer to it in the following
discussion.

For the Allgather and Alltoall operations (Figs. 9a and 9b),
the relaxed synchronization results in average speedups of
2.7x and 1.6x, respectively. Interestingly, the choice of non-
blocking primitives implementation has little or no effect on
performance here. This can be explained by the fact that these
operations transfer messages containing all elements of the
provided data vectors. Hence, the management overhead of a
message transfer is negligible compared to the time actually
spent doing communication. For ReduceScatter and Broadcast
(Figs. 9c and 9d), which subdivide the element vector and
transmit smaller messages, the lightweight routines show a
performance improvement of 1.1x and 1.8x, respectively. At
576 elements, these two routines exhibit a sharp drop in
latency for the blocking and iRCCE libraries. While this
behavior can also be observed for the lightweight routines,
its impact is much less severe here. Up to this point, we were
not able to find a definite cause for this phenomenon, but since
it occurs again on a 4-element boundary, we suspect it to be
a cache-related effect.

As Reduce and Allreduce (Figs. 9e and 9f) also subdivide
their element vector, these two routines are also accelerated by
1.6x and 1.7x on average when using lightweight non-blocking
primitives. In addition, these two operations show the effect
of load balancing very clearly, as the latency of non-balanced
versions (blocking, iRCCE and lightweight non-blocking) is
lowest for vector sizes that are a multiple of 48‡ and increases
linearly for additional elements until the next multiple of 48
is reached. In contrast, performance stays qualitatively on the
same level when using the balanced versions. As discussed in
Section IV-D, the difference between the lightweight and the
MPB-based Allreduce implementations is not very significant,
but we expect a higher impact of the MPB optimization
without the previously mentioned hardware bug.

In summary, all collectives show speedups between ap-
proximately 1.6x (Alltoall) and 2.8x (Allgather) on average.
Together with proper load balancing, a maximum of 3.6x is
achieved for Allreduce at a vector size of 574 elements.

B. Application performance

To show the effect on application performance, we measured
the runtime of a thermodynamics application, linked against
communication libraries containing the various optimization
steps. The application employs statistical mechanics, namely
the Grand canonical Monte Carlo (GCMC) technique [14],

‡As there are 48 cores, the vector is split into 48 blocks, cf. Section IV-C.

to sample thermodynamic properties like the internal energy
or pressure of a gas or fluid under given conditions (e.g.
temperature, volume, chemical potential).

Input: NUM CY CLES

1 enold = InitialEnergy();

2 for cycle := 1 to NUM CY CLES do
3 action := PickRandomAction();
4 particle := PickRandomParticle();

5 ennew = enold − ShortEn(particle)− LongEn();
6 SaveCurrentConfig(particle);
7 DoGCMCMove(action, particle);
8 ennew = ennew + ShortEn(particle) + LongEn();

9 if random() < min
(
1, e−β(ennew−enold)

)
then

10 enold = ennew ; // accept GCMC move

11 else
12 RestoreConfig(particle) ; // reject move

13 BroadcastUpdate(particle, ennew);

Algorithm 1: GCMC main loop

Algorithm 1 shows the simplified structure of the GCMC
code. In the main loop, a set of particles, i.e. molecules
consisting of multiple atoms, is changed at random by moving,
rotating, inserting or deleting a particle. Such a modification
is called a GCMC move. Depending on the change in the total
energy, a move is either accepted (line 10) or rejected (line 12).
Since evaluating the total energy is computationally the most
demanding part of the loop, particles are distributed over the
SCC’s cores so each core can compute the contribution of
its local set of particles in parallel. The total energy is made
up of the energy contributions of both short range and long
range interaction between atom pairs. Short range energies are
computed in real space, allowing an incremental update of the
total energy by subtracting the contribution of the modified
particle before the move and adding its new contribution after
the move. The long range part, shown in Algorithm 2, is
computed in Fourier space and hence cannot be subjected to
an incremental update. Instead, a full recalculation considering
all atom pairs is required after a move.

This makes long range energy computation the most time
consuming part of the application. Profiling results show that
up to 60% of the total runtime is spent inside this function.
The high complexity is not limited to computation, but also
affects communication. While it is sufficient in the short
range energy case to sum up the energy contributions of the
local particle sets, i.e. one value per core, the summation for
the long range energies needs to be done in Fourier space,
requiring the transfer of a set of complex-valued Fourier
coefficients. The summation is done by a call to Allreduce (cf.
Algorithm 2, line 14), which hence makes up for a significant
part of the application runtime. Consequently, we expected
the optimizations to have a notable impact on application
performance.

As shown in Fig. 10, these expectations were met as the
combined optimizations improve the runtime of the application



Input: LocalParticles, num atoms, atom[ ][ ],
vol,KMAX,KMAXV ECS

Output: energy
1 energy := 0.0;
2 ∀k, p, a : F [k][p][a] := 1.0 + 0.0i;
3 ∀k : F localtot [k] = 0.0 + 0.0i;

4 for p ∈ LocalParticles do
5 for a := 0 to num atoms do
6 for k := 1 to KMAX do
7 F [k][p][a] := cos(2πk/vol · atom[p][a])
8 +i · sin(2πk/vol · atom[p][a]);
9 F [−k][p][a] := F [k][p][a];

10 for p ∈ LocalParticles do
11 for a := 0 to num atoms do
12 for k := 0 to KMAXV ECS − 1 do
13 F localtot [k] :=

F localtot [k] + F [kvec(k)][p][a] · atom charge(a);

14 ALLREDUCE(F localtot , Ftot, SUM);

15 for k := 0 to KMAXV ECS − 1 do
16 energy := energy + coeff(k)/vol · |Ftot[k]|2;

17 return energy;

Algorithm 2: LongEn: compute long range energy

by more than 40% compared to the baseline of standard RCCE
and RCCE comm (blocking in Fig. 10). Note that the runtime
of RCKMPI is not displayed at scale, as it exceeds the runtime
of the baseline by more than a factor of two. In combination
with the significant reduction in runtime that goes along with
the replacement of iRCCE’s complex non-blocking primitives
by lightweight routines (> 17% improvement from iRCCE to
lightweight non-blocking), this demonstrates the importance
of lightweight, low-latency collectives for achieving good ap-
plication performance on architectures with on-chip networks.
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iRCCE (non-blocking)

blocking

RCKMPI 55min 27.41s

Fig. 10: Application performance

VI. CONCLUSION

We have investigated several points for improving the ef-
ficiency of collective communication operations. The results
show that lightweight primitives with low overhead are a
significant performance factor for systems with low latency
communication and can improve application performance by
more than 40%. As low latencies decrease the cost for com-
munication in terms of time, systems with on-chip networks

allow finer-grained parallelized algorithms involving a higher
communication ratio compared to systems with macroscopic
networks. Thus, we believe highly optimized communication
operations will become increasingly important for achieving
high application performance on many-core processors in
future.
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